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Abstract: The Granger causality test is essential for detecting lead–lag relationships between time
series. Traditionally, one uses a linear version of the test, essentially based on a linear time series
regression, itself being based on autocorrelations and cross-correlations of the series. In the present
paper, we employ a local Gaussian approach in an empirical investigation of lead–lag and causality
relations. The study is carried out for monthly recorded financial indices for ten countries in Europe,
North America, Asia and Australia. The local Gaussian approach makes it possible to examine
lead–lag relations locally and separately in the tails and in the center of the return distributions of the
series. It is shown that this results in a new and much more detailed picture of these relationships.
Typically, the dependence is much stronger in the tails than in the center of the return distributions. It
is shown that the ensuing nonlinear Granger causality tests may detect causality where traditional
linear tests fail.

Keywords: lead–lag relationships; local Gaussian approximation; local Gaussian autocorrelation;
local Gaussian cross-correlation; local Gaussian partial correlation; test of conditional independence;
nonlinear Granger causality test

1. Introduction

The autocorrelation, partial autocorrelation, and cross-correlation functions of a pair
of time series play fundamental roles in classical Box–Jenkins analysis. In Chapters 6–9
of [1], it is discussed how these quantities can be used to identify the model within the
class of ARIMA (Autoregressive Integrated Moving Average) models. In Chapters 10–11,
on transfer function models, a (relatively simple) lead–lag modeling approach based on the
cross-correlation for a pair of time series is introduced, with one series leading the other.

Ref. [2] used the same quantities in a time series regression in his derivation of a linear
causality test, which subsequently was named after him as a “Granger causality” test. This
concept has played an essential role in the causality analysis of time series, and we will
return to a detailed description of it in Section 2. The subsequent body of literature has
mainly been linear, again essentially based on the second-order concepts of autocorrelation
and cross-correlation. An important and representative paper on predictability, covering
monthly return data from several countries, is [3].

However, it is well known that the returns of financial time series possess properties
that make them less suitable for linear correlation-based models; see, e.g., [4]. These
properties are especially pronounced for daily data, but also present for monthly data,
which is the type of data we will analyze in this paper. The returns are typically weakly
autocorrelated, and their distributions possess heavy tails. In fact, as we will see later,
autodependence is more prominent in the tails than in the center of the distribution. Such
issues were partially addressed by introducing ARCH and GARCH models (see, e.g., [5]
for a detailed description). In terms of correlation functions, the ARCH/GARCH series
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appear as white noise series, where there is no correlation from one time point to another.
However, there can be strong statistical dependence, even long-range dependence, which
is modeled in the volatility process rather than in the mean process.

It is obvious that the correlation concept is especially suited for Gaussian processes,
where it gives a complete description of the dependence, from which linear Granger
causality can also be tested using simple methods. Nevertheless, as indicated above, time
series in finance, econometrics, and other fields are often non-Gaussian. To completely
describe dependence in such time series, one needs to formulate dependence in terms
of distributional properties. Considering lead–lag relationships and Granger causality in
terms of such concepts is natural. Such an undertaking is the central theme of this paper.
We will do this by using the recent formalism of local Gaussian approximation, which [6]
statistical describe. This represents a way of retaining the Gaussian distribution as well as
the autocorrelation and cross-correlation locally. It is then possible to preserve the elegance
and simplicity of the traditional concepts, including a Box–Jenkins-type formalism, in a
local distribution-like fashion. The local approach allows the extension of linear Granger
causality to a nonlinear distributional framework, as is already indicated in Chapter 11
of [6].

This paper is organized as follows. We describe the methodology in some detail
in Section 2, and illustrate some advantages over linear lead–lag modeling by a simple
simulation example in Section 3. The main contribution of this paper is to use the local
Gaussian approach in an empirical study of nonlinear lead–lag relationships and Granger
causality for monthly stock return data from 10 countries and compare them to traditional
linear analysis. We do this in Section 4, where we study the case of the US and UK in some
detail and discuss a larger selection of countries as well. We refer to [6,7] for derivations
of asymptotic properties of estimates of local quantities and theoretical properties of the
nonlinear Granger causality test. We conclude in Section 5.

