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Abstract: The operational axiomatization of quantum theory in previous works can be regarded
as a set of six epistemological rules for falsifying propositions of the theory. In particular, the
Purification postulate—the only one that is not shared with classical theory—allows falsification of
random-sequences generators, a task classically unfeasible.
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1. Introduction

Our physical world is ruled by two theories: classical theory (CT) and quantum the-
ory (QT). Compared to CT, QT still looks weird; however, this may be a symptom that
we are still missing the hidden logic of the theory. Indeed, we should not forget that
among the two theories, QT is the most powerful one, simply because CT is a restriction
of QT. In fact, for given system dimension d, CT restricts QT’s states to the convex hull
of a fixed maximal set of jointly perfectly discriminable pure states (the d-simplex), and,
correspondingly, transformations are restricted to (sub)Markov linear maps. (For mathe-
matical axiomatizations and main theorems of both theories, QT and CT, see Appendix A).
We can thus regard the indeterminism inherent QT as the price to be payed for adding
information-processing power.

Deriving QT from information-theoretical principles [1–3] reveals how the theory is
more powerful than CT. Indeed, the two theories share five postulates, whereas the sixth
QT postulate highlights the fundamental task that QT can achieve, whereas CT cannot:
purification. On the other hand, the sixth CT postulate makes the theory a restriction of QT.
Thus, purification synthesizes the additional power of QT compared to CT.

In the following, OPT will be the acronym for Operational Probabilistic Theory. (See
Table A1 in Appendix A for acronyms, abbreviations, and symbols). OPTs have been
introduced in Refs. [1–3], originally inspired by the works of L. Hardy [4] and C. Fuchs [5].

In the convex-OPT language, the five common postulates are:

P1 Causality : The probability of preparation is independent on the choice of observation.
P2 Perfect discriminability: Every state on the boundary of the convex set of states can be

perfectly distinguished from some other state.
P3 Local discriminability: It is possible to discriminate any pair of states of composite

systems using only local observations.
P4 Compressibility: For all states that are not completely mixed there exists an ideal

compression scheme.
P5 Atomicity of composition: The composition of two atomic transformations is atomic.

The sixth postulate, different for each of the two theories, is:

P6Q Purification: Every state has a purification. For a fixed purifying system, every two
purifications of the same state are connected by a reversible transformation on the
purifying system.
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P6C Perfect joint discrimination: For any system, all pure states can be perfectly discrimi-
nated jointly.

Notice that P6C forces CT to restrict QT’s pure states to a maximal set of perfectly
discriminable ones.

2. The Purification Principle

Let us recall the statement of the principle.
For every system A and for every state ρ ∈ St(A), there exists a system B and a pure state

Ψ ∈ PurSt(AB) such that:

ρ A = Ψ
A

B e
. (1)

If two pure states Ψ and Ψ′ satisfy,

Ψ′
A

B e
= Ψ

A

B e
,

then there exists a reversible transformation U , acting only on system B, such that:

Ψ′
A

B
= Ψ

A

B U B
. (2)

We call Ψ a purification of ρ, with B purifying system.
Informally, Equation (1) guarantees that we can always find a pure state of AB that is

compatible with our limited knowledge of A alone. Furthermore, Equation (2) specifies
that all the states of AB that are compatible with our knowledge of A are essentially the
same, up to a reversible transformation on B. We call this property uniqueness of purification.
(Note that the two purifications in Equation (2) have the same purifying system).

3. Epistemological Value of the Postulates

In quantum logic [6], one associates a “proposition” about the system A to an orthogo-
nal projector PS on a subspace S ⊆ HA of the Hilbert space of A. With the map between
PS and its support S being a bijection, one can equivalently associate “propositions” to
Hilbert subspaces S ⊆ HA. (Here, by “support” of an operator we mean the orthogonal
complement of its kernel.) One can now enrich the notion of “proposition” by associating
it to a quantum state ρ with support Supp ρ = S , the state ρ encoding a reacher information
more than just its support S . We conclude that the notion of “state” constitutes a more
detailed concept of “proposition” than that of the orthogonal projector. For this reason, in
the present context, it is more appropriate to associate the word “proposition” to the notion
of “quantum state” instead of the original definition as the orthogonal projector. In other
words, a “proposition about A” will be a synonym of the “state of A”. Clearly, the same
notion can be extended to CT, since CT is a restriction of QT.

According to the above identification we can now translate QT and CT into the
language of “propositions”, and appreciate how, remarkably, all six postulates for QT and
CT are of the epistemological nature, i.e., they all are assertions regarding falsifiability of
the theory’s “propositions”.

