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Abstract: Quantum machine learning is a promising application of quantum computing for data
classification. However, most of the previous research focused on binary classification, and there
are few studies on multi-classification. The major challenge comes from the limitations of near-term
quantum devices on the number of qubits and the size of quantum circuits. In this paper, we propose
a hybrid quantum neural network to implement multi-classification of a real-world dataset. We use
an average pooling downsampling strategy to reduce the dimensionality of samples, and we design
a ladder-like parameterized quantum circuit to disentangle the input states. Besides this, we adopt
an all-qubit multi-observable measurement strategy to capture sufficient hidden information from
the quantum system. The experimental results show that our algorithm outperforms the classical
neural network and performs especially well on different multi-class datasets, which provides
some enlightenment for the application of quantum computing to real-world data on near-term
quantum processors.

Keywords: hybrid quantum neural network; multi-classification; all-qubit multi-observable
measurement strategy; average pooling downsampling

1. Introduction

Quantum computers can take advantage of the superposition and entanglement of
quantum systems to be exponentially faster than classical computers on certain comput-
ing tasks [1]. In the present stage, the Noisy Intermediate-Scale Quantum (NISQ) [2]
devices with 50–100 qubits are capable of executing circuits composed of 1000 fundamental
two-qubit operations. The ‘intermediate scale’ limits the number of qubits in quantum
computers, and the ‘noise’ limits the size of quantum circuits that can be executed reliably,
because the noise of quantum gates will overwhelm the signal in the circuit when the num-
ber of quantum operations is large. These limitations impose a ceiling on the computational
power of NISQ devices.

Machine learning is an attractive application of quantum computers, not only because
it has made great progress in solving complex practical tasks on classical computers, but
also because its inherent noise resistance is beneficial for realization on NISQ devices
without error correction. Recently, quantum machine learning has attracted much attention,
including the Quantum Autoencoder [3–5], Quantum Boltzmann Machine [6,7], Quantum
Generative Adversarial Learning [8–11], and Quantum Kernel Method [12–15]. Besides
these, there have been many studies focusing on the application of quantum machine learn-
ing in classification tasks. Quantum algorithms have inherent advantages when applied
to quantum systems. H. Chen et al. [16] trained a hybrid quantum–classical neural net-
work to distinguish two classes of quantum data. In addition, applying quantum machine
learning to classify real-world data is more attractive. E. Grant et al. [17] implemented
binary classification on subsets of the IRIS [18] and MINIST [19] datasets using hierarchical
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quantum circuits. Moreover, W. Huggins et al. [20] trained 45 pairwise classifiers based
on handwritten digits 0–9 using a quantum tensor network. The quantum neural network
(QNN) is also a promising method in the field of quantum classification. E. Farhi and
H. Neven [21] designed a quantum neural network to classify images of handwritten digits
3 and 6. Furthermore, the hybrid quantum–classical framework has been used for data
classification, where the post-processing executed by the classical processor can reduce the
computational cost of the algorithm when performing some of the most challenging tasks,
making the algorithm more suitable for NISQ devices. A. Skolik et al. [22] used a hybrid
quantum–classical neural network trained by a layerwise learning strategy to distinguish
handwritten digits 3 and 6. C. M. Wilson et al. [23] proposed an open-loop hybrid algorithm
called quantum kitchen sinks (QKS) and used it to solve the binary classification problem for
handwritten digits 3 and 5. As far as we know, there have been plenty of studies on binary
classification using quantum machine learning, but few on multi-classification. Z. Yang
and X. Zhang [24] provided a quantum deep learning scheme to classify the IRIS dataset
containing three categories. R. Y. Li et al. [25] applied nested quantum annealing correction
(NQAC) to train a Boltzmann machine for four-way classification on a coarse-grained
version of the MNIST dataset. In a recent study, R. Wu et al. [26] proposed an end-to-end
quantum machine learning scheme for eight-way classification of the MNIST dataset, which
is different from the gate-based quantum circuits. Y. Li et al. [27] investigated a quantum
deep convolutional neural network (QDCNN) model and employed MNIST and GTSRB
datasets for 10-way classification. As they mentioned, although it is theoretically possible
that the classical data can be prepared in a quantum superposition by quantum random
access memory (QRAM), its physical realization will require larger quantum computers in
the future. In fact, there is still a broad margin on multi-classification problems, given the
limitations of accuracy and resource costs on the stage of NISQ.