2. Methodology
2.1. The Local Gaussian Correlation

The main idea is to approximate a general density f by a Gaussian density locally. In
principle, one could approximate f by another family of distributions, as in [8], but the
Gaussian has some truly amazing multivariate properties. Among them is the fact that
the distributional properties, as far as dependence is concerned, are described completely
by correlations between pairs of variables, so that for a d-dimensional Gaussian time
series {Xt}, the dependence is described by the correlations of pairs (Xi,t, Xj,t+h), h ≥ 0;
i, j = 1 . . . , d.

More precisely, the idea of local Gaussian approximation can be outlined as follows:
consider a general multivariate density f , and a point x in the domain of f . In a neighbor-
hood of x, whose size is determined by a bandwidth b, f is approximated by a Gaussian dis-
tribution, which, in the bivariate case, can be denoted by ψ(µ1(x), µ2(x), σ1(x), σ2(x), ρ(x)),
where µ, σ, ρ stand for mean, standard deviation, and correlation, respectively. Moving to
another point y in the domain of f , one fits another Gaussian ψ(µ1(y), µ2(y), σ1(y), σ2(y),
ρ(y)). If f itself is Gaussian with mean µ = (µ1, µ2), standard deviation σ = (σ1, σ2), and
correlation ρ, then the local approximations all coalesce with µ(x) ≡ µ, σ(x) ≡ σ and
ρ(x) ≡ ρ.

One may ask how well our methodology works for global non-Gaussian distributions—
for example, skewed distributions. It does work, but of course one may need more observa-
tions with use of a corresponding smaller bandwidth. For some practical experience with
non-Gaussian data, we refer to [9,10], where, among several non-Gaussian distributions, there
are a skewed t-distribution, a mixture distribution, and several copula-generated distributions.
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In order to estimate the local parameters θ(x) = (µ1(x), µ2(x), σ1(x), σ2(x), ρ(x)) given
n observations of {Xt}, we use the local-log likelihood of [8]. The aforementioned neigh-
borhood is then determined by a kernel function K with a bandwidth b, such that

L(θ(x)) = n−1
n

∑
t=1

Kb(Xt − x) log(ψ(Xt, θ(x))−
∫

Kb(u− x)ψ(u, θ(x))du (1)

where K is a nonnegative symmetric kernel function. We have used the standard normal
density function as a kernel function throughout this paper. For a given point x of interest,
maximizing (1) with respect to θ(x) results in a Gaussian approximation ψ of f in the neigh-
borhood of x. The correlation ρ(x) in this approximation is termed the local correlation at
the point x. In the case of a bivariate time series {Xt} = (X1t, X2t), the local autocorrelation
at lag h is defined as ρii,h(x), i = 1, 2, which is the correlation of the Gaussian approximation
of the density function fXit ,Xi,t+h at the point x. Similarly, the local cross-correlation ρ12,h(x)
is the correlation of the Gaussian approximation of fX1t ,X2,t+h at the point x. These local
quantities, then, are the local autocorrelation and local cross-correlation of the time series
{Xt}. They reduce to the ordinary autocorrelation and cross-correlation for a Gaussian time
series. Some properties of these quantities are given in [11]; alternatively, see Chapters 6
and 8 of [6]. We typically analyze the local Gaussian correlation at diagonal points x1 = x2,
which gives us an instrument for looking at the local correlations at selected points of the
range of {Xt}—for example, the 10th percentile, the 50th percentile, and the 90th percentile.
These three points then represent the lower tail, the center, and the upper tail, respectively,
of the bivariate distribution under consideration. This will be used in the examples in
Section 4, and it will be seen that the dependence of the series is different at the extremes
compared to the center values of the series, and we can even examine a concept such as
Granger causality on a local scale: do we have Granger causality at the extremes, but not at
the center, for instance? See discussion after Equation (4).

