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Abstract: In this paper, we present a new method for the construction of maximally entangled states
in Cd ⊗ Cd′ when d′ ≥ 2d. A systematic way of constructing a set of maximally entangled bases
(MEBs) in Cd ⊗Cd′ was established. Both cases when d′ is divisible by d and not divisible by d are
discussed. We give two examples of maximally entangled bases in C2 ⊗ C4, which are mutually
unbiased bases. Finally, we found a new example of an unextendible maximally entangled basis
(UMEB) in C2 ⊗C5.
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1. Introduction

Quantum entanglement is the phenomenon of particles interacting in a system con-
sisting of two or more particles, although the particles may be separated by a distant
space [1]. It is an important physical resource and plays an important role in quantum
information processing, such as quantum computation [2], cryptographic protocols [3,4],
quantum state tomography [5,6], and modern quantum technologies [7,8]. Specifically,
the maximally entangled states play a central role in quantum mechanics and quantum
information processing [9,10].

In 1960, mutually unbiased bases (MUBs), first introduced by Schwinger in [11], also
have useful applications in quantum information processing, and Ivanovic applied the
mutually unbiased bases to the problem of quantum state determination in [12]. Two
orthonormal bases B1 = {|φi〉}dd′−1

i=0 and B2 = {|ψj〉}dd′−1
j=0 of Cd ⊗Cd′ are called mutually

unbiased if and only if:

∣∣〈φi|ψj〉
∣∣ = 1√

dd′
, for any i, j = 0, 1, . . . , dd′.

A set of orthonormal bases {B1,B2, . . . ,Bk} is called mutually unbiased if any two bases
of them are mutually unbiased. Denote N(d) the maximum number of any set of MUBs
in Cd. An open problem with mutually unbiased bases is to determine the value of N(d)
when d is not a power of a prime number. It is already known that N(d) ≤ d + 1 for any
dimension d and N(d) = d + 1 if d is a prime power [13–15]. However, if d has at least two
different prime divisors, the result for N(d) is known very little, even for d = 6. We refer
the readers to [16] and the references cited in that paper.

The unextendible maximally entangled basis (UMEB) in Cd ⊗Cd was introduced
in [17]. It was shown that the UMEB is constructed explicitly when d = 3 and d = 4 [18].
In Reference [18], Chen and Fei studied the UMEB in any bipartite system Cd ⊗Cd′ . They
presented a method to construct d2-member UMEBs in Cd ⊗ Cd′ when d′ < 2d < 2d′
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and gave two examples of mutually unbiased unextendible maximally entangled bases
(MUUMEBs) in C2 ⊗C3. In recent years, UMEBs have been studied more extensively
in arbitrary bipartite systems. In [19], Nan et al. presented the construction of the
qd2-member UMEBs in Cd ⊗Cd′ when d′ = qd + r, 0 < r < d and gave two complete
MUUMEBs in C3 ⊗ C4. In [20], Tao et al. studied the mutually unbiased maximally
entangled bases in bipartite systems Cd ⊗Ckd. They presented five MEBs in C2 ⊗C4 and
three MEBs in C2 ⊗C6 that are mutually unbiased. In [21], Zhang et al. provided two
constructions of UMEBs in Cpd ⊗Cqd based on the constructions of UMEBs in Cd ⊗Cd

and in Cp ⊗Cq. In [22], Han et al. presented an easy way of constructing a mutually
unbiased entangled basis with a fixed Schmidt number of two (MUSEB2) in C3 ⊗C4k

when 3 - k. In [23], Tang et al. constructed two complete UMEBs in bipartite system
Cd ⊗Cq(d+1) and obtained the sufficient and necessary conditions of these two UMEBs
to develop MUBs. In [24], Xu constructed new types of mutually unbiased maximally
entangled bases (MUMEBs) in C2s ⊗C2s

by using Galois rings.
In this paper, we provide a new construction of MEBs in bipartite system Cd ⊗Cd′

