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Abstract: This paper proposes an H∞ observer based on descriptor systems to estimate the state of
charge (SOC). The battery’s open-current voltage is chosen as a generalized state variable, thereby
avoiding the artificial derivative calculation of the algebraic equation for the SOC. Furthermore,
the observer’s dynamic performance is saved. To decrease the impacts of the uncertain noise and
parameter perturbations, nonlinear H∞ theory is implemented to design the observer. The sufficient
conditions for the H∞ observer to guarantee the disturbance suppression performance index are
given and proved by the Lyapunov stability theory. This paper systematically gives the design steps
of battery SOC H∞ observers. The simulation results highlight the accuracy, transient performance,
and robustness of the presented method.

Keywords: descriptor systems; SOC estimation; H∞ observer; disturbance suppression performance

1. Introduction

Over the past few years, renewable energy vehicles (REVs) have become a mainstream
consumer option, so related research about REV batteries has been of great interest [1]. The
state of charge (SOC) is a percentage of the remaining capacity to the actual capacity of the
battery, which is a vital indicator to evaluate battery performance [2,3]. Accurately tracking
the SOC can dramatically avoid battery overcharge or overdischarge, thereby extending the
battery life. However, due to a series of complex electrochemical reactions inside the battery,
it is often impossible to obtain the SOC directly through the sensors. In other words, SOC
can only be estimated by the measurable electrical signals and battery parameters. Even
worse, battery parameters are affected by external factors such as temperature, battery age,
and noise in electrical signals [4]. Accordingly, the SOC observer needs to provide sufficient
estimation accuracy even in noise and parameter perturbations, which is a daunting task.

A variety of algorithms are proposed to estimate SOC, such as the coulomb counting
method (CCM), open-circuit voltage method (OCVM), Kalaman filter (KF), sliding-mode
observer (SMO), H∞ observer, neural network algorithm, proportional-integral (PI) ob-
server, and adaptive observer [5–7]. The CCM estimates SOC by continuously measuring
and integrating the current in time. The main drawbacks of CCM are two-fold: the first
is that CCM highly depends on the initial value of observers, and the second is that it is
known as an open-loop method whose estimation value will drift in the long term [8]. Alter-
natively, because of the one-to-one correspondence (as shown in Figure 1) between the SOC
and the open-circuit voltage (OCV), the OCVM estimates the SOC by measuring the OCV
of the battery without load. However, this technique fails to estimate SOC online. Due to
their drawbacks, CCM and OCVM are never utilized separately in practical applications [9].
The KF and SMO are widely employed in the field of SOC estimation [10,11]. Nevertheless,
due to the assumption of a noise signal Gaussian, the KF falls short when the system has
noise or unmodeled dynamics [12,13]. The SMO is commonly used for SOC estimation due
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to its robustness. In [14], an OCV–SOC formula was modeled by the Nernst equation, and
a SMO was proposed to estimate SOC; simulation results validate its accuracy. However,
the estimate error of SOC may fluctuate because of the discontinuous input. A new SMO,
based on the two-circuit model presented in [15], exhibits good performance. However,
without accurate initial states, the SMO in [15] takes longer to track the true SOC.
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Figure 1. The relationship between SOC and OCV.

The influence of possible error sources on the SOC observation was analyzed in [16],
and the results show that measurement noise and modeling errors are the main factors that
limit the observation accuracy. The H∞ observer is a promising tool to handle unknown
noise and modeling errors, and its effectiveness under a variety of operating conditions has
been confirmed by experiments [17–20]. Based on the OCV–SOC formula, an H∞-switched
observer was presented in [21]; the experimental results confirm that, compared with the
KF, both the accuracy and robustness of SOC estimation are improved by its use.

Regardless of the above approaches, it is impossible to ignore the piecewise nonlinear
function of OCV versus SOC shown in Figure 1. In the battery model, the SOC fails to be
expressed explicitly in the state equation, which brings difficulties to the design observer.
In [22,23], the piecewise nonlinear function was linearized and differentiated before the
observer design. However, the differential operation produced two problems:

1. The derivation of the piecewise function increased the order of the observer, which did
not match the original system, and the observer error was not converged potentially;

2. The derivation of the current was ignored completely, so the dynamic performance of
the observer became worse.

There are both differential equations and algebraic equations in battery systems.
Such systems are also called descriptor systems, singular systems, or differential-algebraic
systems [24,25]. To avoid the differentiation of the OCV–SOC formula, it is feasible to
design the observer after modeling the battery as a descriptor system. Various methods are
developed to design observers for descriptor systems [26].

