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Abstract: We consider an entropic distance analog quantity based on the density of the Gini index
in the Lorenz map, i.e., gintropy. Such a quantity might be used for pairwise mapping and ranking
between various countries and regions based on income and wealth inequality. Its generalization to
f-gintropy, using a function of the income or wealth value, distinguishes between regional inequalities
more sensitively than the original construction.
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1. Introduction

The study of social and economic inequality seems to belong to social sciences and
humanities. However, based mostly on economic and econophysics studies, analyses of
income and wealth data in terms of mathematical quantities such as the Lorenz curve [1]
and the related Gini index [2–4] are trying to grasp an ”objective” measure of overall
inequality in distributions [5–9].

Given that most interesting distributions have infinite support, the norms on their
space are not equivalent. That is why there are numerous measures of distance between
distributions. Clearly, the Kullback–Leibler divergence is the most popular one. It is well
known that to produce a good estimate of the KL divergence using a limited sample is
not easy. That is one of the reasons why several generalization and particular alternatives
have been developed. Some are for a specific family of distributions [10,11]; others are
better suited to a specific field [12,13]. Our work falls into the latter category, aiming to
propose a divergence well adapted to economic or wealth inequalities. The adaptation and
generalization of divergences should meet certain criteria The reader can find an overview
and new advances in [14,15] in that direction. More recent developments can be found
in [16–20], and a recent review in [21].

Certainly, the Gini index is only one among many possible approaches and does
not replace the study of the distributions themselves [22]. In this sense, the density
of the Gini index in the Lorenz curve—the gintropy—whose precise definition will be
given below, includes the total information on the probability density function (PDF) of
such distributions.

In an earlier work we introduced this quantity called gintropy [23] and demonstrated
its entropy-like properties: for all income PDFs it is non-negative, has a single maximum
exactly at the average value and shows overall the corresponding convexity in terms of
the cumulative rich population as well as in terms of the cumulative wealth. Based on this
property, we propose that gintropy may better reflect the inequality concentrated on the
middle class with average income for which much more statistical data are available than
for the richest segment of the income and wealth distributions.
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In this paper we attempt to generalize this concept to a gintropic distance measure
between two PDFs, making it possible to draw a distance graph between countries with
varying inequality. By doing so we also investigate the generalization potential in replacing
the obvious variable, the income value x, with its monotonic function, f (x). That provides
the analyzers with some freedom in using differently weighted f-gintropy concepts, e.g.,
using x2 or any other quantity behaving coherently with the original one but possibly
magnifying some effects. Indeed, we observe a finer distinguishing power by using
functions of x, describe in a later section.

This article is constructed as follows: First, we review the definitions of gintropy and
f-gintropy, controlling their entropy-like properties. Then we construct the f-gintropic
divergence measure in analogy to the entropic divergence and study its basic mathematical
properties. Finally, based on available data on regional and national income distributions,
we develop an inequality distance map. We suggest using these maps as a ”first sight” tool
for judging the real effect of inequalities on the population parts near the average.

2. Gintropy, f-Gintropy and Gintropic Divergence

The Gini index is a number between zero and one characterizing the inequality inher-
ent in income and wealth distributions. Its definition,

G ≡ 〈|x− y|〉
〈x + y〉 =

∞∫
0

∞∫
0
|x− y|P(x)P(y)dxdy

∞∫
0

∞∫
0
(x + y)P(x)P(y)dxdy

, (1)

can be used for deriving expressions of G in terms of cumulative distributions of the
population and the wealth or income possessed by them. These cumulatives,

C(x) ≡
∞∫

x

P(x)dx, F(x) ≡ 1
〈x〉

∞∫
x

xP(x)dx, (2)

plotted against each other present the Lorenz curve in the F − C plane. This curve is
restricted to the unit square, since C(0) = 1, F(0) = 1 are the total normalized values, while
C(∞) = 0 and F(∞) = 0 both vanish.

The gintropy, σ ≡ F− C, occurs as a density of the Gini index in this map and shows
entropy-like features. Based on this, to any probability density function (PDF), such as
P(x), one may construct an individual gintropy σ(x). It is interesting to note that the half of
the Gini index also can be viewed as the integral of gintropy over any of the cumulatives:

G/2 =

1∫
0

σdC =

1∫
0

σdF. (3)

As such the G/2 value represents the area between the Lorenz curve and the diagonal
in the C− F plane.