when d′ ≥ 2d. We first review some basic concepts, then present a systematic way of
constructing MEBs, which is a different approach from [18,20] and Theorem 1 in [19]. To
briefly summarize their methods, these three articles obtained a new set of MEBs by using
all the operators of the Weyl–Heisenberg group of the low-dimensional system to act on
the standard maximally entangled state. None of them applied the Weyl–Heisenberg group
of the high-dimensional system to construct MEBs. In this paper, we shall consider this
type of construction of MEBs. The difficult problem we need to overcome is choosing a
part of the operators in the Weyl–Heisenberg group and finding a suitable state. Since the
operators of the Weyl–Heisenberg group are invertible, the MEBs we construct are certainly
different from those of [18–20]. Furthermore, we give explicit examples of MEBs in C2⊗C4,
which are mutually unbiased, and eight-member UMEBs in C2 ⊗C5. Finally, we give some
conclusions and discussions of this paper.

2. Preliminaries

For the sake of convenience, we review some basic definitions and notations for
quantum entanglement states in the following.

Suppose the Hilbert space associated with some isolated physical bipartite system
is HA ⊗ HB = Cd ⊗ Cd′ . Let {|0〉, |1〉, . . . , |d − 1〉} and {|0′〉, |1′〉, . . . , |(d′ − 1)′〉} be the
computational bases in Cd and Cd′ , respectively. A state |φ〉 in Cd ⊗Cd′ is called a product
state (or separable state) if it can be written as |φ〉 = |φ1〉 ⊗ |φ2〉, where |φ1〉 ∈ Cd and
|φ2〉 ∈ Cd′ are any two quantum states of the corresponding subsystems. Otherwise, the
state |φ〉 is called an entangled state. For any given orthonormal complete basis {|ai〉}d−1

i=0
of subsystem A, if there exists an orthonormal basis {|bj〉}d′−1

j=0 of subsystem B such that |φ〉
can be expressed as |φ〉 = 1√

d ∑d−1
i=0 |ai〉 ⊗ |bi〉, then |φ〉 is said to be a maximally entangled

state [18].
One can also describe the maximally entangled state by the so-called Schmidt decomposi-

tion. For any vector |ψ〉 ∈ Cd ⊗Cd′ , one has the corresponding Schmidt decomposition [25]:

|ψ〉 =
r

∑
k=1

λk|ck〉 ⊗ |ek〉, (1)

where λk(1 ≤ k ≤ r) are positive real numbers and {ci}, {ej} are orthonormal bases in Cd

and Cd′ , respectively. If |ψ〉 is a pure state of a composite system, then λk(1 ≤ k ≤ r) are
called its Schmidt coefficients and r = Sr(|ψ〉) the Schmidt number. The pure state |ψ〉 is
maximally entangled if and only if its Schmidt number is d and all Schmidt coefficients are
equal to 1√

d
.

We denote by Md′×d(C) the vector space of all d′ × d complex matrices. Md′×d(C) is a
Hilbert space under the Hilbert–Schmidt inner product defined by 〈X, Y〉 ≡ Tr(X†Y) for
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any two d′ × d matrices X, Y. If |φ〉 = 1√
d ∑d−1

i=0 ∑d′−1
j=0 xji|i〉|j′〉 is a pure state in Cd ⊗Cd′ ,

then there is a corresponding d′ × d matrix M = M(|φ〉) = (xji), and the Schmidt number
of |φ〉 and the rank of matrix M are equal. Moreover, if |φ〉 and |ψ〉 are two pure states in
Cd ⊗Cd′ , then 〈M(|φ〉), M(|ψ〉)〉 = d〈φ|ψ〉 [26,27]. It is easy to see that |φ〉 is a maximally
entangled state if and only if all the singular values of the matrix M(|φ〉) equal one.

A collection of states {|φi〉 ∈ Cd ⊗Cd′
∣∣1 ≤ i ≤ n, n < dd′} is called an unextendible

maximally entangled basis (UMEB) [18] if and only if:

(i) |φi〉(1 ≤ i ≤ n) are all maximally entangled states;

(ii) 〈φi|φj〉 = δij, for 1 ≤ i, j ≤ n;

(iii) All the states in the orthogonal complement space of span{|φi〉}n
i=1 cannot be maxi-

mally entangled.