Epistemological Rules

E1 Causality is required for falsification of propositions by observations.
E2 Perfect discriminability guarantees the existence of falsifiable propositions derived

from the theory.
E3 Local discriminability guarantees that falsifiability of joint propositions can be accom-

plished “locally”, namely using single system observations and classical communication.
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E4 Compressibility provides the possibility of reducing the dimension of the system,
supporting a falsifiable proposition.

E5 Atomicity of composition guarantees the existence of a class of transformations that
do not affect falsifiability of propositions.

E6Q Purification allows for falsifiable random generators.
E6C Perfect discrimination allows any set of determinate propositions to be jointly falsifiable.

Any of the above principles constitutes an epistemological power of the corresponding
principle. Statement E6Q, in particular, establishes the possibility of logically falsifying a
quantum random generator, namely, there exists a falsification test that establishes if a given
quantum random generator is different from a claimed one. Notice that such a falsification
cannot be achieved classically for probabilities that are not deterministic, namely, p /∈ {0, 1},
since no succession of outcomes can logically falsify a value of p different from 0 and 1.
Remarkably, as we will see in this paper, thanks to the purification postulate, within QT we
can falsify random generators with any probability distribution. Classically, one falsifies
the generator for p = 1 whenever the event does not occur, and for p = 0 when it does. In
such a case, the probability value itself is directly falsified. We stress that in the other cases,
QT makes the random generator falsifiable—not the probability value.

Before proving the epistemological rules, we recall the theory of falsification tests
introduced in Ref. [7].

4. The Falsification Test

We say that an event F is a falsifier of hypothesis Hyp if F cannot happen for Hyp = TRUE.
We will call the binary test {F, F?} a falsification test for hypothesis Hyp, and denote by F? the
inconclusive event. Notice that the occurrence of F? generally does not mean that Hyp = TRUE,
but that Hyp has not been falsified.

Suppose now that one wants to falsify a proposition about the quantum state ρ ∈ St(A)
of system A. In such case, any effective falsification test can be achieved as a binary
observation test of the form:

{F, F?} ⊂ Eff(A), F? := IA − F, F > 0, F? ≥ 0, (3)

where by the symbol F (F?) we denote both event and corresponding positive operator. The
strict positivity of F is required for effectiveness of the test, F = 0 corresponding to the
inconclusive test, which outputs only the inconclusive outcome. On the other hand, F? = 0
corresponds to the logical a priori falsification.

Examples of inconclusive tests have been given in Ref. [7], to prove that hypotheses
as “purity of an unknown state”, or “unitarity of an unknown transformation” cannot
be falsified.

Falsification of a Quantum State Support

Consider the proposition:

Hyp : Supp ρ =: K ( HA, ρ ∈ St(A), dimHA ≥ 2 (4)

Supp ρ denoting the support of ρ. Then, any operator of the form:

0 < F 6 IA, Supp F ⊆ K⊥ (5)

would have zero expectation for a state ρ satisfying Hyp in Equation (4), which means that
occurrence of F would falsify Hyp, namely:

Tr[ρF] > 0 ⇒ Hyp = FALSE. (6)

Equation (5) provides the most general falsification test of Hyp in Equation (4), the choice
Supp F = K⊥ corresponding to the most efficient test, namely the one maximizing falsifi-
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cation chance. Notice that the outcome corresponding to I − F does not correspond to a
verification of Hyp, since it generally can occur for Supp (I − F) ∩K 6= ∅.

5. Proofs of Epistemological Rules

In this section we prove the epistemological rules given in Section 3. We will denote
by St(A) the convex set of states of system A and by ∂St(A) its boundary.

E1 For any proposition ρ that is falsifiable (i.e., rank ρ < dA), causality protects the
falsification target state from being changed by the particular choice of observation.

E2 Consider two quantum states ρ, ν ∈ St(A). They are perfectly discriminable iff
Supp ρ ⊥ Supp ν, which implies that 2 ≤ rank ρ + rank ν ≤ dA with both ranks at
least unit. It follows that 1 ≤ rank ρ ≤ dA −min rank ν = dA − 1 and the same for
rank ν, hence both ρ, ν ∈ ∂St(A). We conclude that the two states are falsifiable, with
falsifiers ker ρ ⊆ Supp ν and ker ν ⊆ Supp ρ, respectively.