Specifically, there are challenges of classifying multi-class real-world datasets on
quantum processors. One of the challenges appears in how to feed the real-world data,
which are vectors with many components, into quantum circuits which have a limited
number of qubits in the NISQ era. To solve this problem, it is necessary to reduce the
dimensionality of real-world data. Herein, we propose an average pooling downsampling
strategy to compress data, since it can retain more sample features compared with normal
downsampling methods.

The other challenge is how to introduce quantum nonlinearity into quantum cir-
cuits. Nonlinear operations are the key part of classical neural networks. In a quantum
circuit—except for quantum measurement, which is a nonlinear operation—most quantum
operations are unitary transformations that are inherently linear. To solve this problem, in
our algorithm, the quantum nonlinearity is introduced by the all-qubit multi-observable
measurement (AMM) strategy which calculates the expectation values of three observables
on all qubits.

In this paper, we propose a hybrid quantum neural network (HQNN) to perform multi-
classification tasks. The performance of the HQNN and a classical neural network (CNN)
with almost the same number of parameters is compared. The algorithm is demonstrated on
the MNIST [19], IRIS [18], WINE [28], and SEMEION [29] datasets. As shown in Figure 1a,
in the process of dimensionality reduction, the average pooling downsampling strategy
is adopted to compress the image; in the quantum part, first we use a quantum encoding
circuit to prepare the initial quantum state, then we apply a parameterized quantum circuit
(PQC) to perform unitary transformations on this quantum state, and, finally, we perform
quantum measurements to calculate the expectation values of observables; in the classical
part, we employ the classical neural network to post-process the outcomes of the quantum
part, and we use a classical optimizer to adjust both the quantum and classical parameters.
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Figure 1. The architecture of the HQNN. (a) The algorithm implementation scheme; (b) The decom-

position of two-qubit unitary gate Ui(θi) = exp
(
−iθiZjZk

)
, which consists of two CNOT gates and

one Rotation-Z gate with an angle of 2θi; (c) Details of the quantum part. The left-hand part is the
encoding circuit, where Ry is the Rotation-Y gate, and f (xi) = arcsin(xi) is the nonlinear function.
The middle part is one layer of ladder-like PQC which requires (n − 1) parameters. The right-hand
part is the measurement operation, which calculates the expectation values of a set of observables on
each qubit.

2. Hybrid Quantum Neural Network

The architecture of the HQNN is shown in Figure 1a, and the detailed algorithm flow
is summarized as follows:

1. The average pooling downsampling strategy is adopted to reduce the dimension of
real-world data; thus, a vector x = (x0, x1, . . . , xn−1) composed of n-many elements
is obtained.

2. The data vector is encoded in a quantum state |ϕin〉 by applying an encoding cir-
cuit UEnc = ⊗n−1

i=0 Ry( f (xi)) on an initial state |0〉⊗n, where f (xi) = arcsin(xi) is a
nonlinear function that maps the data to angle space, and Ry(θ)|0〉= cos(θ/2)|0〉+
sin(θ/2)|1〉 is a rotation operation which guarantees that the amplitude of a single
qubit is real.

|ϕin〉 =
[

cos( f (x0)/2)
sin( f (x0)/2)

]
⊗ . . .⊗

[
cos( f (xn−1)/2)
sin( f (xn−1)/2)

]
(1)

This nonlinear quantum encoding circuit can map the input data into a higher-
dimensional space, which will facilitate the subsequent classification process.



Entropy 2022, 24, 394 4 of 14

3. The parameterized quantum circuit UPQC(θ) performs a series of linear transforma-
tions on the input state.

4. The final state UPQC(θ)UEnc|0〉⊗n is measured by calculating the expectation values
of a set of observables on all qubits.

5. The measurement outcomes are fed into a fully connected layer with the softmax
activation function to generate the predicted label.

6. The loss function between the predicted label and the true label is computed, and a
classical optimizer is employed to update parameters.