Next, let us consider a set of d× d unitary matrices:

Un,m =
d−1

∑
k=0

αkn
d |k⊕m〉〈k|, (2)

where n, m = 0, 1, . . . , d− 1, αd is any primitive dth root of unity, and k⊕m denotes (k + m)
mod d. These d2 matrices constitute a basis of the vector space Md×d(C) (or equivalently,
the operator space on Cd) and:

〈Un1,m1 , Un2,m2〉 = Tr(U†
n1,m1

Un2,m2) = dδn1,n2 δm1,m2 . (3)

The above d2 linear transformations Un,m correspond to the Weyl–Heisenberg group. We
use some of these operators to construct maximally entangled bases in Cd ⊗Cd′ , which is a
different method compared to that in [18,20].

3. MEBs in CCCd ⊗⊗⊗ CCCqd

In this section, we present a new method of constructing a maximally entangled basis
(MEB) in Cd ⊗Cqd when q ≥ 2.

Consider the following pure state:

|φ(q)
d 〉 =

1√
qd

d−1

∑
k=0

[
|k〉 ⊗ (|(qk)′〉+ |(qk + 1)′〉+ · · ·+ |(qk + q− 1)′〉)

]
. (4)

If we assume q = 1, then the state in (4) happens to be the standard maximally en-
tangled state in Cd ⊗Cd. In [18–20], they all used this type of state to construct mutually
unbiased MEBs and unextendible MEBs by making a transformation to the bases of subsys-
tems. In this case, our constructions coincide with theirs. However, when q ≥ 2, we did
obtain a different kind of maximally entangled states. In our case, it is not difficult to check
that all the singular values of the complex matrix M(|φ(q)

d 〉) (the definition of this complex

matrix is in the Section 2) equal one. That is to say, |φ(q)
d 〉 is a maximally entangled state.

Now, let Un,m, n, m = 0, 1, . . . , qd− 1 be the q2d2 operators on Cqd. We apply these
operators on the above state as follows:

|φ(q)
n,m〉 = (Id ⊗Un,m)|φ(q)

d 〉. (5)

Obviously, we obtain q2d2 maximally entangled states in Cd ⊗Cqd. These states cannot
form a basis of Cd⊗Cqd since q2d2 > qd2. However, we can always choose part of the states
in (5). Next, we briefly list some simple properties of the Weyl–Heisenberg group. Based
on this, we found a family of maximally entangled bases of form (5). Then, in particular,
we illustrate our method with two examples of low-dimensional systems.
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We first considered the d2 unitary matrices Un,m, n, m = 0, 1, . . . , d− 1 defined in (2)
of the vector space Md×d(C). Each of these d2 matrices has only d nonzero entries. These
nonzero entries are all the dth root of unity. The form of these matrices Un,m is determined
by m, which is independent of the value of n. When m = 0, Un,0 is a diagonal matrix, and
the entries on the diagonal are the dth root of unity. When m = 1, the nonzero entry of the
first row is in the last column, and the other d− 1 nonzero entries are directly below the
main diagonal, i.e., they are in the lower left subdiagonal of the matrix. When m = d− 1,
the d entries of the bottom left corner and the superdiagonal of the matrix are nonzero
elements. The nonzero entries of these matrices move parallel along the main diagonal.
There are exactly d different forms of matrices. There are exactly d matrices in each form,
which are determined by the value of n. For example, we have d diagonal matrices in
the Weyl–Heisenberg group. According to group theory, the form of the product of two
matrices of the Weyl–Heisenberg group is also one of these d different types.

Now, let us discuss the maximally entangled states defined in (5). Let n, m, n′, m′ ∈
{0, 1, . . . , qd− 1} and Un,m, Un′ ,m′ be two operators on Cqd. Denote the matrix U†

n′ ,m′Un,m

by (uij)0≤i,j≤qd−1. If (n, m) = (n′, m′), then by (3), we have:

〈φ(q)
n′ ,m′ |φ

(q)
n,m〉 = 〈φ

(q)
d |(Id ⊗U†

n′ ,m′Un,m)|φ(q)
d 〉 = 1.