The function σ(C) is non-negative, and shows a definite convexity. Furthermore σ(x)
is maximal at x = 〈x〉. Indeed, for several common PDFs σ(C), it resembles entropy
formulas suggested so far. For example, for an exponential PDF the classical formula,
σ = −C ln C, arises; for a Pareto distribution P(x), we obtain a Tsallis q-entropy formula
σ(C) = (Cq − C)/(1− q). The particular value, q = 2, resembles the entanglement entropy,
S = Tr(ρ − ρ2) with ρ being the density operator, used in some quantum computing
calculations. These analogies are elaborated in [23].

In the present paper we attempt to generalize this construction to a possible use of
another quantity’s cumulative tail more integral than the original variable, x. Moreover,
based on this, we construct an entropic divergence measure for the purpose of using it as
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an ”inequality distance” between PDFs based on their generalized Lorenz curve behavior,
comprised in the quantity f-gintropy.

Let P(x) be an absolute continuous PDF over [0, ∞). To begin with, we consider only
P and do not use any subscript related to it. Later, when considering two different PDFs
and constructing their f-gintropic distance measure, we shall retain such indices.

Let f be a monotonic, non-negative differentiable function with f (0) = 0. Assume
that the expectation value,

〈 f 〉 =
∞∫

0

f (x)P(x)dx < ∞, (4)

exists. Let the truncated f-moment be defined as

F f (x) ≡ 1
〈 f 〉

∞∫
x

f (y)P(y)dy (5)

and we use the original tail-cumulative C(x) defined in Equation (2). Inverting the above
definitions, one notes that dC/dx = −P(x) and dF f /dx = − f (x)P(x)/〈 f 〉. Hence, also
dF f /dC = f (x)/〈 f 〉.

The f -Gini index is constructed based on the geometry of the Lorenz curve. First, one
easily proves that

1∫
0

F f dC +

1∫
0

CdF f = 1. (6)

Second, the corresponding Gini index is defined as the difference between these
two integrals

G f ≡
1∫

0

F f dC −
1∫

0

CdF f . (7)

Let us first prove the statement about the sum in Equation (6). The first integral can be
expanded as

1∫
0

F f dC =

∞∫
0

F f (x)P(x)dx =

∞∫
0

dxP(x)
∞∫

x

dyP(y)
f (y)
〈 f 〉 , (8)

while the second similarily as

1∫
0

CdF f =

∞∫
0

C(x)
f (x)
〈 f 〉 P(x)dx =

∞∫
0

dxP(x)
f (x)
〈 f 〉

∞∫
x

P(y)dy. (9)

The second integral can be rewritten by exchanging the dummy integration variables
x and y among each other,

1∫
0

CdF f =

∞∫
0

dyP(y)
f (y)
〈 f 〉

∞∫
y

P(x)dx. (10)

Then we interchange the order of integration to arrive at

1∫
0

CdF f =

∞∫
0

dxP(x)
x∫

0

dyP(y)
f (y)
〈 f 〉 . (11)
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Indeed, the sum of Equations (8) and (11) becomes

1∫
0

F f dC +

1∫
0

CdF f =

∞∫
0

dxP(x)

 x∫
0

dyP(y)
f (y)
〈 f 〉 +

∞∫
x

dyP(y)
f (y)
〈 f 〉

. (12)

Here, obviously the two integrals inside the square bracket can be unified in a single
integral proving that

1∫
0

F f dC +

1∫
0

CdF f =

∞∫
0

dxP(x)
∞∫

0

dyP(y)
f (y)
〈 f 〉 =

∞∫
0

dxP(x)
〈 f 〉
〈 f 〉 = 1. (13)

Inspecting a general Lorenz curve drawn in the unit square on the C− F f plane, it is
obvious that the area between the curve and diagonal represents the half of the Gini index,
defined in Equation (7), as the difference of integrals.

We are interested further in its equivalent forms. We would like to view G f also as an
expectation value of something. We utilize the forms (8) and (9) to write

G f =

∞∫
0

dxP(x)
∞∫

x

dyP(y)
f (y)− f (x)
〈 f 〉 . (14)

Exchanging the integration variables again and reordering the integrations, an equiva-
lent expression emerges

G f =

∞∫
0

dxP(x)
x∫

0

dyP(y)
f (x)− f (y)
〈 f 〉 . (15)

Now we fix a few requirements for the function f (x). To map F f between zero and
one f (x),≥ 0 is necessary. To interpret the f-Gini index as an expectation of an absolute
value of difference, the strict monotonity property, f (x) > f (y) for x > y and equivalently
f (x) < f (y) for x < y is required. Fulfilling these requirements, one obtains that G f is also
the half of the sum of Equations (14) and (15):

G f =
〈| f (x)− f (y)|〉
〈| f (x) + f (y)|〉 . (16)

This agrees with the original definition for f (x) = x and follows its form ready for
data evaluation.