This process is repeated several times until the HQNN outputs the desired result.
Details of the average pooling downsampling strategy, the parameterized quantum circuit,
and the all-qubit multi-observable measurement strategy are covered later in this section.

2.1. Average Pooling Downsampling

In this paper, we demonstrate the feasibility of our HQNN in the image classification
task based on a downsampled version of the MNIST [19] dataset. MNIST is a standard
classical benchmark dataset containing 60,000 training and 10,000 test samples. Each sample
is a 28 by 28 pixilated grey-scale image representing handwritten digits from 0 to 9. The
limitation here is that the size of the image is too large for current quantum computers.

As a traditional downsampling method, E. Farhi and H. Neven [21] resized each image
down to 4 × 4 [30], and then the processed pixels were binarized to get an input string,
where each component is 0 or 1. They mentioned that some images belonging to different
classes originally became the same after downscaling. They then filtered the dataset to
remove the ambiguous images. The disadvantage of their downscaling method is not only
that much useful image information is discarded, but also that the number of effective
samples is reduced due to the elimination of some contradictory processed samples. A
similar preprocessing method was also used by W. Jiang et al. [31]. The digit ‘5’ is shown
as an example in Figure 2a–c.
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Figure 2. The dimensionality reduction of handwritten digit ‘5’. (a) The original image; (b) The image
is reduced by the bilinear resize method. This method is a built-in function of TensorFlow and is
called by the statement tf.image.resize; (c) The compressed image is binarized with a threshold of
0.5; (d) The cropped image is produced by discarding 4 pixels from each edge of the original image;
(e) The downsampling of the image is achieved by calculating the average value of a 5 × 5 window
with a stride of 5.

In order to alleviate this problem, we propose a strategy which can improve the
representation of input data. First of all, the original image is normalized from [0, 255]
to the [0, 1] range by the Min-Max scaling method. Then, the 4 pixels on each boundary
which carry almost no useful information are discarded, leaving a 20 × 20 image. Next, the
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average value over each 5 × 5 block is computed, resulting in a 4 × 4 image. Finally, the
compressed image is flattened and a vector x = (x0, x1, . . . , x15) composed of 16 elements is
obtained. The result on digit ‘5′ is shown in Figure 2a,d,e. The experimental results showed
that no contradictory samples appeared after the dimensionality reduction process, which
indicates that the unique characteristics of each image were retained.

2.2. Ladder-like Parameterized Quantum Circuit

After encoding the input data into a quantum state, we apply a parameterized quan-
tum circuit (PQC) to perform a series of linear transformations. In general, an n-qubit PQC
can be written as:

UPQC

(→
θ

)
|ϕin〉 =

(
m−1

∏
i=0

Ui(θi)

)
|ϕin〉, (2)

where UPQC

(→
θ

)
consists of unitary gates Ui(θi) with parameters

→
θ = {θ0, θ1, . . . , θm−1},

and m is the number of quantum gates. In the learning stage, the parameters are optimized
by the classical Adam optimizer, so that the initial state can evolve to the desired state
through the operation of the PQC.

Here, two-qubit unitary gates Ui(θi) = exp
(
−iθiZjZk

)
are considered as the param-

eterized quantum gates acting on qubit j and qubit k. It is worth mentioning that due to
the fact that they are not universal gates, each one has to be decomposed into the constant
elementary gate set of the physical device. As shown in Figure 1b, each Ui(θi) can be
decomposed into two CNOT gates and one Rotation-Z gate with an angle of 2θi.

The architecture of the PQC for an n-dimensional input vector is illustrated in Figure 1c.
We adopt a ladder-like circuit as the main part of the quantum circuit to perform the
calculation. This architecture is capable of disentangling the input state as much as possible,
even with a small number of quantum gates. In this ladder-like circuit, we apply two-qubit
quantum gates in steps of one. In other words, a family of quantum gates with different
parameters is performed on each pair of nearest-neighbor qubits, which allows us to capture
the quantum correlations of a specific scale on the same layer of the network. In the terms
of the input state |ϕin〉, the effective information (discrete labels in the classification task) is
embedded in the quantum subsystem. Therefore, the PQC is used for performing quantum
computations to extract the information hidden in this quantum subsystem. Specifically,
the purpose of implementing unitary gates is to remove the superposition in quantum
data, leaving the information containing the label. Then, with an appropriate measurement
strategy, the classical information is extracted, but it may not be the direct representation of
the label, so further classical post-processing is required.