Partly for computational needs, it is often an advantage to change the marginal scale to
a standard normal one; see, e.g., [11]. This can be achieved by the marginal transformations
Zit = Φ−1[Fi(Xit)], i = 1, 2, where Fi is the cumulative distribution function of {Xi(t)}, and
Φ is the cumulative distribution of the standard normal. In practice, Fi has to be replaced by
the empirical distribution function F̂i. Subsequently, the local (and global) autocorrelation
and cross-correlation can be studied in terms of {Zt}, or more precisely in terms of {Ẑt}.
This construct can be compared to the copula concept, where dependence is studied in
terms of the uniform variables Ui = Fi(Xi). We believe that it is advantageous to use a
standard normal marginal scale to be better able to analyze dependence in the tails of the
distribution; see, for instance, ref. [12] for a more thorough discussion about this. We will
use the standard normal marginal scale in this paper, and the bandwidth b used below is
determined on the z-scale. If desired, one can transform the location argument back to the
marginal scale for the original observations.

2.2. Testing for Distributional Granger Causality

The technique of local Gaussian approximation can be used in a number of different
applications, as witnessed by the various chapters in the [6], to which we refer for more
precise and extended treatment. One such application is testing conditional independence
and (distributional) Granger causality. Informally, the time series X1,t Granger causes X2,t
if past values of X1,t are useful for predicting future values of X2,t. More specifically, X1,t
Granger causes X2,t if

X2,t 6⊥ I∗(t− 1) | I∗X1
(t− 1) (2)

where 6⊥ (⊥) denotes dependence (independence), and where I∗(t− 1) is all information
available at time t− 1 and I∗X1

(t− 1) is the same information omitting the values of X1,t
up to, but not including, time t. In practice, the hypothesis (2) cannot be tested in its full
generality. However, by taking only effects up to the first lag into account, it is possible
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to formulate a sufficient (but not necessary) condition for (2), X2,t 6⊥ X1,t−1 | X2,t−1, the
converse of which constitutes a testable null hypothesis of first-order Granger noncausality:

H0 : X2,t ⊥ X1,t−1 | X2,t−1. (3)

There are several approaches for performing this test. The simplest is based on
constraining the (possible) dependence to a first-order linear relationship such that

X2,t = c + φX2,t−1 + βX1,t−1 + εt

in which case (3) reduces to H0 : β = 0, which is thus a test for conditional uncorrelat-
edness rather than conditional independence. In fact, if α denotes the partial correlation
between two jointly Gaussian time series X2,t and X1,t−1 given X2,t−1, this is simply a test
of H0 : α = 0.

In [7], a nonparametric test is proposed using a local version of the partial autocor-
relation function α(x) defined locally at x. If one wants to test for Granger causality, one
must test for distributional conditional independence in (3). There exist several conditional
independence tests in the literature. Many of them are listed and explained by [7]. We
have chosen to focus on a test involving the local partial correlation α(x), which can be
defined analogously to the global partial correlation α, by means of local autocorrelations
and cross-correlations. Instead of testing for α = 0, one tests for α(x) ≡ 0. Many more
details are given by [7].

It may also be noted that the framework of mutual information and conditional mutual
information can be used to test for, respectively, independence and conditional independence.
See, for instance, the recent survey paper by [13].

The idea of using the analogy with the global Gaussian definition of partial correlation
in conjunction with the already established local Gaussian correlation means that, in this
way, α(x) describes the dependence between X2,t and X1,t−1 given X2,t−1 in a neigbourhood
of (X1,t−1, X2,t) = (x1, x2) = x. Squared values of this quantity can be aggregated over a
region S or over the entire domain to obtain a test statistic

T =
∫

S
α2(u)dF̂(u) (4)

which can be used for testing region-wise or global conditional independence, the latter
corresponding to (3). In this manner, one obtains a global nonlinear distributional test of
Granger causality instead of a linear Granger causality test by choosing S large enough. By
restricting S, one can test for Granger causality in a specific region—for instance, in a tail
region. This test has power against several nonlinear types of conditional dependence and
is indeed suitable for testing (3). Details of this are again given in [7], where this type of
conditional independence test is also evaluated against other tests of (global) conditional
independence, which in principle can be extended to nonlinear Granger causality tests.
We will illustrate our test on the simulated example in Section 3, where the ordinary
linear Granger causality test does not work, but where the test based on the partial local
autocorrelation function does. In Section 4, which is the main part of our paper, we follow
this up with a quite extensive analysis of empirical monthly stock return data from 10
countries, and where the nonlinear as well as the linear Granger causality test, are applied
to each pair of countries. It will be seen that much more information can be gained from
the local autocorrelations and cross-correlations, and that this has consequences for the
causality tests as well.
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3. A Simulation Example