If (n, m) 6= (n′, m′), after a simple calculation, we have:

〈φ(q)
n′ ,m′ |φ

(q)
n,m〉 = u01 + u02 + · · ·+ u0,q−1

+ u10 + u12 + · · ·+ u1,q−1

+ · · ·
+ uq−1,0 + uq−1,1 + · · ·+ uq−1,q−2

+ uq,q+1 + uq,q+2 + · · ·+ uq,2q−1

+ uq+1,q + uq+1,q+2 + · · ·+ uq+1,2q−1

+ · · ·
+ u2q−1,q + u2q−1,q+1 + · · ·+ u2q−1,2q−2

+ · · ·
+ uq(d−1),q(d−1)+1 + uq(d−1),q(d−1)+2 + · · ·+ uq(d−1),qd−1

+ uq(d−1)+1,q(d−1) + uq(d−1)+1,q(d−1)+2 + · · ·+ uq(d−1)+1,qd−1

+ · · ·
+ uqd−1,q(d−1) + uqd−1,q(d−1)+1 + · · ·+ uqd−1,qd−2.

In order to make the right-hand side of the above formula equal to zero, we need
to find out how many forms of the matrix in the Weyl–Heisenberg group satisfy that the
corresponding elements are all zero. Since u0,q−1, uq,2q−1, · · · , uq(d−1),qd−1 are parallel to
the main diagonal and all the other uij’s appearing in the above formula are closer to the
main diagonal, we have q− 1 forms of matrices in the Weyl–Heisenberg that make these
entries not equal to zero. According to our analysis in the previous paragraph, if we choose
m or m′ from the set {0, q, 2q, · · · , (d− 1)q}, then the sum of the uij’s of the right-hand side
of the above equation is equal to zero. Because there are qd matrices in each form (that is,
n can be chosen from all these numbers {0, 1, 2, · · · , qd− 1}), thus we find qd× d = qd2

matrices to make |φ(q)
n,m〉 satisfy the orthogonal property. At this point, we have proven that

we obtained a set of maximally entangled bases. In order to make our construction clearer,
we illustrate this method with two examples below by writing the states in detail.
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Let us first construct MEBs in C2 ⊗C6(d = 2, q = 3). According to the above construc-
tion, we have:

|φ(3)
2 〉 =

1√
6

[
|0〉 ⊗ (|0′〉+ |1′〉+ |2′〉) + |1〉 ⊗ (|3′〉+ |4′〉+ |5′〉)

]
. (6)

We chose n = 0, 1, 2, 3, 4, 5 and m = 0, 3, such that:

|φ(3)
n,m〉 = (I2 ⊗Un,m)|φ(3)

2 〉. (7)

Since:

〈φ(3)
n′ ,m′ |φ

(3)
n,m〉 =

1
6

Tr(U†
n′ ,m′Un,m) + u01 + u12 + u10 + u21

+ u34 + u43 + u45 + u54 + u02 + u20 + u35 + u53,
(8)

where we denote the matrix U†
n′ ,m′Un,m = (uij)0≤i,j≤5. We derived that the sum of uij’s in

Equation (8) is equal to zero when m = 0, 3. It is easy now to check that the above 12 states
exactly form an orthonormal maximally entangled basis in C2 ⊗C6.

Next, we deal with the maximally entangled bases in C3 ⊗C6(d = 3, q = 2). Similarly,
we have:

|φ(2)
3 〉 =

1√
6

[
|0〉 ⊗ (|0′〉+ |1′〉) + |1〉 ⊗ (|2′〉+ |3′〉) + |2〉 ⊗ (|4′〉+ |5′〉)

]
. (9)

In this case, we chose n = 0, 1, 2, 3, 4, 5 and m = 0, 2, 4, such that:

|φ(2)
n,m〉 = (I2 ⊗Un,m)|φ(2)

3 〉. (10)

Since:
〈φ(2)

n′ ,m′ |φ
(2)
n,m〉 =

1
6

Tr(U†
n′ ,m′Un,m) + u01 + u10 + u23 + u32 + u45 + u54, (11)

where we denote again the matrix U†
n′ ,m′Un,m = (uij)0≤i,j≤5. Similar to the previous case,

the 18 states constitute an orthonormal maximally entangled basis in C3 ⊗C6.