2.3. All-Qubit Multi-Observable Measurement Strategy

After performing a series of unitary transformations, the input state is disentangled,
and then a set of Pauli gates is applied on each qubit to extract hidden information from
the final state. The statistical results of multiple observables are then passed to a classical
neural network for further processing.

In most previous works, the outcome of the quantum circuit was taken from the
expectation value of the Pauli Z operator on one [17,22,32] or two [33] readout qubits. Here,
in order to adequately extract the hidden information from the disentangled quantum
state and represent it as classical correlations, we calculate the expectation values of a set
of Pauli operators M =

{
σx, σy, σz

}
on all qubits, called the All-qubit Multi-observable

Measurement (AMM) strategy. The quantum circuit is run several times; each time, one of
the three Pauli operators is selected as the observable, and the outcomes are collected finally.

In addition, the AMM strategy is an important part of the nonlinear transformations
in the proposed HQNN. In fact, realizing nonlinear transformation is important in machine
learning. In a traditional neural network, a weight matrix performs linear transformation
and an activation function performs nonlinear transformation. However, a quantum neural
network is composed of unitary gates which perform linear transformation inherently,
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and only the measurement operation can introduce quantum nonlinearity. In quantum
computing, the intermediate state is generally not measured, because such measurement
will lead to quantum collapse and the loss of large amounts of information. To introduce
more nonlinearity into a quantum neural network, we not only perform the measurement
operation on all qubits, but also measure multiple observables by running the quantum
circuit repeatedly. The measurement operation in our algorithm serves as the activation
function of the PQC layer to achieve nonlinearity.

The expectation value of the observable M on the kth qubit is expressed as:

mqk ,M = 〈ϕin|U†
PQC MUPQC|ϕin〉, (3)

where |ϕin〉 = UEnc|0〉⊗n is the input state given by the encoding circuit, and the expectation
mqk ,M returns a value between −1 and 1.

An n-qubit circuit has a quantum output vector
→
m ∈ R3n:

→
mAMM =

(
mq0,σx , mq0,σy , mq0,σz , . . . , mqn−1,σx , mqn−1,σy , mqn−1,σz

)
(4)

From the two aspects of the number of measured qubits and the categories of Pauli
operators, another three measurement strategies served as controls in order to make
comparisons with the AMM strategy.

Contrast 1: The output vector is taken from the expectation value of the Pauli Z operator
on the ancillary qubit, which has one component:

→
mC1 =

(
mqout ,σz

)
(5)

Contrast 2: The output vector is taken from the expectation values of Pauli operators
M =

{
σx, σy, σz

}
on the ancillary qubit, which has three components:

→
mC2 =

(
mqout ,σx , mqout ,σy , mqout ,σz

)
(6)

Contrast 3: For an n-qubit circuit, the output vector is taken from the expectation values
of the Pauli Z operator on all qubits, which has n components:

→
mC3 =

(
mq0,σz , . . . , mqn−1,σz

)
(7)

We note that Contrast 3 uses the same quantum circuit structure as the AMM, as
shown in Figure 1c, while Contrast 1 and Contrast 2 use slightly different quantum circuits,
as shown in Figure 3a, where the readout qubit is served by an ancillary qubit [21] and
interacts with each data qubit at least once.
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Figure 3. Algorithm flow charts of the contrast experiments. (a) The quantum circuit used by Contrast
1 and Contrast 2. The first qubit of Ui(θi) is the readout qubit and the second qubit is one of the other
n data qubits; the acted qubits are marked with solid dots. Then, only the final state of the readout
qubit is measured; (b) The architecture of CNN-28 used to classify the 28 × 28 complete images;
(c) The architecture of CNN-4 used to classify the 4 × 4 compressed images.