We motivate the empirical analysis that follows in Section 4 with a simulation experi-
ment. Consider the following bivariate ARCH model in terms of conditional variances and
conditional covariances σij,t|t−1, i, j = 1, 2,

Xt = Σ1/2
t|t−1εt =

(
σ11,t|t−1 σ12,t|t−1
σ21,t|t−1 σ22,t|t−1

)1/2

εt, (5)

where εt ∼ N (0, I), and

vech

(
σ11,t|t−1 σ12,t|t−1
σ21,t|t−1 σ22,t|t−1

)
=

σ11,t|t−1
σ12,t|t−1
σ22,t|t−1

 =

γ10

γ20

γ30

+

γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 X2

1,t−1
X1,t−1X2,t−1

X2
2,t−1

.

See, for instance, [14], Chapter 8, for more details about this model, including stationarity
conditions. If we setγ10

γ20
γ30

 =

0.1
0

0.1

 and

γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

 =

 0 0 0
0 0 0

0.9 0 0.9

,

we get a bivariate ARCH process, where the first component X1 clearly Granger causes
the second component X2, but where there is no Granger causality in the other direction.
The serial and cross-dependence in this case are nonlinear and not visible in the usual
autocorrelation and cross-correlation plots; see the top row of Figure 1 for an example with
n = 10,000 observations. The corresponding plots for the squared process are presented
in the second row of this figure, where we see that there is strong autocorrelation in the
second component (which is typical for ARCH series), but there is still no significant cross-
correlation from the first component, from which we can infer the influence from the first
to the second component.
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1 2 3 4 5 6 7 8 9 10
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Autocorrelation for component 2
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Figure 1. (Top row): Empirical autocorrelations for the two components in the simulated bivariate
ARCH example, as well as the cross-correlation between the two series. (Bottom row): Corresponding
plots for the squared series. Error limits are 95% confidence intervals. The x-axis indicate lags, and
the auto- and cross-correlations are mapped to the y-axis.
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One way to detect such relationships is to consider the properties of specific parts of the
joint distribution of the two components—for instance, using the local Gaussian approach
that we sketched in Section 2. Specifically, in order to calculate the local cross-correlation
between X1,t and X2,t−k at some quantile, we estimate the joint density of (X1,t, X2,t−k)
using a local Gaussian approximation at that point and extract the local correlation from
this fit. Doing this for various values of the lag index k and at three different percentiles
(the 10th, 50th, and 90th quantiles of the two marginal components) results in the estimates
seen in Figure 2. In all three plots, we have used the bandwidth b = 1 in order to obtain the
estimates. We see that there is no particular evidence for lagged cross-dependence between
the two components of the bivariate process when looking at the center of this distribution.
However, at the low and high quantiles, there are clear indications of component 1 leading
component 2.

The local Gaussian correlation enables us to perform a much more detailed analysis of
the joint distribution of the two time series components at various time lags. By fitting the
normal distribution locally at the three different points along the diagonal x1 = x2 of the
sample space—the 10th, 50th, and 90th percentiles—we see that the lead–lag relationship
(which clearly exists between the two components) is only visible at the two extremes,
and not detectable in the center of the distribution. Confidence intervals for the local
quantities in this section and in Section 4 can be obtained using the block bootstrap, as
demonstrated in [11]. Since they are not used explicitly in the testing, they are omitted
here; in Section 4, we refer instead to the formal tests themselves, where we obtain p-values
using the bootstrapping scheme by [7].

We have also carried out this experiment with {εt} consisting of independent t(5)-
distributed variables. The t-distribution is often used in practical ARCH/GARCH-type
modeling. The results are practically identical to the case with Gaussian innovations, but
not shown here.

In the following section, we will apply this technique to observed series of stock return
data, as well as a more formal test for nonlinear Granger causality.

Q10 Q50 Q90

−10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10

−0.2

0.0

0.2

0.4

Figure 2. Local cross-correlations for the pair (X1,t, X2,t−k with k ranging from −10 to 10 for the
simulated example at the 10th, 50th, and the 90th percentiles, calculated using bandwidth b = 1.
There is clear evidence that the first component leads the second, but this is only visible at the lower
(Q10) and upper (Q90) ends of the diagonal x1 = x2 of the sample space. The x-axis indicates lags,
and the cross-correlations are mapped to the y-axis.