E3 Here, we will use the double-ket notation [8] (for a thorough treatment see [3]). Shortly,
once it is chosen the orthonormal factorized canonical basis {|i〉 ⊗ |j〉} for H⊗H,
the one-to-one correspondence between vectors inH⊗H and operators onH holds

|Ψ〉〉 := ∑
ij

Ψij|i〉 ⊗ |j〉 ←→ Ψ = ∑
ij

Ψij|i〉〈j| ∈ HS(Cd),

where HS(Cd) denotes the Hilbert–Schmidt operators in dimensions d. One can then
veryify the following identity:

(A⊗ B)|C〉〉 = |ACBᵀ〉〉,

with Bᵀ denoting the transposed operator of B, the operator that has the transposed
matrix w.r.t. the canonical basis. Notice that e.g., (|φ〉〈ψ|)ᵀ = |ψ∗〉〈φ∗| where |ψ∗〉 is
the vector |ψ〉 with complex-conjugated coefficients w.r.t. the canonical basis.
Consider now the pure entangled state corresponding to state-vector |A〉〉 ∈ HA⊗HB.
The following sequence of identities holds:

(〈a| ⊗ 〈b|)|A〉〉 = (〈a| ⊗ I)(I ⊗ 〈b|AT)∑
n
|an〉 ⊗ |an〉∗ = 〈b|AT(|a〉∗) = 〈b|(A†|a〉)∗ (7)

where S := {|an〉}dA
n=1 is an orthonormal basis for HA, with |a〉 ∈ S. Equation (7)

shows that choosing |b〉 orthogonal to (A†|a〉)∗ one has a local falsifier of the entan-
gled state |A〉〉〈〈A| given by:

PA ⊗ PB = |a〉〈a| ⊗ |b〉〈b|, (8)

One can see that the generalization to mixtures R is straightforward, upon writing
the state R in the canonical form:

R =
dA

∑
j=1
|Aj〉〉〈〈Aj|, Tr(A†

i Aj) = δij pj,
dA

∑
j=1

pj = 1. (9)

E4 Any falsifiable state ρ has dim ker ρ ≥ 1, hence it can be isometrically mapped to a
state of a system B with dB ≤ dA − 1.

E5 A transformation A ∈ Trn(A→B) is called atomic if it has only one Krauss term,
namely it can be written as Aρ = AρA†, with A ∈ B(HA) and ||A|| ≤ 1. This implies
that rank(Aρ) ≤ rank ρ, namely the falsification space has a dimension that is not
decreased; hence, the output state Aρ can be falsified. This is not necessarily true for
A non atomic, namely with more than one Krauss term, i.e., Aρ = A1ρA†

1 + A2ρA†
2 +

. . .
E6Q See Section 6.
E6C It trivially holds for CT.
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6. Falsifiable Setup of a Random Generator
A falsifiable setup for a quantum binary random generator can use any quantum

system A, e.g., a qubit, in a pure state ρ = |ψ〉〈ψ| along with an orthogonal observation test
Ω = {ωi}i=0,1 with ωi = |i〉〈i|, 〈i|j〉 = δij (namely a “customary discrete” observable). The
following setup,

i ∈ {0, 1}, pi = ρ
A

ωi , ρ = |ψ〉〈ψ|, |ψ〉 = √p|0〉+
√

1− peiφ|1〉, ωi = |i〉〈i|, (10)

is a binary random generator with probability p0 = p.
Notice that the advantage of this choice of setup (compared to, e.g., using a mixed state

and/or a non orthogonal observation test) is that it is falsifiable. In fact, the preparation
of the state |ψ〉〈ψ| can be falsified efficiently by running the falsification test of the state
support, using falsifier F = I − |ψ〉〈ψ|. On the other hand, the observation test Ω can
be taken as just the observable providing the physical meaning of the orthonormal basis
chosen for the qubit A (e.g., spin-up and spin-down), which is required to physically define
the state preparation.

The above setup can be trivially generalized to a N-ary random generator (N > 2)
with probability distribution {pn}n∈ZN by using a system A with dim(HA) = N, and a
pure state with vector with more than two nonvanishing probability amplitudes. Here,
F = I − |ψ〉〈ψ| still provides the most efficient falsifier. Notice that for dim(HA) > 2 it is
also possible to falsify mixed states with rank strictly smaller than dim(HA). Notice that
the probability of falsification of a mixed state ρ 6= |ψ〉〈ψ| is given by p = 1− 〈ψ|ρ|ψ〉, and
vanishes linearly with the overlap between the declared state |ψ〉〈ψ| and the true state ρ.