3. Experiments and Discussion

In this section, we present and analyze the experimental results of the proposed
HQNN algorithm. First, to verify the superiority of the AMM strategy in capturing
quantum information, we compare its efficiency with that of the contrast models. Next, we
perform binary classification on 45 subsets of the MNIST dataset and show the comparison
with some existing methods. Finally, we compare the performance of the HQNN and CNN
in multi-classification tasks, and we evaluate the classification ability of the HQNN on
different multi-class real-world datasets.

The experiments in this paper were implemented in the software framework TensorFlow-
Quantum (TFQ) [34], which is an integration of Cirq with TensorFlow. All the parameters of the
PQC were initialized as zeros. We added a fully connected layer as the classical post-processing,
for which the softmax activation function for nonlinear transformation was adopted, and all the
hyperparameters were set to default. In the learning stage, we used categorical cross entropy as
the loss function, and we set a regularizer with L2 = 0.001 for the quantum part. TFQ can realize
the back propagation of gradients between the quantum circuit and the classical circuit. We set
the quantum circuit differentiator with the parameter shift method to calculate the gradients,
and we used the Adam [35] optimizer to update parameters with a learning rate of 0.01 for
binary classification and 0.02 for multi-class classification. These steps can be accomplished
using standard Keras [36] tools. The binary classifiers were trained with a batch size of 256,
and the multi-class classifiers were trained with the batch size of 512. The validation accuracy
was recorded every epoch, and the training was stopped when validation accuracy did not
increase within 30 consecutive epochs.
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3.1. The Superiority of the AMM Strategy

In Figure 4a,b, we compare the performance of the four methods for binary and 10-way
classifications of handwritten digits on the MNIST dataset, respectively. Our AMM strategy
calculates the expectation values of the three Pauli operators on all qubits. For comparison,
we also evaluate the other three measurement strategies in terms of the number of measured
qubits and the categories of Pauli operators.
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First, we performed binary classification on handwritten digits 3 and 5; the accuracies
of the four methods are shown in Figure 4a. It was found that the accuracies of the three
comparison models reached about 87%, while our AMM strategy increased the accuracy
to 96.11%, which verifies the superiority of the AMM strategy in extracting quantum
information in binary classification tasks.

Next, we verified the ability of the AMM strategy and the other three comparison
models to handle multi-classification tasks. These classifiers were tasked with assigning the
input sample to 1 of the 10 categories of handwritten digits 0 to 9, and their performance in
the 10-way classification task is shown in Figure 4b. One can see that the AMM strategy
significantly improved the classification capacity of the quantum neural network on this
multi-classification task. From the perspective of the number of readout qubits, Contrast-2
and the AMM strategy both measure in three directions, but the former considers only
one qubit as the output while AMM considers all qubits as outputs. It is obvious that our
AMM strategy has greatly improved classification capacity compared with Contrast-2. The
same is true for Contrast-3 compared with Contrast-1. This superiority is brought about
by multiple measurements, the outcomes of which are correlated and therefore contain
more information, whereas only one bit of information about the state of the readout qubit
can be extracted from a single measurement, which is far from sufficient for complex tasks.
From the perspective of measuring more observables, projecting the final state in three
different directions brings a comprehensive description of the final state. For the AMM
strategy, the 16-dimensional input vector is transformed into a 48-dimensional output
vector. This is similar to feature mapping in machine learning, which embeds data into a
higher-dimensional feature space where the data become easier to analyze. Therefore, the
proposed AMM strategy is undoubtedly an excellent choice.

3.2. Binary Classification Based on the HQNN

In this section, we trained the HQNN to divide handwritten digits into two categories.
The ladder-like PQC consisted of one-layer Ui = exp(−iθiZZ) gates, the network used
the AMM strategy to perform measurement operations, and a two-way fully connected
layer with the softmax activation function provided classical post-processing. The results
of binary classification for each pair of digits selected from 0 to 9 are shown in Figure 5.
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Our HQNN was able to achieve an average accuracy above 98.46%, which indicates that
the proposed network has sufficient capability to handle binary classification tasks.
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Figure 5. The results of binary classification on 45 subsets of the MNIST dataset.