4. Lead–Lag Relations for Global and Local Correlations

In this section, we investigate lead–lag relationships among monthly country stock
returns. Let Xt be the value of the stock at time t. The return at time t is defined by
rt = log Xt/ log Xt−1. The return series {rt} is assumed to be stationary, which is a standard
assumption in the analysis of stocks. All of the local analysis, the result of which is displayed
for instance in Figure 3, is based on this stationarity assumption since the concept of the
local Gaussian correlation itself is based on this assumption. We have obtained all available
data for each country from [15], up to and including the observation made on 1 November
2021; see Table 1 for details. A comprehensive study of lead–lag relationships among
monthly country stock returns using traditional Granger causality can be found in [3]. This
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is partly the reason that we have chosen to analyze monthly data. In fact, the nonlinearity
effects are even more pronounced for daily data, but in the present investigation, we wanted
to avoid the issue of time difference in opening hours for the various stock exchanges,
which, if left unadjusted for, may lead to problems of interpretation for lead–lag relations.
It should be noted, however, that the study by [3] is not directly comparable to ours. Firstly,
the time interval is different. For instance, there are twice as many observations in our
investigation for the US–UK pair. Secondly, they consider returns in excess of the risk-free
monthly rate for each country, while we only consider the raw return series. Finally, they
control for dividend yield and a nominal interest rate in their model.
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Figure 3. Autocorrelation and cross-correlation plot for the US and the UK. The top row displays
ordinary correlations, while the last three rows display the local Gaussian correlation for the 10%,
50%, and 90% percentiles using the bandwidth b = 1. Negative lags correspond to the UK leading the
US, positive to the US leading the UK. The x-axis indicates lags, and the auto- and cross-correlations
are mapped to the y-axis.
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Table 1. Monthly observations on the total market return.

Country Index Start Month # Months

Australia S&P/ASX 200 1 February 1980 502
Canada S&P/TSX Composite 1 April 1988 404
France CAC 40 1 February 1988 406
Germany DAX 40 1 February 1971 610
Japan Nikkei 225 1 March 2013 105

Norway Oslo Stock Exchange, Benchmark Index 1 February 1983 466
Switzerland SIX Swiss Exchange, Swiss All Share 1 March 1999 273
The Netherlands Euronext Amsterdam, AEX Index 1 May 2009 151
The United Kingdom FTSE 100 1 July 2005 197
The United States S&P 500 1 November 1989 385

4.1. The Case of the US and the United Kingdom

Let us first consider one pair of countries in some detail. We have found the lead–lag
relationships between the main stock indices of the US (S&P500) and the UK (FTSE 100) to
be particularly rich in detail. We have n = 196 monthly total market returns on these time
series, starting in August 2005 (see Table 1 for details on the data set that we analyze in
this paper).

We start by considering ordinary autocorrelation and cross-correlation plots, which
we display in the top row of Figure 3. Following the discussion in Sections 1 and 3, we
are not surprised to see that there is very little serial and cross-dependence to be seen in
these data. The UK series appears to have a first-order linear autoregressive correlation
structure. However, there seems to be no autocorrelation of any statistically significant
magnitude in the American series (95% confidence intervals are displayed). Moving on to
the cross-correlations between the two series, a few lags have statistically significant linear
correlations in either direction, but the signal as a whole is very weak in this figure.