7. Conclusions

CT and QT are more than theories about the world: they constitute extensions of
logic. Famously, von Neumann attempted to prove QT to be a kind of logic: we now
know that it is an extension of it, instead. We have seen that QT can be regarded as
a chapter of epistemology, being a set of rules for accessibility of falsifications. Thus,
more than answering the question “what is reality”, QT provides rules for “how we can
explore reality”. One can then add axioms to those of QT to get more refined theories,
such as Free Quantum Field Theory. The latter can indeed be obtained upon considering
a denumerable set of QT systems, and adding the axioms of locality, homogeneity, and
isotropy of interactions (see, e.g., the review [9]).
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Appendix A. Quantum and Classical Theories: Axiomatization and Main Theorems

Minimal mathematical axiomatizations of QT and CT as OPTs are provided in
Tables A2 and A4. For an OPT, we need to provide the mathematical description of sys-
tems, their composition, and transformations from one system to another (the rules of
compositions of transformations and their respective systems are provided by the OPT
framework). The reader who is not familiar with the OPT framework can simply use
the intuitive construction of quantum circuits. In Tables A3 and A5 we report the main
theorems following from the axioms. For the interested reader, the motivations for adopting
the mathematical axiomatizations in Tables A2 and A4 are discussed in ref. [7].
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Table A1. Notation, special-cases corollaries, and common abbreviations.

B+(H) bounded positive operators overH
CP≤ trace-non increasing completely positive map
CP= trace-preserving completely positive map
H Hilbert space over C
Cone(S) conic hull of S
Cone≤1(S) convex hull of {S∪ 0}
Conv(S) convex hull of S
Eff(A) set of effects of system A
Eff1(A) set of deterministic effects of system A
Mrkv≤ normalization-non-incressing right-stochastic Markov matrices
Mrkv1 normalization-preserving right-stochastic Markov matrices
Prm(n) n× n permutation matrices
(Rn)+≤1 {x ∈ RnA |x ≥ 0, x ≤ 1}: simplex SnA+1

(Rn)+1 {x ∈ RnA |x ≥ 0, ||x||1 = 1}: simplex SnA

St(A) set of states of system A
St1(A) set of deterministic states of system A
T(H) trace-class operators overH
T+(H) trace-class positive operators overH
T+
≤1(H) positive sub-unit-trace operators overH

T+
=1(H) positive unit-trace operators overH

Trn(A→ B) set of transformations from system A to system B
Trn1(A→ B) set of deterministic transformations from system A to system B
U(H) unitary group overH

Special cases corollaries

T(C) = C, T+(C) = R+, T+
≤1(C) = [0, 1], T+

=1(C) = {1}
CP(T(H)→ T(C)) = P(T(H)→ T(C)) = {Tr[·E], E ∈ B+(H)}
CP(T(C)→ T(H)) = P(T(C)→ T(H)) = T+(H)
CP≤(T(C)→ T(H)) ≡ T+

≤1(H)

CP≤(T(H)→ T(C)) ≡ {ε(·) = Tr[·E], 0 ≤ E ≤ I}
Mrkv≤(n, 1) = (Rn)+≤1
Mrkv1(n, 1) = (Rn)+=1

Table A2. Mathematical axiomatization of Quantum Theory. As given in the table, in Quantum
Theory to each system A, we associate a Hilbert space over the complex fieldHA. To the composition
of systems A and B, we associate the tensor product of Hilbert spaces HAB = HA ⊗HB. Transfor-
mations from system A to B are described by trace-nonincreasing completely positive (CP) maps
from traceclass operators onHA to traceclass operators onHB. Special cases of transformations are
those with input trivial system I corresponding to states, whose trace is the preparation probability,
the latter providing an efficient Born rule from which one can derive all joint probabilities of any
combination of transformations. Everything else is simply special-case corollaries and one realization
theorem: these are reported in Table A3.

Quantum Theory

system A HA

system composition AB HAB = HA ⊗HB

transformation T ∈ Trn(A→ B) T ∈ CP≤(T(HA)→ T(HB))

Born rule p(T ) = Tr T T ∈ Trn(I→ A)
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Table A3. Corollaries and a theorem of Quantum Theory, starting from Table A2 axiomatization. The
first corollary states that the trivial system I, in order to satisfy the composition rule IA = AI = A,
must be associated with the one-dimensional Hilbert space HI = C, since it is the only Hilbert
space that trivializes the Hilbert space tensor product. The second corollary states that the reversible
transformations are the unitary ones. The third corollary states that the deterministic transformations
are the trace-preserving ones. Then the fourth and fifth corollaries give the composition of transfor-
mations in terms of compositions of maps. We then have four corollaries about states: (1) states are
transformations starting from the trivial system and, as such, are positive operators on the system
Hilbert space, having trace bounded by one; (2) the deterministic states correspond to unit-trace
positive operator; (3) the states of the trivial system are just probabilities; (4) the only deterministic
state of the trivial system is number 1. We then have two corollaries for effects, as special cases of
transformation toward the trivial system: (1) the effect is represented by the partial trace over the
system Hilbert space of the multiplication with an operator that is positive and bounded by the
identity; (2) the only deterministic effect is the partial trace over the system Hilbert space. Finally, we
have the realization theorem for transformations in terms of unitary interaction U = U ·U† with an
environment F and a projective effect-test {Pi} over environment E, with Pi = Pi · Pi, {Pi} being a
complete set of orthogonal projectors.

