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Abstract: In this paper, we present a collision model to stroboscopically simulate the dynamics of
information in dissipative systems. In particular, an all-optical scheme is proposed to investigate the
information scrambling of bosonic systems with Gaussian environmental states. Varying the states
of environments, in the presence of dissipation, transient tripartite mutual information of system
modes may show negative value, signaling the appearance of information scrambling. We also find
that dynamical indivisibility based non-Markovianity plays dual roles in affecting the dynamics
of information.

Keywords: quantum open systems; quantum information

1. Introduction

In closed quantum systems, locally encoded information can spread into the nonlocal
degree of freedom under unitary transformation, which is referred to as information
scrambling. The occurrence of information scrambling in the system means that information
of the initial state cannot be completely accessed by any local operator after time evolution,
which also hints at information delocalization in quantum many-body systems. A quantum
system in which information becomes scrambled can be viewed as a quantum chaotic
system: a local operator grows under the time evolution to have large commutators with
almost all other operators in the system [1]. The most efficient scrambled system in nature
is the block hole. The Sachdev–Ye–Kitaev (SYK) model [2], a toy model of low-dimensional
quantum black holes, is also well-known in the field of condensed matter.

A well-known indicator for information scrambling is the out-of-time-order correlator
(OTOC) [3–6], which measures the overlap of operators in dynamics and is intimately
related to the Lyapunov exponent. The OTOC is not only widely used to investigate quan-
tum chaos [7–11], but also plays a dramatic role in characterizing phase transition [12–18]
and many-body localization [19–23]. Although the experimental realization of inverse
time evolution is challenging, the OTOC was still experimentally investigated in trapped
ions [24] and nuclear magnetic resonance quantum simulators [25].

Tripartite mutual information (TMI) provides an alternative path to study information
scrambling without inverse time evolution [26–29]. In [1], Hosur et al. introduced a map
from a unitary quantum channel to a state in a doubled Hilbert space through which
the OTOC and TMI were connected. Information scrambling can be characterized by
the negative value of TMI. It was used to study weak and strong thermalization [30],
information delocalization [29] and quantum frustration [31,32] in the past few decades.
Although TMI has the advantage of being operator-independent in witnessing information
scrambling, the exponentially increasing dimension of Hilbert space still limits further
investigation. An absolutely closed or isolated system does not exist in reality, and imperfect
experimental conditions and measurements always induce noisy environments. As a
consequence, studies on information scrambling in noisy systems have received much
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attention in recent years [33–39], and investigations on the dynamics of information in
dissipative systems are still desired.

In this paper, we utilize the collision model (CM) to tackle those problems in open
systems. By means of the CM, we can simulate considerable many-body interactions and
structure different noisy environments, Markovian and non-Markovian cases, to study the
non-Markovianity effect on information scrambling. The idea of CM is to represent the sys-
tem with a particle and the environment with an ensemble of identical particles. Continuous
interactions between the system and its environment are thus simulated by a sequence of
collision processes. If the system always collides with a fresh environmental particle at each
step, the information of the system irreversibly flows to the environment, which means that
the dynamics of the system is Markovian. On the other hand, if the system collides with en-
vironmental particles that contain the history of the information, the dynamics is considered
to be non-Markovian. Apart from works investigating non-Markovian dynamics [40–51],
CM was also used to study quantum synchronization [52], quantum steering [53], multipar-
tite dynamics [54], multipartite entanglement generation [55], quantum friction [56], and
thermodynamics [57–61], in particular for quantum thermometry [62,63]. A comprehensive
panorama of studies on CM can be found in [64]. Recently, the experimental realization of
CM for non-Markovian dynamics in all-optical systems was reported [65].

Here, we propose a feasible experimental scheme to implement the CM in an all-optical
network. This allows for us to simulate information dynamics of the continuous-variable
system. The all-optical network consisted of linear optical elements such as beam splitters
(BSs). In such a scheme, the system and environmental particles are represented by optical
modes in different optical paths. We consider a joint tripartite system composed of an
auxiliary mode A, and two system modes B and C. Moreover, B and C are subjected to indi-
vidual dissipative channels, while mode A is isolated. Initial information is locally encoded
in mode B. Interactions between different modes are realized through BSs. By modulating
the transmissivities (or reflectivities) of BSs, the dissipative channels of system modes can
be tuned from Markovian to non-Markovian cases. All input modes are restricted to be
Gaussian states. Non-Markovianity can be quantified by the degree of violation of dynami-
cal divisibility [66,67]. We adopted the TMI as the measure of information scrambling that
can be calculated through symplectic eigenvalues of the so-called covariance matrix [68,69].