The main objective of this paper is to design a noncomplex observer to estimate
SOC accurately. To balance accuracy and complexity, this paper innovatively models the
battery as a descriptor system. The H∞ theory is applied to design the observer to improve
disturbance suppression performance. Compared with the traditional SOC estimation
method, the method proposed in this paper can accurately estimate the SOC online, and
does not require an accurate initial value. The designed observer exhibits good robustness
in the presence of noise.

This paper is organized as follows. In Section 2, for the equivalent circuit model, a
descriptor system with state variable OCV is established. In Section 3, the H∞ observer is
proposed. The sufficient conditions to solve the observer are given and proved. In Section 4,
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several simulation experiments verify the accuracy and robustness of the proposed method.
Section 5 summarizes the contribution of this paper.

Notations: M+ is the generalized inverse of matrix M, satisfying MM+M = M.
I denotes an identity matrix with appropriate dimensions. 0 is the zero matrix with
appropriate dimensions.

2. Battery Model

A resistance–capacitance (RC) equivalent circuit model is used to build a dynamic
model of the battery, as shown in Figure 2, where the variable s represents the SOC. CN is
the nominal capacity of the battery. voc represents the OCV, which is the function of SOC.
vc is the voltage across the polarized capacitor Cc. Re and Rc represent the conduction
resistance and the diffusion resistance, respectively; ie and ic are the currents of the two
branches; Rt is the terminal resistance; vt is the measurable terminal voltage, and i is the
charge and discharge current.

Rt

Rc

Cc

voc(s)

ie

ic

i

CN

vc

vt

Re

Figure 2. RC equivalent circuit model of the battery.

From the definition of SOC, the dynamic relationship of SOC is ṡ =
ie

CN
. In addition,

the aforementioned nonlinear function voc can be reasonably approximated as voc = k1s +
k2 + ∆ f1, where ∆ f1 is the nonlinearity of the OCV–SOC relationship. The two constants
k1 and k2 can be determined by fitting the curve in Figure 1. From Kirchhoff’s law and
Figure 2, the dynamic equations of the battery are:

ṡ =
−voc + vc

CN(Re + Rc)
+

iRc

CN(Re + Rc)
+ ∆ f2,

v̇c =
voc − vc

Cc(Re + Rc)
+

iRe

Cc(Re + Rc)
+ ∆ f3,

vt =
Rcvc + Revoc

Re + Rc
+ (

ReRc

Re + Rc
+ Rt)i,

(1)

where ∆ f2 and ∆ f3 are the uncertainties caused by modeling accuracy.
In this model, s ∈ (0, 1) is the independent variable of the voc, which essentially

introduces a piecewise algebraic constraint. To solve this piecewise algebraic system state
estimation problem, Refs. [22,23] ignore the change of the current to derive the voc and
vt, respectively, and model the system as a third-order system which is primordially two-
order. In the above modeling process, the derivation operation increases the order of the
system, and it is doubtful whether the observer error converges. In the actual application of
batteries, especially in the course of REVs, the current of the battery is constantly changing.
Therefore, it is obviously unreasonable to completely ignore the derivative of the current.
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Motivated by these considerations, this paper regards the OCV–SOC function as an
algebraic constraint between state variables, thereby modeling the system battery as a
descriptor system. x =

[
sT vT

c vT
oc
]T is identified as a state variable, u =

[
iT 1

]T , and

ω =
[
∆ f T

1 ∆ f T
2 ∆ f T

3
]T ; then, the battery is modeled as a descriptor system (2) with

n = 3 dimensions.