Based on the above, it is natural to introduce f-gintropy as

σf ≡ F f − C. (17)

This quantity has the following properties, based on the already discussed restrictions
on f (x), i.e., f (x) ≥ 0 and f ′(x) > 0:

• It is never negative, σf ≥ 0.
• It is zero for x = 0 and x = ∞ only, or at C = 0 and C = 1.
• It is maximal at the x = xm value, fulfilling f (xm) = 〈 f 〉.
• It has a single maximum only, either as a function of x or C or F f .
• The f-gintropy, σf , like the entropy, is everywhere concave on C and F f .

We give a short analysis of the above statements as follows.

σf (x) =
1
〈 f 〉

∞∫
x

dyP(y)[ f (y)− 〈 f 〉] (18)
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is positive if f (x) > 〈 f 〉, since for all y > x in the above integral one has f (y) > f (x) > 〈 f 〉.
For the opposite choice of x, when f (x) ≤ 〈 f 〉, we rewrite the gintropy expression as

σf (x) =

1−
x∫

0

dyP(y)
f (y)
〈 f 〉

 −
1−

x∫
0

dyP(y)

 =
1
〈 f 〉

x∫
0

dyP(y)[〈 f 〉 − f (y)]. (19)

Again, due to the monotonity of f for all y ≤ x in the integration range, we have
f (y) ≤ f (x) ≤ 〈 f 〉. That finishes the proof of σf ≥ 0. It is also obvious from the above
expressions that equality occurs only if using x = 0 or x → ∞.

Let us turn now to the discussion of concavity. For that purpose we calculate the first
and second derivatives of gintropy w.r.s.p to C and F f . These are obtained in turn from the
x-derivative,

dσf

dx
=

dF f

dx
− dC

dx
=

(
1− f (x)

〈 f 〉

)
P(x). (20)

This quantity changes sign exactly where f (xm) = 〈 f 〉 and nowhere else.
The C- and F f -derivatives can be obtained using the dC/dx and dF f /dx values shown

earlier in the text. One calculates

dσf

dC
=

f (x)
〈 f 〉 − 1, and

d2σf

dC2 = − f ′(x)
P(x)〈 f 〉 . (21)

Due to the strict monotonity of f , we have f ′(x) > 0, and therefore, the second
derivative of f-gintropy is always negative. We similarly arrive at the same conclusion in
terms of Ff :

dσf

dF f
= 1− 〈 f 〉

f (x)
, and

d2σf

dF2
f

= − f ′(x)〈 f 〉
P(x) f 3(x)

< 0. (22)

Let us recall that the Gini index and its generalization can be written as an integral
over the gintropy, σf .

We built the f-gintropic divergence measure following the construction pattern of the
Kullback–Leibler divergence. It is also in line with the idea how Csiszár’s f-divergence
has been introduced [24,25]. For recent advances of the f-divergence and its estimate see,
e.g., [26,27]. The main difference is that while the f-entropy due to Csiszár replaces the
logarithm of the probability with a general function in the entropy formula, we generalize
the tail cut integral of the income to a function of it. The latter function will be restricted, as
discussed later.

Instead of using the PDFs, we suggest applying a similar formula to the gintropies.
Since the original gintropy function is not normalized, we use its normalized version

σ̂(x) ≡ σ(x)
〈σ〉 (23)

with

〈σ〉 =
∞∫

0

σ(x) P(x)dx =

1∫
0

σdC = G/2. (24)

Then σ̂(C) behaves as a PDF mathematically: its integral over the possible C-range is
unity, and it is everywhere non-negative. Analogous to the definition of classical entropic
divergences, we propose a Kullback–Leibler type Gini divergence between the distributions
P1(x) and P2(x) as

KLGDf(P1||P2) =

1∫
0

σ̂(2) log

(
σ̂(2)

σ̂(1)

)
dC. (25)
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It is straightforward to generalize further by using a general convex function s
instead of the logarithm with s(1) = 0 and s′′ < 0. One immediately realizes that
KLGDs, f (P1||P2) = 0 iff P1 = P2 almost surely and KLGDs, f (P1||P2) ≥ 0 in general,
based on the convexity inherent in the definition.