Among the 45 tasks, the best performance was achieved in the task of classifying
digits 1 and 4, which reached an accuracy of 99.91%. The task of classifying digits 4 and
9 performed worst overall, but it also achieved 94.53% accuracy. The reason for such
a difference in classification performance may be that the digits 1 and 4 are extremely
different from each other in appearance, while the difference between digits 4 and 9 is not
great at all, which makes them more difficult to recognize. It is also possible that the images
became blurred after dimensionality reduction, causing some representations of digits
that were unlike each other initially to become similar. We believe that when quantum
computers are able to provide sufficient qubits, this problem will no longer exist.

In addition, we compared the performance of our network with that of some existing
methods. W. Huggins et al. [20] trained a quantum circuit consisting of 1008 parameters
distributed on 63 two-qubit gates, and they showed the binary classification results for each
of the 45 pairs of digits 0 through 9. Figure 6a presents a performance comparison between
our network and theirs in the six tasks of classifying digits {0, 1}, {0, 4}, {1, 9}, {3, 5}, {4, 9},
and {7, 9}. Apparently, there was significant fluctuation in their work, while our network
was more stable in these cases. This indicates that our network is more generalizable and
has a good classification effect for most subsets, even though our network contains only
15 two-qubit quantum gates.
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Figure 6. Comparison with some existing methods in binary classification tasks. (a) A performance
comparison between our HQNN and the tensor network proposed by W. Huggins et al.; (b) A
performance comparison between our HQNN and hierarchical quantum classifiers proposed by
E. Grant et al.
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E. Grant et al. [17] used TTN, MERA, and a MERA pre-trained with TTN to handle
four binary classification tasks. As shown in Figure 6b, we executed our network on the
same four tasks. In the two simple tasks of classifying digits {0, 1} and {2, 7}, our network
achieved comparable accuracy, but in the other two more complex tasks—classifying even
and odd numbers and classifying numbers greater than 4 and others—the performance of
our classifiers surpassed theirs. This shows that the proposed HQNN not only performs
well in handling simple tasks, but also has a certain ability to deal with complex binary
classification tasks.

3.3. Multi-Classification Based on the HQNN

In this section, we demonstrate the capability of our HQNN in multi-classification
tasks. Firstly, a simple convnet from the Keras [36] documentation was used to perform
10-way classification on complete 28 × 28 images. The architecture of CNN-28 is displayed
in Figure 3b. The classical neural network had more than 30,000 parameters and easily
converged to 99.2% accuracy.

For a fairer comparison, we tried a simplified classical neural network to classify
the downsampled 4 × 4 images. The architecture of CNN-4 is shown in Figure 3c. The
CNN had 508 parameters, which is comparable to the 505 parameters contained in our
HQNN. Since the difficulty increases with the number of categories, we implemented
HQNN and CNN on multi-classification tasks containing 3 to 10 categories, and the results
are illustrated in Figure 7a. It can be seen that, firstly, image dimensionality reduction had
an adverse impact on classification performance, which will be handled by sufficient qubits
in the future. Secondly, for complex compressed images, HQNN outperformed CNN, and
its superiority became more obvious with increasing number of categories. For our HQNN,
the accuracies when classifying images into 3 to 9 categories were all above 90%, and the
10-way classification task also achieved an accuracy of more than 89%, while only 83.33%
accuracy was achieved by the CNN. The test accuracy curves of the HQNN are shown
in Figure 7b.
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In addition, we extracted four subsets containing five categories to verify the perfor-
mance stability of our HQNN on different samples. In Figure 8a, downsampled images
representing the digits 0–9 are shown, and the categories contained in each subset are
marked with different colors. As mentioned above, the difference between samples af-
fects the accuracy of classification, and the dimensionality reduction makes the images
blurred and more difficult to distinguish. The accuracies of our HQNN on the four sub-
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sets fluctuated slightly, with variance lower than 0.00024. This indicates that our HQNN
is universal.

Restrictions on the number of qubits and the depth of quantum circuits in NISQ
devices make quantum multi-classification difficult, especially for the real-world datasets
that require quantum encoding. To address this, some works choose a bypass road.
M. Schuld et al. [32] simplified the multi-classification task into a set of ‘one-versus-all’
binary classification subtasks, distinguishing the digit ‘i’ from all other digits.