Eẋ = Ax + Bu + D1ω,

y = Cx + Du,
(2)

where:

E =

1 0 0
0 1 0
0 0 0

, A =


0

1
CN(Re + Rc)

−1
CN(Re + Rc)

0
−1

Cc(Re + Rc)

1
Cc(Re + Rc)

k1 0 −1

,

B =


Rc

CN(Re + Rc)
0

Re

Cc(Re + Rc)
0

0 k2

, C =

[
0

Rc

Re + Rc

Re

Re + Rc

]
,

D =

[
ReRc

Re + Rc
+ Rt 0

]
, D1 =

0 1 0
0 0 1
1 0 0

.

Before the observer design, assume that the descriptor system (2) satisfies Assump-
tion 1.

Assumption 1.

rank

 E A
0 E
0 C

 = n + rank E, (3)

where n is the number of state variables.

Under Assumption 1, the descriptor system (2) is impulse observable, which guaran-
tees there exists an observer to track the states. Actually, this assumption is not strict and
easy to achieve in battery models.

3. H∞ Observer

Design an H∞ observer described as follows:

ż =Hz + Jȳ + Mu,

x̂ =Pz−QΦBu + Rȳ,
(4)

where z ∈ Rr is the state variable of the observer, x̂ ∈ Rn is the estimated value of the
battery state, H, J, M, P, Q, and R are all unknown matrices with appropriate dimensions,
and ȳ = y− Du is the virtual output. Φ satisfies ΦE = 0.

The H∞ observer design target can be expressed as designing a stable observer (4) to
satisfy that:

1. With ω = 0, the estimate error e = x− x̂ is asymptotically stable;
2. With ω 6= 0, for a prescribed level of noise γ > 0, ‖ e ‖L2< γ ‖ ω ‖L2 will be satisfied.

Define the error δ = z− NEx, where N is of appropriate dimensions. Then, one has:
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δ̇ =ż− NEẋ

=Hδ + (HNE + JC− NA)x + (M− NB)u− ND1ω,

e =x̂− x

=Pδ + (PNE + QΦA + RC− In)x + QΦD1ω,

(5)

where ΦE = 0 is applied. Under Assumption 1, to make the error system (5) be a homoge-
neous linear differential equation for δ, the observer (4) should satisfy:

[
H ψ J
P Q R

]N
′
E

ΦA
C

 =

[
N
′
A

In

]
, (6)

M = NB, (7)

where ψ is an arbitrary matrix of appropriate dimension and N
′
= N + ψΦ.

To facilitate the analysis, define ϕ1 = −ND1 and ϕ2 = QΦD1; then, the dynamics of
the error system are given by:

δ̇ = Hδ + ϕ1ω,

e = Pδ + ϕ2ω.
(8)

Notice that Equation (6) can be solvable if and only if:

rank

N
′
E

ΦA
C

 = n. (9)

With Equation (9), the solution of Equation (6) can be described as:

H = ΓH + η1∆P, ψ = Γψ + η1∆Q, J = ΓJ + η1∆R,

P = ΓP + η2∆P, Q = ΓQ + η2∆Q, R = ΓR + η1∆R,

ϕ1 = Γϕ1 + η1∆ϕ1 , ϕ2 = Γϕ2 + η2∆ϕ2 ,

(10)

where η1 and η2 are of appropriate dimension. Define the following matrices:

ΓP = Ω+

I
0
0

, ∆P = (I −ΩΩ+)

I
0
0

, ΓH = N
′
AΓP,

ΓQ = Ω+

0
I
0

, ∆Q = (I −ΩΩ+)

0
I
0

, Γψ = N
′
AΓQ,

ΓR = Ω+

0
0
I

, ∆R = (I −ΩΩ+)

0
0
I

, ΓJ = N
′
AΓR,

Γϕ1 = −N
′
D1 − ΓψΦD1, ∆ϕ1 = −∆QΦD1,

Γϕ2 = ΓQΦD1, ∆ϕ2 = ∆QΦD1,

where Ω =

N
′
E

ΦA
C

.