In the presence of dissipation, before information is completely lost to the environment,
local information at the initial time spreads into the nonlocal Hilbert space during evolution
and cannot be collected by local operators. This phenomenon is referred to as information
scrambling, which can be indicated by negative values of TMI, and the physical significance
of a negative value of TMI is that information can simultaneously be nonlocally stored in
different subsystems. Focusing on Markovian (non-Markovian) dynamics, we find that the
non-Markovianity can indeed affect the time duration of information scrambling, but it is
not the key factor for the emergence of information scrambling. Our work may provide
sufficient theoretical support for experimental studies on information delocalization in
dissipative systems. A CM study on information scrambling in a many-body system with
local dissipation was proposed in [37]. Disorders, nonuniform interactions, and interplay
between nearest-neighbor interactions and local dissipation contributed to information
scrambling in a many-body system. In contrast, in this work, we concentrate on the roles of
dissipations for information scrambling in the absence of many-body effects.

The paper is organized as follows. In Section 2, we explain the idea of our CM and
the linear optical setup. Mathematical descriptions of our model are also introduced. In
Section 3, we give the derivation for the degree of non-Markovianity and TMI based on
our CM. We also present the regime of Markovian and non-Markovian channels in the
parameter space. In Section 4 we show the dynamics of the TMI with different initial states
and the temperature of environments for both Markovian and non-Markovian cases. The
study is summarized in Section 5.
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2. Collision Model

The considered system comprised three parts labeled A, B, and C that were considered
to be the auxiliary mode and system modes, respectively. Auxiliary mode A is isolated,
while system modes B and C interacted with each other and with their individual environ-
ments EB and EC. The dynamics of modes B and C could be investigated through the CM,
in which each system modes is represented by a particle, and environments are represented
by ensembles of identical particles. We labeled the j-th environmental particle of dissipative
channel EB(C)

j as j = 1, 2, . . . , L− 1. Intrasystem interaction was simulated by collisions
between particles B and C, while system–environment interactions were represented by
collisions between the corresponding system and environmental particles. As shown in
Figure 1, our CM works through the following collisions:

(1) Collision between B and C occurs.

(2) B and C individually collide with j-th environmental particles EB(C)
j .

(3) B and C collide with each other again.

(4) Environmental particles EB(C)
j interact with (j + 1)-th mode EB(C)

j+1 .

On the basis of Collisions 1–3, and repeating Collisions 4, 2, 3, the continuous dissi-
pative dynamics of the system could be stroboscopically simulated by this sequence of
collisions.
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Figure 1. (left) Collision route; (right) pictorial illustration of our model. There are two kinds of
optical modes. First, a system part consisting of A, B, and C, of which A and B are entangled, and A
is not involved in the evolution. The other is environment parts EB

j and EC
j , which are in dissipative

channel B and channel C, respectively. As the collision route shows, the whole process is divided into
four parts, and the dynamic process repeats Collisions 4, 2, 3 after Collisions 1–3 occur. (1) Collision
between B and C. (2) Collision between system parts and their own environment part. (3) Collision
between B and C. (4) Collision between environment parts. Collision can be realized by BS; pictorial
illustration shows orange BS is utilized to mix system modes B and C. Yellow BS is to mix system
mode and environmental mode. Blue and green BSs represent the mixture of two environmental
modes in each of their dissipative channels, B and C.

The considered CM could be realized in an all-optical network as shown in Figure 1.
In the all-optical scheme, the system and environmental particles could be described by the
different optical modes. The interaction between two arbitrary particles can be realized by
mixing the corresponding input modes through BS. Input and output modes were linked
by the so-called scattering matrix as follows:(

âout
1

âout
2

)
= S

(
âin

1

âin
2

)
, (1)
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where â and â† are the annihilation and creation operators of bosonic mode, respectively,
and S is the scattering matrix, which is given by

S =

(
r t
−t r

)
. (2)

where r = sin θ and t = cos θ are the reflectivity and transmissivity of the BS, respectively,
and θ ∈ [0, π/2] is the tuneable parameter. The reflectivity and transmissivity satisfied
r2 + t2 = 1. There were three types of collision in our CM: (i) Collision between B and C,
where the scattering matrix is labeled as SSS, and the parameter is θss. (ii) Collision between
B (C) and its environmental modes. We labelled the scattering matrix as SSEj , and the
parameter as θsej . We set the strengths of all collisions associated to SSEj to be identical, that
is, θsej = θse, ∀j and the corresponding reflectivity rsej = rse, ∀j and transmissivity tsej = tse
∀j. (iii) Collision between environmental modes. Ccattering matrix and parameter were
SEjEj+1 and θejej+1 . Here, we again set the strengths of all collisions associated to SEjEj+1
to be identical, that is, θejej+1 = θee, ∀j and corresponding reflectivity rejej+1 = ree, ∀j and
transmissivity tejej+1 = tee, ∀j.