Next, we consider the bivariate distributions in question in more detail using the local
Gaussian correlation. In rows 2–4 in Figure 3, we see the corresponding local auto- and
cross-correlations for these two time series calculated at the 10%, 50%, and 90% percentiles
using the bandwidth b = 1. We see a much stronger pattern in the local plots compared
to the global plots. At the 10% percentile, there is fairly strong autodependence in the UK
time series. This picture is consistent with the stylized facts of financial time series: even
though there is little correlation in the global linear sense, there are typically still strong and
important dependence structures to be found. See also [11]. We see a similar tendency in the
US series, albeit perhaps not as strong as in the UK series. For the local cross-correlations
on the 10th percentile, we first see a strong co-temporal local dependence between these
two series (lag k = 0) and indications of lead–lag patterns in both directions. The first three
lags of correlation in the direction where the UK leads the US (lags k = −1,−2 and −3)
are fairly strong, as well as the two first cross-correlations in the other direction (k = 1, 2).
It should be carefully noted that the lagged cross-correlations are also influenced by the
autodependence of the two series. The Granger causality test does not suffer from this
since it is, in essence, a conditional independence test. Nevertheless, it is satisfying, as will
be seen later in this section, that the informal indications of lead–lag relations that can be
gleaned from Figure 3 are consistent with the more formal results of the Granger causality
test of Table 2.

At the 90th percentile, we see that mainly the American series shows a marked
dependence structure different from the corresponding global series. Moreover, the one-lag
cross-correlation from the US to the UK is much stronger than vice versa.

At the 50th percentile, however, there is a lesser dependence structure, which we see
by comparing the plots to the corresponding global plots.
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Table 2. Results for tests of first-order Granger causality, from the country in the row to the country in
the column. The top symbol indicates the result from the linear test, and the bottom symbol indicates
the result from the test based on the local Gaussian correlation. Significance codes: - (>0.1) • (0.05)
∗ (0.01) ∗∗ (0.001) ∗ ∗ ∗ 0.
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We can investigate the local correlation structure for this country pair in more detail
by plotting the local Gaussian correlation as a function of empirical percentiles for a few
selected lags; see Figure 4. In the UK series, we see again that the most substantial autode-
pendence can be found in the left tail, as measured along the diagonal. The interpretation
of this finding is that there is a clear tendency that a series of significant negative returns
depend on each other to a much higher degree than a series of observations closer to zero.
For higher percentiles, we see that the autodependence at lags 1 and 3 increases somewhat,
but also that the autodependence at lag 2 continues to decrease and becomes negative. This
is a somewhat atypical behavior, as we will see in the following sub-section.

−0.5

0.0

0.5

1.0

0 25 50 75 100

GBR

−0.5

0.0

0.5

1.0

0 25 50 75 100

USA

−0.5

0.0

0.5

1.0

0 25 50 75 100

GBR vs. USA

Lag 0 1 2 3 Sign of lag Negative Positive

Figure 4. The local auto- and cross-correlations for the UK and the US data, plotted as a function
of the percentile of the data along the diagonal x1 = x2 in the sample space. In the right-hand
cross-correlation plot, dashed lines display negative lags, indicating lead–lag relationships from the
UK to the US, while positive lags indicate potential lead–lag relationships in the other direction.
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The US series display a more typical pattern in the local autocorrelations. At the three
first lags, we see a “bathtub” shape, with higher local dependence at the extremes (where
the lower extremes contain stronger dependence than the upper extremes) and less local
dependence in the center of the distribution.

The cross-correlations show similar patterns. There is a strong co-temporal dependence
between the two series, as seen in the red line. Moreover, the local cross-correlations are
generally stronger at the extremes of the respective distributions than in the center. These
observations are consistent with the stylized fact about financial time series wherein the
dependence increases as the market goes up and, particularly, down.

However, it is important to reiterate and keep in mind that although we consider local
correlations that enable us to detect nonlinear patterns in the dependence structure of the
return distributions, the analysis above is still mainly descriptive. Conditioning as in the
Granger causality test is needed to obtain more reliable and formal notions of lead–lag
relations and causality. In order to proceed in this direction, we now consider distributional
Granger causality, as described in Section 2.2.

The results of both the linear and distributional Granger causality test are displayed as
part of Table 2. We refer to Section 4.2 for a more detailed description of this table. For the
US and the UK, we see that the first-order linear test for Granger causality does not reject
the null hypothesis of Granger noncausality from the UK to the US, as well as from the
US to the UK. The corresponding test for distributional Granger noncausality rejects both
hypotheses at the 5% significance level, indicating that the causality structure between these
two time series manifests itself differently than through the global correlation structure. As
mentioned in Section 1, a well-known phenomenon of financial time series is that global
correlations, in general, fail in describing the dependence. See [16] for a different approach
to this problem. Note that Granger causality could be present at higher lags; see [7].