Quantum Theorems

trivial system I HI = C

reversible transf. U = U ·U† U ∈ U(HA)

determ. transformation T ∈ Trn1(A→ B) T ∈ CP≤1(T(HA)→ T(HB))

parallel composition T1 ∈ Trn(A→ B), T2 ∈ Trn(C→ D) T1 ⊗ T2

sequential composition T1 ∈ Trn(A→ B), T2 ∈ Trn(B→ C) T2T1

states

ρ ∈ St(A) ≡ Trn(I→ A) ρ ∈ T+
≤1(HA)

ρ ∈ St1(A) ≡ Trn1(I→ A) ρ ∈ T+
=1(HA)

ρ ∈ St(I) ≡ Trn(I→ I) ρ ∈ [0, 1]

ρ ∈ St1(I) ≡ Trn(I→ I) ρ = 1

effects
ε ∈ Eff(A) ≡ Trn(A→ I) ε(·) = TrA[·E], 0 ≤ E ≤ IA

ε ∈ Eff1(A) ≡ Trn1(A→ I) ε = TrA

Transformations as
unitary interaction +

von Neumann-Luders

A Ti
B =

A

U
B

σ F E Pi

Tiρ = TrE[U(ρ⊗ σ)U†(IB ⊗ Pi)]

Table A4. Mathematical axiomatization of Classical Theory. To each system A, we associate a real
Euclidean space RnA . To the composition of systems A and B, we associate the tensor product spaces
RnA ⊗ RnB . Transformations from system A to system B are described by substochastic Markov
matrices from the input space to the output space. All others are simple special-case corollaries: these
are reported in Table A5.

Classical Theory

system A RnA

system composition AB RnAB = RnA ⊗RnB

transformation T ∈ Trn(A→ B) T ∈ Mrkv≤(RnA ,RnB )
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Table A5. Main theorems of Classical Theory, starting from axioms in Table A4. The first corollary
states that the trivial system I in order to satisfy the composition rule IA = AI = A must be associated
to the one-dimensional space R, since it is the only real linear space that trivializes the tensor product.
The second corollary states that the reversible transformations are the permutation matrices. The
third states that transformations are substochastic Markov matrices. The fourth states that the
deterministic transformations are stochastic Markov matrices. Then the fifth and sixth corollaries
give the composition of transformations in terms of composition of matrices. We then have four
corollaries about states: (1) states are transformations starting from the trivial system and, as such, are
sub-normalized probability vectors (vectors in the positive octant with sum of elements bounded by
one); (2) the deterministic states correspond to normalized probability vectors; (3) the case of trivial
output-system correspond to just probabilities; (4) the only trivial output-system deterministic state is
the number 1. We then have two corollaries for effects, as special cases of the transformation toward
the trivial system: (1) the effect is represented by scalar product with a vector with components
in the unit interval; (2) the only deterministic effect is the scalar product with the vector with all
unit components.

Classical Theorems

trivial system I R

reversible transformations P P ∈ Prm(nA)

transformation T ∈ Trn6(A→ B) T ∈ Mrkv6(RnA ,RnB )

determ. transformation T ∈ Trn1(A→ B) T ∈ Mrkv1(RnA ,RnB )

parallel composition T1 ∈ Trn(A→ B), T2 ∈ Trn(C→ D) T1 ⊗ T2

sequential composition T1 ∈ Trn(A→ B), T2 ∈ Trn(B→ C) T2T1

states

x ∈ St(A) ≡ Trn(I→ A) x ∈ (RnA )+≤1

x ∈ St1(A) ≡ Trn1(I→ A) x ∈ (RnA )+=1

p ∈ St(I) ≡ Trn(I→ I) p ∈ [0, 1]

p ∈ St1(I) ≡ Trn(I→ I) p = 1

effects
ε ∈ Eff(A) ≡ Trn(A→ I) ε(·) = ·x, 0 ≤ x ≤ 1

ε ∈ Eff1(A) ≡ Trn1(A→ I) ε = ·1
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