The following theorem gives the sufficient conditions for error system (8) to be stable
and ‖ e ‖L2< γ ‖ ω ‖L2 with (6) and (7).
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Theorem 1. For a prescribed level of noise γ > 0, under δ = 0, the error system (8) with (6) and
(7) is asymptotically stable for ω = 0, and satisfies ‖ e ‖L2< γ ‖ ω ‖L2 for ω 6= 0, if there exists
a matrix X = XT > 0 and matrices Xη1 and η2, such that the following linear matrix inequality
(LMI) is satisfied:

Σ =

σ1 σ2 σ3
σT

2 −γ2 I σ4
σT

3 σT
4 −I

 < 0, (11)

where:
σ1 =ΓT

HX + XΓH + ∆T
PXT

η1
+ Xη1 ∆P, σ2 = XΓϕ1 + Xη1 ∆ϕ1 ,

σ3 = ΓP + η2∆P, σ4 = ΓT
ϕ2

+ ∆T
ϕ2

ηT
2 , Xη1 = Xη1.

Proof of Theorem 1. According to (10) and (11), one can obtain:HTX + XH Xϕ1 PT

ϕT
1 X −γ2 I ϕT

2
P ϕ2 −I

 < 0. (12)

The Lyapunov function is chosen as V = δTXδ. The derivative of V is obtained as:

V̇(t) =δ̇TXδ + δTXδ̇

=δT(HTX + XH)δ + ωT ϕT
1 Xδ + δTXϕ1ω.

With ω = 0 and (12), V̇ < 0 is satisfied; hence, the system (8) is asymptotically stable.

V̇ + eTe− γ2ωTω

=
[
δT ωT][HTX + XH + PT P Xϕ1 + PT ϕ2

ϕT
1 X + ϕT

2 P ϕT
2 ϕ2 − γ2 I

][
δ
ω

]
By the Schur complement to (12), one obtains:[

HTX + XH + PT P Xϕ1 + PT ϕ2
ϕT

1 X + ϕT
2 P ϕT

2 ϕ2 − γ2 I

]
< 0.

Therefore:

V̇ < γ2ωTω− eTe,∫ ∞

0
V̇(τ)dτ <

∫ ∞

0
γ2wT(τ)w(τ)dτ −

∫ ∞

0
eT(τ)e(τ)dτ.

Under the zero initial condition, V(∞) < γ2‖w‖2 − ‖e‖2. Hence, the error system
satisfies ‖ e ‖L2< γ ‖ ω ‖L2 for ω 6= 0.

Inserting the solution of (6) into (12), Theorem 1 is obtained. Then, the theorem
is proved.

From Theorem 1, the prescribed level of noise γ determines the feasibility of (11). Ac-
cording to robust control theory, γ can be selected by the following optimization problems:

min(γ)

s.t. X = XT > 0,

Σ < 0.

(13)

This optimization problem can be solved with the YALMIP toolbox [27].
The proof process of Theorem 1 embodies the following observer design steps:

1. Model the battery system as a descriptor system (2);
2. Determine the matrix Φ by ΦE = 0;
3. Determine the matrix N

′
by the (9);
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4. Choose the prescribed level of noise γ by optimization problems (13);
5. Solve the feasible solution of (11) given by Theorem 1;
6. Calculate the matrices H, J, P, Q, R, ϕ1, and ϕ2;
7. Convert the virtual output into the actual measurable output by ȳ = y− Du.

From the above steps, there are some parameters that need to be chosen. γ determines
the disturbance rejection level of the observer, which usually cannot be a large value. N

′

only needs to satisfy (9), and the numerical size of each element in the matrix N
′

has little
effect on the final result. Therefore, compared with the existing method for SOC estimation,
the proposed H∞ observer does not require complex tuning.

4. Results and Discussion

In order to illustrate the superiority of the proposed H∞ observer, this paper will
compare it with the PI observer [7] and SMO [15]. To ensure the fairness of the test, the
parameters of battery Figure 2 are shown in Table 1.

Table 1. Parameters of the lithium battery.

CN CC Re Rc Rt

18,000 F 200 F 0.003 Ω 0.003 Ω 0.001 Ω

The piecewise algebraic relationship between voc and SOC is voc = 1.2s + 3; bring the
battery parameters and voc functions into the model, and the battery modeling is complete.