In this paper, we restricted the input modes to be a subset of Gaussian states with zero
first moments. The linear optical elements in the CM always preserve the Gaussianity of the
input states and do not introduce the first moments. Moreover, we did not consider coher-
ent states as initial states because entanglement is undoubtedly an important condition for
observing information scrambling, but in the evolution of our current model, coherent states
did not produce entanglement. Meanwhile, compared with the other states, the squeezed
vacuum state as the initial state has the advantage of simplifying calculations. In this sense,
the network used here to realize the CM was recognized as Gaussian channels. In order to
simulate the time evolution of the system state, we used temporal index L to denote the times
of collisions of modes B and C in our CM. With the number of collisions increasing, new
optical modes were involved in the scattering matrix at each step. After L-times collision, the
input–output relation of optical modes is [âout

EB
L−1

, âout
EB

L−2
, . . . , âout

B , âout
A , âout

C , . . . , âout
EC

L−2
, âout

EC
L−1

]T =

S(L)[âin
EB

L−1
, âin

EB
L−2

, . . . , âin
B , âin

A , âin
C , . . . , âin

EC
L−2

, âin
EC

L−1
]T, where subscripts X = A, B and C repre-

sent the corresponding system modes, and EX
j (j = 1, 2, . . . , L− 1) denotes the j-th mode of

the environment of system X. Superscript T denotes the transpose of the vector (or matrix). As
shown in Figure 1, at the first step (L = 1), collision only happened between system modes, so
the total scattering matrix could be constructed by S(1) = SSS. In the next step, environmental
modes were involved in colliding with the corresponding system modes. Thus, the total scatter-
ing matrix for L = 2 was S(2) = SSSSSE1S(1)(here, the subscript of SSE1 denotes the scattering
matrix linked the system and the first mode of the corresponding environmental mode EB

1 and
EC

1 ). For L > 2, environment–environment collision was involved. As we mentioned before,
one the basis of the total scattering matrix for L = 2, repeating Collisions 4, 2, and 3 in order, the
total scattering matrix is given as follows:

S(L) =
L−2

∏
j=1

(
SSSSSEj+1SEjEj+1

)
S(2). (3)

Scattering matrices presented in Equation (3) are given by

SSS =


IL−1 0 0 0 0

0 rss 0 tss 0
0 0 1 0 0
0 −tss 0 rss 0
0 0 0 0 IL−1

, (4)



Entropy 2022, 24, 345 5 of 19

where IN is the N × N identity matrix

SSEj+1 =



IL−j−2 0 0 0 0 0 0 0 0
0 rB

se 0 −tB
se 0 0 0 0 0

0 0 Ij 0 0 0 0 0 0
0 tB

se 0 rB
se 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 rC

se 0 tC
se 0

0 0 0 0 0 0 Ij 0 0
0 0 0 0 0 −tC

se 0 rC
se 0

0 0 0 0 0 0 0 0 IL−j−2


, (5)

where the superscript of reflectivity (transmissivity) indicates the corresponding dissipative
channel and

SEjEj+1 =



IL−j−2 0 0 0 0 0 0
0 rB

ee −tB
ee 0 0 0 0

0 tB
ee rB

ee 0 0 0 0
0 0 0 I2j+1 0 0 0
0 0 0 0 rC

ee tC
ee 0

0 0 0 0 −tC
ee rC

ee 0
0 0 0 0 0 0 IL−j−2


. (6)

3. Formalism
3.1. Characteristic Function of Gaussian State

Since input modes were restricted to be Gaussian states, and the channel was Gaussian
in the CM, it was convenient to describe the state in characteristic function formalism [70].
For a given quantum state with density matrix ρ, the corresponding characteristic function
is given by χ[λ] = tr[ρD(λ)], where D(λ) is the Weyl displacement operator having the
form of D(λ) = exp(λâ† − λ∗ â).

In our model, information was initially encoded in system mode B through the en-
tanglement between B and auxiliary mode A. Our goal was to investigate how localized
information spreads over system BC. The entangled state of modes A and B was set
to be two-mode squeezed vacuum state (TMSV) |TMSV(ξ)〉 = Ŝ(ξAB)|0〉A|0〉B. Vector
|0〉 represents the vacuum state, and Ŝ(ξAB) is the two-mode squeezing operator given
as follows:

Ŝ(ξAB) = exp
(

1
2

ξ∗AB âA âB −
1
2

ξAB â†
A â†

B

)
, (7)

where ξAB = rABeiφAB is the squeezing parameter, rAB is the squeezing strength, φAB is
the squeezing angle. Meanwhile, system mode C was initialized in a generic single-mode
squeezed vacuum state, which is expressed as |ξC〉 = exp ( 1

2 ξ∗C â2
C −

1
2 ξC â†2

C )|0〉. Therefore,
the joint characteristic function of modes A, B, and C is given by