4. MUMEBs in CCC2 ⊗⊗⊗ CCC4

In this section, we shall study the mutually unbiased maximally entangled bases
(MUMEBs) in C2 ⊗C4. Let {|0〉, |1〉} and {|0′〉, |1′〉, |2′〉, |3′〉} be the computational bases
in C2 and C4, respectively. Throughout this section, {Un,m

∣∣n, m = 0, 1, 2, 3} defined in the
Section 2 is the set of 16 operators on C4.

Let:
|φ(2)

2 〉 =
1
2
[
|0〉 ⊗ (|0′〉+ |1′〉) + |1〉 ⊗ (|2′〉+ |3′〉)

]
(12)

and:

|φ(2)
n,m〉

= (I2 ⊗Un,m)|φ(2)〉

=
1
2
[
|0〉 ⊗Un,m(|0′〉+ |1′〉) + |1〉 ⊗Un,m(|2′〉+ |3′〉)

]
=

1
2
[
|0〉(|m′〉+ in|(m⊕ 1)′〉) + |1〉(i2n|(m⊕ 2)′〉+ i3n|(m⊕ 3)′〉)

]
,

where m⊕ j denotes (m + j) mod 4 for j = 1, 2, 3.
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In this case, we have d = 2 and q = 2. Thus, the value of m = 0, 2. According to the
previous discussion of our construction of the maximally entangled basis and after a simple
calculation, we obtained that:

{|φ(2)
n,m〉

∣∣n = 0, 1, 2, 3; m = 0, 2} (13)

is a maximally entangled basis in C2 ⊗C4.
Suppose {|b0〉, |b1〉} is another basis in C2 and the transition matrix from {|0〉, |1〉} to

{|b0〉, |b1〉} is the Hadamard matrix:

1√
2

(
1 1
1 −1

)
. (14)

Then we have (
|b0〉
|b1〉

)
=

1√
2

(
1 1
1 −1

)(
|0〉
|1〉

)
. (15)

After a simple calculation, we obtain another maximally entangled basis in C2 ⊗C4:

|ψ′(2)n,m〉 =
1
2
[
|b0〉 ⊗Un,m(|0′〉+ |1′〉) + |b1〉 ⊗Un,m(|2′〉+ |3′〉)

]
, (16)

where n = 0, 1, 2, 3; m = 0, 2.
It is easy to check that the bases {|ψ′(2)n,m〉} and {|φ(2)

n,m〉} in C2 ⊗C4 are not mutually
unbiased. In order to obtain a mutually unbiased basis, we just need to match the above
states with some coefficients. That is, let:

|ψ(2)
n,m〉

=
1
2
[
|b0〉 ⊗Un,m(x0|0′〉+ x1|1′〉) + |b1〉 ⊗Un,m(x2|2′〉+ x3|3′〉)

]
=

1
2
[
|b0〉 ⊗ (x0|m′〉+ inx1|(m⊕ 1)′〉)

+ |b1〉 ⊗ (i2nx2|(m⊕ 2)′〉+ i3nx3|(m⊕ 3)′〉)
]
,

where n = 0, 1, 2, 3; m = 0, 2. As for the coefficients, we have the following four inequivalent
choices: 

x0
x1
x2
x3

 =


1
1
1
−1

,


1
−1
1
1

,


1
i
−1

i

or


1
−i
−1
−i

. (17)

Now, it is not difficult to prove that the basis B1 = {|φ(2)
n,m〉}m=0,2

n=0,1,2,3 and the basis B2 =

{|ψ(2)
s,t 〉}

t=0,2
s=0,1,2,3 are mutually unbiased. In other words, we have:∣∣∣〈φ(2)

n,m|ψ
(2)
s,t 〉
∣∣∣ = 1

2
√

2
, for any n, m, s, t. (18)

Let us choose another basis {|c0〉, |c1〉} in C2 as:(
|c0〉
|c1〉

)
=

1√
2

(
1

√
−1√

−1 1

)(
|0〉
|1〉

)
. (19)
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Thus, we obtain the following maximally entangled states:

|γ(2)
n,m〉

=
1
2
[
|c0〉 ⊗Un,m(y0|0′〉+ y1|1′〉) + |c1〉 ⊗Un,m(y2|2′〉+ y3|3′〉)