Analogous to the definition of mutual information, the mutual gintropy, MG, can also
be introduced as the gintropic divergence between the joint distribution and the product of
the subdistributions:

MG(P1; P2) = KLGDs, f (P1 ⊗ P2||P1,2). (26)

3. Example: Gintropic Distance Ranking of Income Data

We will exemplify the use of gintropic distance reconsidering the income distribution
data studied in [28]. Data for Australia (2011), Hungary (2015), Japan (2015), USA (2013)
and Cluj county, Romania (2005) are used. These are the same data as the ones used
in [28], and they were selected for statistical studies due to their free availability and higher
resolutions in the income intervals, allowing for a precise construction of relevant quantities.
The data for Cluj county are exhaustive from a social security database, containing the
income of all registered employee from that region [29]. To use a common scale and to
collapse the distributions as much as possible, we consider for each case the normalized
income, i.e., income relative to the average value. The probability density functions of
these distributions for the whole normalized income ranges are plotted in Figure 1. They
look very similar on log-log scale, and only the data for Japan seems to have a different
scaling in the high income region. On such a log-log representation, the probability density
functions of normalized income for Hungary and Cluj county (Romania) seem to collapse
perfectly, which is definitely a consequence of the closely related economic history of these
two countries.

Australia 2011

Cluj 2005

Hungary 2015

USA 2013

Japan 2015

0.001 0.010 0.100 1 10 100 1000

10-7

10-5

0.001

0.100

x/<x>

<
x
>
ρ
(x
)

Figure 1. Probability density function for the distributions of the normalized income for some
countries and geographical regions. The income for each region is normalized to the respective
average value. Please note that we use log-log scales.

One can learn from population biology that in many cases the use of the probabil-
ity density function is not the best methodology to illustrate the relevant differences in
abundance [30] . For heavy-tailed distributions, the generally used log-log scales (such as
in Figure 1) is appropriate to illustrate scaling, but it does not offer relevant information
for those parts of the distribution where the majority of the individuals are. Therefore in
illustrating these differences, instead of the mathematically well-defined probability density
function, a special frequency histogram, the Preston plot [31], is used. When illustrating
social inequalities in form of income, we are in a similar situation. As an alternative to
the probability density, from the income distribution data one can construct a normalized
gintropy σ̂(C) = σ(C)/〈σ〉 by estimating numerically both cumulative functions, C(x) and
F(x), from the data themselves. In contrast to the probability density function, this quantity
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will peak in the vicinity of the average income, i.e., characterizing the income regions where
the majority of the population is to be found. Figure 2 presents these gintropy functions in
comparison to the one expected for the natural (exponential) distribution:

σ̂nat(C) = −4 C ln(C) (27)

Australia 2011
Cluj 2005
Hungary 2015

USA 2013
Natural distr.

apan 2015

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
(
)

J

Figure 2. Normalized gintropy σ̂(C) calculated from the income distribution data in comparison
with the one expected for the natural distribution (27).

Figure 2 again reveals the fact that the income distribution for Japan seems to be very
different, and surprisingly, we see that the gintropy curve for Australia is the closest to the
one for the natural distribution. The gintropies, σ̂(C), for Hungary and Cluj county are also
quite close to that of the natural distribution. All these results confirm again what we have
known for a long time: both income and wealth distributions tend to have an exponential
shape when restricted to the middle class of a society [32,33].

Gintropic distances can be calculated using the well-known Kullback–Leibler diver-
gences for the σ̂(C) functions.

KLGD(Pi||Pj) =
∫ 1

0
σ̂i(C) log

(
σ̂i(C)
σ̂j(C)

)
dC (28)

Approximating the above integral from the interpolated experimental data for σ̂(C),
we thus determine a quantity that characterizes the gintropic differences between income
distributions among different countries. In Table 1 we indicate these values and also
consider the distance relative to the normalized gintropy which is characteristic to the
natural distribution σ̂nat(C). This table again suggests that while focusing on the relevant
(larger) part of the society, the income distribution in Australia and the USA are close to the
expected natural distribution. On the other hand, Hungary, Romania and Japan seem to be
different: an interesting and unexpected result. Such a methodology based on the gintropy
instead of the commonly used probability density function could definitely be useful in
cases where one prefers to group countries in clusters according to their most abundant
income categories.

One can now go further and test whether the σ̂(C) gintropy, associated to f (x) = x,
can be fitted with the gintropy for the Tsallis–Pareto distribution with 〈x〉 = 1:

P(x) =
1
q
(1 +

1− q
q

x)−
2−q
1−q (29)
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The corresponding normalized gintropy is proportional to the Tsallis q-entropy form [23]:

σ̂q(C) = 2
1 + q
1− q

(Cq − C). (30)

In Figure 3 we fit the experimental gintropy curves with the one given in Equation (30).
The best fit parameter, q = 1, for Australia again suggests that in this case the natural
distribution is relevant since Equation (30) in the limit q = 1 leads to Equation (27). For
Cluj county and Hungary, the best fit is obtained with q = 0.8, for the USA we get q = 0.92,
and for Japan we obtain q = 0.55.