Nevertheless, there are still some works devoted to the use of quantum circuits to
solve multi-classification problems, such as by W. Jiang et al. [31], who proposed a QF-Net
to classify the MNIST dataset. A comparison of classification performance between QF-Net
and our HQNN is shown in Figure 8b. As one can see, our HQNN performed significantly
better than their classifier in both binary and multi-class classification tasks. It is worth
mentioning that they used 4 × 4 downsampled images for the binary and three-way classi-
fication tasks and 8 × 8 downsampled images for the four-way and five-way classification
tasks, whereas we used 4 × 4 downsampled images for all tasks. This demonstrates that,
on the one hand, our average pooling downsampling strategy is conducive to the dimen-
sionality reduction of real-world data used in quantum algorithms, which can express
more information with even fewer qubits. On the other hand, our HQNN not only can
handle simple multi-classification problems with a small number of categories, just like
them, but also has the ability to deal with complex multi-classification problems with
more categories.

Apart from this, we also verified the performance of our HQNN on other multi-class
real-world datasets, as shown in Table 1. Both the IRIS [37] and WINE [38] datasets consist
of three categories, with 4 attributes for each IRIS sample and 13 attributes for each WINE
sample, so there is no need for dimensionality reduction. After a few epochs, both IRIS and
WINE reached 100% accuracy. The SEMEION [29] dataset consists of 16× 16 binary images
with pixel values of 0 or 1 representing handwritten digits from 0 to 9. In the dimensionality
reduction, the average value over each 4× 4 block was computed, resulting in a 4× 4 image.
This 10-way classification achieved 90.98% accuracy. All in all, for datasets with small
feature dimensions, dimensionality reduction is not required, and the HQNN can classify
them quickly and accurately. For datasets with large feature dimensions, dimensionality
reduction has a negative impact on classification performance, but our HQNN can still
achieve a relatively high accuracy.

Table 1. The classification accuracies on the different datasets.

Dataset Dimensions Classes
Samples Cost

Accuracy
Train Test Qubits Gates

IRIS 4 3 112 38 4 9 100%
WINE 13 3 133 45 13 36 100%

SEMEION 256→16 10 1194 399 16 45 90.98%
MNIST 784→16 10 60,000 10,000 16 45 89.06%

3.4. Computational Cost

Due to the lack of quantum resources in the NISQ era, the use of quantum circuits
containing a small number of qubits and quantum gates to solve practical problems is the
most appealing application of quantum algorithms. Our n-qubit HQNN employs (n − 1)
two-qubit quantum gates, each of which can be decomposed into two CNOT gates and
one Rz gate, so there are 3(n − 1) universal quantum gates in total. The computational
cost of each task is shown in Table 1, demonstrating that our HQNN has dramatically few
quantum gates and can be implemented in the NISQ era.
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4. Conclusions

In this paper, we proposed a hybrid quantum neural network to classify multi-class
real-world datasets. To address the need for quantum processers that have a limited number
of qubits in the NISQ era, an average pooling downsampling strategy was proposed to
reduce the data dimensionality. Besides this, we adopted a ladder-like PQC with relatively
few parameters as the main computing block to minimize the superposition of the input
state. More importantly, all qubits in three directions are measured to convert hidden
quantum information into classical correlations, which are further processed by a classical
neural network. We introduced nonlinearity through three ways: injecting the nonlinear
function into the encoding circuit, measuring three Pauli operations on all qubits repeatedly,
and adding a softmax neural layer to the classical post-processing. The experimental results
show that our HQNN not only outperforms a CNN with almost the same number of
parameters, but also performs reasonably well on different multi-class real-world datasets.

However, due to the limitation of the number of qubits available in NISQ devices,
some real-world datasets require dimensionality reduction. Although the average pooling
downsampling strategy proposed in this paper retains more data features than traditional
methods, it still loses some potentially useful information. In the near future, some algo-
rithms, such as quantum convolutional neural networks that require fewer qubits but more
computational steps, could be designed to solve this problem. This is the aim of our next
work. In the long run, with the advent of large-scale quantum devices in the future, this
problem will no longer exist.

With the rapid development of quantum computers, more algorithms will be designed
to deal with practical problems. This multi-classification hybrid quantum neural network
may provide ideas for the application of quantum algorithms in the NISQ era.
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