]
=

1
2
[
|c0〉 ⊗ (y0|m′〉+ iny1|(m⊕ 1)′〉)

+ |c1〉 ⊗ (i2ny2|(m⊕ 2)′〉+ i3ny3|(m⊕ 3)′〉)
]
,

where n = 0, 1, 2, 3; m = 0, 2. If we let the coefficients {y0, y1, y2, y3} be any four of
the following: 

y0
y1
y2
y3

 =


1
−1
−1
−1

,


1
1
−1
1

,


1
i
1
−i

or


1
−i
1
i

, (20)

then we obtain that the basis B1 = {|φ(2)
n,m〉}m=0,2

n=0,1,2,3 and the basis B3 = {|γ(2)
k,l 〉}

l=0,2
k=0,1,2,3 are

mutually unbiased. That is to say,∣∣∣〈φ(2)
n,m|γ

(2)
k,l 〉
∣∣∣ = 1

2
√

2
, for any n, m, k, l. (21)

To summarize this section, we need to explain that {B1,B2,B3} is not a mutually
unbiased maximally entangled basis in C2 ⊗C4. One can check this straightforwardly by
the definition of mutually unbiased bases that B2 and B3 are not unbiased. We found that
this is related to the selection of m. We hope that this will be helpful to the research of
mutually unbiased bases.

5. UMEBs in CCC2 ⊗⊗⊗ CCC5

In this section, we discuss a new construction of unextendible maximally entangled
bases (UMEBs) in C2 ⊗C5. Let {|0〉, |1〉} and {|0′〉, |1′〉, |2′〉, |3′〉, |4′〉} be the computational
bases in C2 and C5, respectively. We prove the following maximally entangled states form
of the UMEB in C2 ⊗C5:

|τn,0〉 =
1
2
[
|0〉(|0′〉+ in|1′〉) + |1〉(i2n|2′〉+ i3n|3′〉)

]
, (22)

|τn,2〉 =
1
2
[
|0〉(|2′〉+ in|3′〉) + |1〉(i2n|0′〉+ i3n|1′〉)

]
, (23)

where n = 0, 1, 2, 3.
We used reductio ad absurdum to prove the above statement. Suppose there exists an

extended maximally entangled state:

|η〉 = (X⊗Y)(a0|0〉 ⊗ |0′〉+ a1|1〉 ⊗ |1′〉), (24)

where X = (xij)2×2 and Y = (yij)5×5 are two unitary operators on C2 and C5 with respect
to the above bases. Then, for all n = 0, 1, 2, 3, we have:

〈τn,0|η〉 = 0, 〈τn,2|η〉 = 0. (25)

Let us compute these two equations in two steps.
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At first, by a direct computation, we have:

〈τn,0|η〉
=
[
〈0| ⊗ (〈0|+ 〈1|in) + 〈1| ⊗ (〈2|i2n + 〈3|i3n)

][
a0(X|0〉)⊗ (Y|0′〉) + a1(X|1〉)⊗ (Y|1′〉)

]
=a0〈0|X|0〉

[
(〈0′|+ 〈1′|in)Y|0′〉

]
+ a1〈0|X|1〉

[
(〈0′|+ 〈1′|in)Y|1′〉

]
+ a0〈1|X|0〉

[
(〈2′|i2n + 〈3′|i3n)Y|0′〉

]
+ a1〈1|X|1〉

[
(〈2′|i2n + 〈3′|i3n)Y|1′〉

]
= a0x11(y11 + iny21) + a1x12(y12 + iny22)

+ a0x21(i2ny31 + i3ny41) + a1x22(i2ny32 + i3ny42)

= 0.