4.2. A Wider Selection of Countries

We can now move on to examine the lead–lag relationships between a larger selection
of monthly stock return time series using the methods from earlier sections. We consider
the total market return on the primary stock exchange in 10 countries of various sizes and
importance; see Table 1 for details on the origin and length of the individual series. All the
data have been obtained from [15].

There are many plots to consider in this section, and they have been placed in a
separate figure section at the end of the paper. The global autocorrelations for all ten series
can be found on the diagonal of the matrix of plots in Figure 5. The global cross-correlations
can be found in the plots in the off-diagonal in the same figure. We see the same general
pattern that we recognize from the top row of Figure 3: the global autocorrelation and
lagged cross-correlation signals in all of these series are very weak and hardly detectable.
We note (see also Figure 3) that the time series of returns of the UK FTSE 100 Index differs
from most of the other series in our data set, in that there is a clear first-order autoregressive
effect that is significantly different from zero. We keep this in mind because we will see later
in this section that this is the only country in our sample for which its leading effects on
other countries are primarily detectable using the classical linear test for Granger causality.
We see from the cross-correlation plots that the UK series is the only one that systematically
indicates statistically significant linear lead and/or lag effects with several other countries.

In Figure 6, we see the corresponding plots of local auto- and cross-correlations for
all (pairwise combinations of) countries, with the local versions calculated on the 10th
percentile along the diagonal x1 = x2. These illustrations correspond to the second row
of plots in Figure 3. The general picture is that the local correlations in this part of the
distribution are stronger than the corresponding global correlations (we will return to a
formal statistical inference using the Granger causality test at the end of this section). The
cross-correlations, in particular, are prominent in this set of plots, and we see the strongest
set of lead–lag relationships between the continental European countries (Switzerland,
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Germany, France, and The Netherlands), and a somewhat weaker relationship between
these countries and the UK.

In the center of the distributions, represented in Figure 7, where we plot the local auto-
and cross-correlations at the 50th percentile along the diagonal, we return to a picture that
is more similar to the global counterpart in Figure 5, although the signal is stronger, which
may indicate that the local approach to a larger degree is capable of detecting (G)ARCH-
type dependence structures in the same manner as we demonstrated in Section 3. Another
interesting case in this figure is the UK, whose local correlations appear weaker than its
global correlations, and we will return to this at the end of this section.

We can also inspect the local correlations at the 90th percentile as seen in Figure 8,
which are stronger than at the 50th percentile but generally weaker than the 10th percentile.

In the same way as in the previous sub-section, we can analyze the local correlations
by plotting some of them as a function of the percentile on the diagonal x1 = x2. We see the
result of this exercise for all countries and all country pairs in Figure 9, and this set of plots
gives a more complete picture of the local dependence structure between the countries.
The local autocorrelations tend to have similar patterns for the three first lags. The general
trend is that the local correlation is lowest around the 50th percentile, and that it tends to
increase more as the percentile decreases towards zero than when it increases towards 100.
There is a clear tendency for the local correlation curves to have a somewhat asymmetrical
U shape. We see strong correlations again within the continental European block. The US
and Japan have a strong U shape in their cross-correlations, indicating that they follow
each other when the market is going up and when it is going down. The cross-correlation
curves for most country pairs are similar for positive and negative lags, indicating that the
lead–lag relationship between these countries is symmetrical.

In Table 2, we see the results for the testing of the hypothesis of first-order Granger
noncausality. The significance codes of this table were obtained from p-values using the
simulation procedure of [7]. Each cell in the table reports the result from the causality tests
from the country indicated by the row, to the country indicated by the column. The top
symbol represents the result from the linear test, and the bottom symbol represents the
result from the nonlinear test based on the local Gaussian correlation. We recognize, for
instance, the case of the US and the UK from the previous sub-section, where the nonlinear
test rejects the null hypothesis of Granger noncausality in both directions, while the linear
test does not.