It can be verified that the battery system whose parameters are shown in Table 1
satisfies Assumption 1; therefore, we can design an H∞ observer of the construction (4) by
Theorem 1.

Take a non-zero solution of the equation ΦE = 0 as Φ =
[
0 0 1

]
. Note that N

′
=[

1 0 0
0 1 1

]
satisfies (9). Based on the γmin = 0.7124 from the optimization problem (13), we

take γ = 1.1, use the YALMIP toolbox to solve the (11), and obtain the H∞ observer as:

ż =

[
−0.6694 −0.5393
0.3236 −1.3969

]
z +

[
−0.0027 −1.6735
−0.0003 0.8091

]
u +

[
1.0971
1.1272

]
y,

x̂ =

 0.9095 −0.0754
−0.7095 0.9409
0.8825 −0.2646

z−

0.0004 0.2262
0.0003 0.1774
0.0013 −2.2062

u +

0.1508
0.1182
0.5292

y.
(14)

As a comparison, the PI observer applied in the technique proposed in [7] is:

˙̂x =

−0.0111 0.0111 0
−0.8333 0.8333 0
0.8222 0 −0.8222

x̂ +

−0.0000324
−0.0025
0.003322

u

+

0.1845
0.005

0.2

(y− ŷ) +

 0.1
0.005
0.2

α,

α̇ =0.01(y− ŷ),

ŷ =
[
0 0 1

]
x̂,

(15)

where x̂ and ŷ are the estimate of
[
vT

oc vT
c vT

t
]T and vt, respectively. Notice that u = i.

The SMO proposed in [15] is shown as:
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˙̂x =

[
−0.8333 0.8333
0.00926 −0.00926

]
x̂ +

[
0.0025

0.000027

]
u−

[
1.667

0.0185

]
(y− ŷ) +

[
0.0025

0.000027

]
v,

v =

 −
661.376

y− ŷ
(
6.048× 10−3(y− ŷ) + 6.929× 10−5(y− ŷ)1.4) y− ŷ 6= 0

0 y− ŷ = 0
,

ŷ =
[
0.5 0.5

]
x̂ + 0.0025u,

(16)

where x̂ and ŷ are the estimatse of
[
vT

c vT
oc
]T and vt, respectively. The input u is the

current i.
The constant current discharge experiment, to evaluate the performance of the ob-

server, is employed as follows: choose a discharge current of 5 A whose discharge period is
3980 s, and discharge for 180 s. Figure 3 shows the current of the constant current discharge
experiment. For fairness, the known initial SOC of the battery model is 0.8, and Figure 4
shows the estimate errors from the different observers in this experiment.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(s)

-6

-4

-2

0

Figure 3. The current of the constant current discharge experiment.

0 2000 4000

Time(s)

0

0.02

0.04

(a)

H∞ observer

0 2000 4000

Time(s)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
(b)

PI observer

0 2000 4000

Time(s)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
(c)

SMO

Figure 4. SOC estimate error under the constant current discharge experiment: (a) based on the H∞

observer; (b) based on the PI observer; (c) based on SMO.

From Figure 4, the H∞ observer and the PI observer can converge to zero quicker, with
respect to the SMO. However, at each instant of discharge, the PI observer and SMO need a
short period of adjustment to reach the steady state again, while the H∞ observer based on
the descriptor system overcomes this drawback.

The initial conditions of the SOC are set as 0.3 for observers and 0.8 for the battery. In
this case, the simulation result is shown in Figure 5. Due to the inaccurate initial SOC, there
is large error of SOC from each observer at the initial moment. However, the estimate error
of the H∞ observer converges to zero within 20 s, while the estimate error of the PI observer
and SMO converge to zero within 500 s and 200 s, respectively. So, the H∞ observer is not
sensitive to accurate initial SOC and has a fast convergence speed.
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0 200 400
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0.1
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(a)

H∞ observer
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0.2

0.3

0.4

(b)

PI observer

0 500
-0.02
-0.01

0
0.01

0 200 400

Time(s)

-0.1

0

0.1

0.2

0.3

0.4

(c)

SMO

Figure 5. SOC estimate error under the constant current discharge experiment with inaccurate initial
SOC: (a) based on the H∞ observer; (b) based on the PI observer; (c) based on SMO.