Substitute n = 0, 1, 2, 3 into the above formula, we have the following four equations:

a0x11(y11 + y21) + a1x12(y12 + y22)

+ a0x21(y31 + y41) + a1x22(y32 + y42) = 0,
(26)

a0x11(y11 + iy21) + a1x12(y12 + iy22)

− a0x21(y31 + iy41)− a1x22(y32 + iy42) = 0,
(27)

a0x11(y11 − y21) + a1x12(y12 − y22)

+ a0x21(y31 − y41) + a1x22(y32 − y42) = 0,
(28)

a0x11(y11 − iy21) + a1x12(y12 − iy22)

− a0x21(y31 − iy41)− a1x22(y32 − iy42) = 0.
(29)

Combining the above equations, that is (26) ± (28) and (27) ± (29), respectively, after a
simplification, we obtain the following four equivalent equations:

a0x11y11 + a1x12y12 + a0x21y31 + a1x22y32 = 0, (30)

a0x11y21 + a1x12y22 + a0x21y41 + a1x22y42 = 0, (31)

a0x11y11 + a1x12y12 − a0x21y31 − a1x22y32 = 0, (32)

a0x11y21 + a1x12y22 − a0x21y41 − a1x22y42 = 0. (33)

Secondly, according to 〈τn,2|η〉 = 0, we have:

a0x11(y31 + y41) + a1x12(y32 + y42)

+ a0x21(y11 + y21) + a1x22(y12 + y22) = 0,
(34)

a0x11(y31 + iy41) + a1x12(y32 + iy42)

− a0x21(y11 + iy21)− a1x22(y12 + iy22) = 0,
(35)

a0x11(y31 − y41) + a1x12(y32 − y42)

+ a0x21(y11 − y21) + a1x22(y12 − y22) = 0,
(36)
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a0x11(y31 − iy41) + a1x12(y32 − iy42)

− a0x21(y11 − iy21)− a1x22(y12 − iy22) = 0.
(37)

Similarly, we obtain:

a0x11y31 + a1x12y32 + a0x21y11 + a1x22y12 = 0, (38)

a0x11y41 + a1x12y42 + a0x21y21 + a1x22y22 = 0, (39)

a0x11y31 + a1x12y32 − a0x21y11 − a1x22y12 = 0, (40)

a0x11y41 + a1x12y42 − a0x21y21 − a1x22y22 = 0. (41)

Let us denote:

M =


a0x11 a1x12 a0x21 a1x22
a0x21 a1x22 a0x11 a1x12
a0x11 a1x12 −a0x21 −a1x22
a0x21 a1x22 −a0x11 −a1x12

 (42)

and:

y(1) =


y11
y12
y31
y32

, y(2) =


y21
y22
y41
y42

. (43)

Then, the four equations (30), (32), (38), and (40) can be expressed as:

My(1) = 0. (44)

The other four equations (31), (33), (39), and (41) can be expressed as:

My(2) = 0. (45)

Based on the construction of the matrix M and X being a unitary matrix, we derived
that M is invertible, and we obtain:

y(1) = y(2) = 0. (46)

Thus, we know the determinant of matrix Y is equal to zero, which is a contradiction to
Y being a unitary matrix. Therefore, we proved that the eight states (22), (23) form an
unextendible maximally entangled basis.

6. Discussion and Conclusions

In this paper, we studied the construction of the MEBs in Cd ⊗Cd′ . We provided a
new construction of maximally entangled bases in Cd ⊗Cd′ when d is a divisor of d′ and
d′ ≥ 2d. We also constructed unextendible maximally entangled bases in Cd ⊗Cd′ when
d′ = qd + r, q, r ∈ Z, q ≥ 2, 0 < r < d. We studied the examples of maximally entangled
bases in C2 ⊗ C6, C3 ⊗ C6, C2 ⊗ C4, and C2 ⊗ C5, respectively. We found two pairs of
maximally entangled bases in C2 ⊗C4, which are mutually unbiased bases. In C2 ⊗C5, we
presented the eight-member unextendible maximally entangled basis. Our results will be
helpful in studying the properties of MEBs. These results may be also helpful for further
construction of unextendible bases and the research of quantum entanglement. We have not
yet found a way to obtain more MEBs that are mutually unbiased bases based on our new
construction. It would be interesting to investigate the relationships between the MUBs and
the MEBs constructed by our methods in quantum entanglement and quantum computing.
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