There are at least two interesting insights to derive from this table. We note first that
the causality signals between these time series are generally weak. There are many more
non-rejections than rejections of the causality tests, and this is true for both testing methods.
Indeed, the linear test rejects 11.1% of the hypotheses, while the corresponding number for
the nonlinear test is 15.6%. In Figure 10, we visualize the test results by plotting the p-values
of the two different methods in a scatter diagram along with their marginal histograms. The
p-values for the linear test display an almost uniform behavior, which we expect if the true
value of the regression coefficient in question is equal to zero in all cases. The nonlinear test
does produce more rejections of Granger noncausality than the linear test, and this trend is
easy to see when considering the marginal histogram of p-values in Figure 10. There is a
clear tendency in the data set that the causality signal in many cases is stronger from the
nonlinear perspective, albeit not always individually statistically significant at the typical
5% level (indicated as vertical and dashed lines in the figure). Indeed, we cannot reject the
null hypothesis that the p-values resulting from the linear test are drawn from the uniform
distribution (p = 0.23 using a standard χ2 test). From a multiple comparison point of view,
this may indicate that the linear rejections of noncausality are spurious. The same χ2 test
is rejected for the p-values resulting from the nonlinear test based on the local Gaussian
correlation (p = 2.5e-10).

Secondly, focusing on individual pairs, we see that the UK time series to a large degree
Granger causes time series from other countries in a linear fashion. We have indicated these
cases with a red circle in Figure 10. We also see that these relationships are generally not
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detected by the nonlinear test, which is naturally less powerful than the linear test in cases
where the linear specification is good. We see a similar behavior in the tests for Granger
noncausality from other countries to Norway, which is the smallest economy in the data set.
These results are indicated in Figure 10 with blue circles.
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Figure 5. The global autocorrelations of the time series in the data set on the diagonal, and the global
cross-correlations between the time series on the off-diagonal. The x-axis indicates lags, and the auto-
and cross-correlations are mapped to the y-axis.
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Figure 6. The local autocorrelations of the time series in the data set on the diagonal, and the local
cross-correlations between the time series on the off-diagonal. The x-axis indicates lags, and the auto-
and cross-correlations are mapped to the y-axis. Percentile: 10, bandwidth: 1.
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Figure 7. The local autocorrelations of the time series in the data set on the diagonal, and the local
cross-correlations between the time series on the off-diagonal. The x-axis indicates lags, and the auto-
and cross-correlations are mapped to the y-axis. Percentile: 50, bandwidth: 1.
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Figure 8. The local autocorrelations of the time series in the data set on the diagonal, and the local
cross-correlations between the time series on the off-diagonal. The x-axis indicates lags, and the auto-
and cross-correlations are mapped to the y-axis. Percentile: 90, bandwidth: 1.
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Figure 9. The local autocorrelations of the time series in the data set on the diagonal, and the local
cross-correlations between the time series on the off-diagonal. Plotted as a function of the percentile
for the first five lags. Bandwidth: 1.
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Figure 10. The p-values from the tests of Granger noncausality between all pairs of countries in our
data set. On the x-axis, we have the p-values from the linear test, while on the y-axis, we have the
p-values from the nonlinear test based on the local Gaussian correlation. The marginal histograms
indicate that the linear test gives p-values that are close to uniform. Tests of Granger noncausality
from the UK to the other countries in the data set are indicated with a red circle, while the tests of
causality from other countries to Norway are indicated with a blue circle.

5. Conclusions

In this paper, we have carried out an empirical investigation of monthly financial
indices in 10 countries from Europe, North America, Asia, and Australia. This has been
done using the approach of a local Gaussian approximation that has been explored in the
book by [6] and in several recent papers. Such a point of view makes it possible to obtain
an indication of lead–lag relations locally using separate analyses in the tails and in the
center of the financial return distributions. Moreover, it makes it possible to employ corre-
sponding nonlinear Granger causality tests. Ours is fundamentally a distribution-based
analysis, which is entirely different from the traditional linear second-order one. The local
investigation reveals that the autocorrelation for a return series and the cross-correlation
between two return series are much more pronounced in the tails of the distributions,
i.e., when the market is going up or down, than it is in the center, where the market is
stable. Moreover, we are able to determine these differences quantitatively. The results are
consistent with a nonlinear Granger causality test based on the local partial correlation. We
have demonstrated that this test can pick up causality relations not detected by the linear
test. The investigation indicates that causality may advantageously be studied locally using
distributional concepts rather than globally, as traditionally done.
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