Table 1. Gintropic distances for income distributions calculated by using the (28) gintropic Kullback–
Leibler divergences. We also indicate this distance relative to the natural distribution.

×10−3 Natural Australia USA Cluj Hungary Japan

Natural 0 0 0.4 2.9 2.9 17

Australia 0 0 0.4 2.9 2.9 17

USA 0.4 0.4 0 1.1 1.1 13

Cluj 3 3 1.1 0 0 6.4

Hungary 3 3 1.1 0 0 6.4

Japan 19 19 14 6.8 6.8 0

0.0
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q=1.0

Australia 2011

q=0.8

Cluj 2005

q=0.55

apan 2015

q=0.92

USA 2013J

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1.0

)
(

Figure 3. Gintropy for different regions fitted with the one derived for the Tsallis–Pareto distribution
σ̂q(C) (30). In the figures we illustrate the best best fit and also give the best-fit parameter, q. There is
no separate panel for Hungary since the experimental gintropy for Hungary and Cluj are very close,
as already seen in Figure 2.

One can now use the above discussed income distributions to exemplify the application
potential of the f-gintropy. We choose a simple convex function f (x) = x2 and construct
the corresponding σ̂f (C) normalized f-gintropy for all the income distributions. Such a
choice is justified if: (i) instead of income one considers some other socioeconomic metrics
that depend on its square or (ii) if we intend to amplify differences at large income values.
In this latter case, any convex-shaped f (x) function can serve this purpose.

The obtained curves are plotted in Figure 4. A first immediate consequence of using
the f-gintropy instead of the usual gintropy is that the σ̂f (C) curves become more strongly
separated. Japan and Australia are again the two extremes. In such a representation, one can
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distinguish between the income distributions in Hungary and Cluj county that appeared
to be very close before. A Kullback–Leibler distance matrix, similar to the one shown in
Table 1, is now constructed for the f-gintropy with the f (x) = x2 choice. To proceed, we
used a second order interpolation method to estimate the Kullback–Leibler divergence for
the f-gintropy in the σ̂f (C) representation. The results are given in Table 2. According to the
values from Table 2, Australia and the USA form a clear cluster, and similarly Hungary with
Cluj county and Japan continues to be in a separate cluster. While the similarities between
Australia and the USA together with the ones between Hungary and Romania are easy to
interpret, Japan’s position seems to be more surprising. These results might confirm some
earlier hypotheses according to which the Japanese taxation and redistribution system is
perfectly balanced, neither highly redistributive nor too capitalistic [34]. Interestingly, their
income redistribution policies seem to be closer to those in former socialist countries rather
than the ones with consecrated free market economies. In such a view, the results obtained
here make sense.

f(x)=x2

Australia 2011
Cluj 2005
Hungary 2015

USA 2013
apan 2015

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

f(
)

J

Figure 4. Normalized f-gintropy σ̂f (C) with f (x) = x2 calculated from the income distribution data.
Note the more evident separation of the studied geographical regions.

Table 2. f-gintropic distances for income distributions calculated using the (28) generalized Kullback–
Leibler divergences for f (x) = x2.

×10−3 Australia USA Cluj Hungary Japan

Australia 0 1.8 36 19 62

USA 1.7 0 27 13 50

Cluj 48 39 0 3.8 4

Hungary 22 16 3.5 0 14

Japan 86 74 4.3 17 0

4. Conclusions

In conclusion, we have constructed a generalization of the usual Lorenz-curve based
entropy similar to the concept, gintropy, developed by us earlier. This generalization
involves weighting functions more general than the original income values, replacing x by
f (x), the only requirement being its monotonicity and non-negativity. Entropic properties
of such a generalization were demonstrated.

A Kullback–Leibler type entropic divergence was used to inspect clusterization among
income distribution PDFs stemming from different regional groups. In the example of
detailed data from five different regions (Japan, Australia, USA, Hungary and Cluj) we have
demonstrated that: (i) the gintropy emphasizes data near the average income, and (ii) the
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use of weight functions rising steeper than x enhances differences not otherwise seen. The
former result is practical, since data about extreme high incomes and wealth are usually
insufficient or unreliable. The latter may help resolve close looking data in the future,
as a change of viewing angle can resolve contours appearing to be the same while they
are not.
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