The dynamic stress test (DST) is a standard test condition proposed by the Advanced
Battery Association of the United States to simulate urban driving condition for electric
vehicles. It is commonly applied to test the dynamic performance of SOC observers. The
current of DST is shown in Figure 6.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(s)

-20

-10

0

10

Figure 6. The current of the dynamic stress test.

Under the DST, the estimated SOC is shown in Figure 7. Generally, each observer can
track the SOC. However, from Figure 7b, the true SOC is covered by the estimated SOC from
the H∞ observer completely, which means the H∞ observer exhibits better performance for
tracking the real SOC, with respect to the PI observer and SMO.

0 1000 2000 3000 4000 5000

Time(s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(a)

True SOC

H∞ observer Est.SOC

PI observer Est.SOC

SMO Est.SOC

2400 2420 2440 2460 2480 2500

Time(s)

0.53

0.532

0.534

0.536

0.538

0.54
(b)

True SOC

H∞ observer Est.SOC

PI observer Est.SOC

SMO Est.SOC

Figure 7. Real SOC and its estimate under the DST: (a) full graph; (b) zoomed graph.

The estimate error under the DST is plotted in Figure 8. Because of the reservation of
the current dynamic performance, there does not exist pulse mode in the estimation error
of the H∞ observer. Figures 7 and 8 illustrate the outstanding dynamic performance.
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time(s)

-0.02

-0.01

0

0.01

0.02

H∞ observer

PI observer

SMO

Figure 8. Error of SOC for DST from the H∞ observer, PI observer, and SMO.

We are also interested in measuring the performance of the proposed observer’s
deleted structure (4) in the presence of parameter perturbations to see if there are im-
provements in the robustness, with respect to the PI observer and SMO. So, the case when
the capacitance and resistance parameter perturbations are given (Figure 9) is consid-
ered. Figure 10 shows the behavior of the true SOC and its estimate when the uncertainty
is present.

0 1000 2000 3000 4000 5000

Time(s)

-0.2

-0.1

0

0.1

0.2
(a)

1000 1005 1010 1015 1020

Time(s)

-0.2

-0.1

0

0.1

0.2
(b)

Figure 9. The uncertainty factor in the battery model: (a) full graph; (b) zoomed graph.
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SMO Est.SOC

2750 2755 2760 2765

Time(s)
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0.51

0.515
(b)

True SOC

H∞ observer Est.SOC

PI observer Est.SOC

SMO Est.SOC

Figure 10. The real SOC and its estimate from the H∞ observer, PI observer, and SMO under
parameter perturbations: (a) full graph; (b) zoomed graph.

From Figure 10, due to the parameter perturbations, each observer is unable to track
the true SOC accurately. However, the estimate error of SOC from the H∞ observer is less
than the PI observer and SMO, which illustrates the robustness of the schema proposed in
this paper.
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5. Conclusions

To improve the accuracy of SOC observers and decrease the effects of the parameter
perturbations, an H∞ observer, based on descriptor systems, is designed to estimate SOC.
Firstly, the battery is modeled as a descriptor system without the extra derivative operation
of nonlinear piecewise constraints. For the uncertainty, robustness nonlinear H∞ theory is
employed to solve the observer. Furthermore, the design steps of a type of battery SOC
observer are given systematically. The simulation results show that the H∞ observer based
on descriptor systems is more effective, and the observation accuracy is higher with respect
to the PI observer and SMO. The method proposed in this paper is not sensitive to battery
parameter changes. Therefore, the proposed H∞ observer based on descriptor systems
provides a new and effective online method to estimate SOC in REVs. The extension of our
work to nonlinear H∞ observers is under study.
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Abbreviations
The following abbreviations are used in this manuscript:

REVs Renewable energy vehicles
SOC State of charge
OCVM Open-circuit voltage method
CCM Coulomb counting method
KF Kalman filter
SMO Sliding-mode observer
PI Proportional-integral
OCV Open-circuit voltage
RC Resistance–capacitance
LMI Linear matrix inequality
DST Dynamic stress test
RMSE Root mean square error
MAE Maximum absolute error
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