χin
ABC(~µ) = exp

(
µAµB + µ∗Aµ∗B

2
sinh ξAB

)
× exp

(
−|µA|2 + |µB|2

2
cosh ξAB

)
× exp

(
−|µC|2

2
cosh ξC +

e−iφc µ2
C + eiφc

(
µ∗C
)2

2
sinh ξC

)
,

(8)

where ξC = rCeiφC is the squeezing parameter of the system, and φC is the squeezing angle
of C mode. For simplicity, we set squeezing parameter ξAB of the TMSV state to be real.
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On the other hand, each environmental mode was in generic single-mode Gaussian

state ρEj(nEj , ξEj , αEj), where nEj is the thermal mean photon number, ξEj = rEj e
iφEj is the

squeezing parameter of environmental mode, φEj is the rotating angle, and αEj is complex
displacement [71]. The corresponding characteristic function is given as follows:

χin
Ej

(
µEj

)
= exp

[
−XEj |µEj |

2 − 1
2

(
Y∗Ej

µ2
Ej
+ YEj µ

∗2
Ej

)
+ ZEj µ

∗
Ej
− Z∗Ej

µEj

]
. (9)

where X ,Y, and Z are related to the properties of the Gaussian state. The specific forms
can be obtained as

XEj =

(
nEj +

1
2

)
cosh

(
2rEj

)
,

YEj = −
(

nEj +
1
2

)
sinh

(
2rEj

)
e

iφEj ,

ZEj = αEj . (10)

For conciseness, we omitted the notation of B and C in Equations (9) and (10). Consequently,
the total characteristic function of the system and environmental modes can be described by

χin
J (~µ) =

L−1

∏
j=1

χin
j (~µEB

j
)× χin

ABC(~µABC)×
L−1

∏
j=1

χin
j (~µEC

j
), (11)

where ~µ = [~µEB ,~µABC,~µEC ] is a vector of variables corresponding to environmental
modes EB, joint system modes, and environmental modes EC. The reduced character-
istic function for the modes of interest could be obtained by simply setting the vari-
ables associated to the remaining modes in ~µ to be zero [72]. For instance, by setting
~µ = [0, · · · , 0, µA, µB, µC, 0, · · · , 0] in Equation (11), we could recover the characteristic
function for the system modes, i.e., Equation (8). With the use of the scattering matrix in
Equation (3), the input–output relation for the characteristic functions is given by

χout
J (~µ) = χin

J (S−1~µ). (12)

The covariance matrix and the characteristic function were equivalent in describing
the properties of Gaussian states with a null vector of first moments. In particular, it is very
convenient to quantify the measure of non-Markovianity of a Gaussian channel and TMI in
Gaussian states in terms of a covariance matrix. For a single-mode characteristic function,
the covariance matrix is its second moment, and elements are defined by

σml =
1
2
〈x̂m x̂l + x̂m x̂l〉 − 〈x̂m〉〈x̂l〉, (m, l = 1, 2), (13)

where 〈·〉 is the expectation value. We defined x̂1 = (âj + â†
j )/
√

2 and x̂2 = (âj − â†
j )/
√

2i.
Symmetrically ordered moments can be calculated through the single-mode characteristic
function as follows:

tr
{

ρ
[
(â†

m)
p âq

l

]
symm

}
= (−1)q ∂p+q

∂µ
p
m∂µ

∗q
l

χ(µ)
∣∣∣
µ=0

. (14)

For a N-mode Gaussian state, the corresponding covariance matrix is 2N-dimensional.
According to Equations (12)–(14), the covariance matrix for modes A, B and C when
environmental states are fixed is

σABC =

 σA σAB σAC

σT
AB σB σBC

σT
AC σT

BC σC

, (15)
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where σx (x = A, B, C, AB, AC, BC) is a 2 × 2 matrix. The details of those covariance
matrices are given in the Appendix A.

3.2. Non-Markovianity of Dissipative Channel

An all-optical network can be considered to be a quantum channel that evolves input
states into output states. A quantum channel is non-Markovian if the memory effect
is present. Usually, non-Markovianity is characterized by two routes: one is based on
information backflow in the time evolution of a quantum system [73,74], and the other
is based on the degree of the violation of the divisibility of dynamical maps [66,67]. In
particular, the nonzero backflow of information is a sufficient (not necessary) condition for
the indivisibility of a dynamical map [75,76]. In this work, we adopted the measure of
non-Markovianity for Gaussian channels proposed by Torre et al. in [67].

In our CM, modes B and C (although they interacted to each other) were subjected to
individual and identical environments EB

j and EC
j , respectively. Our goal was to investigate

the effects of EB
j and EC

j on the dynamics of initially encoded information in B. With this
goal in mind, we first characterized non-Markovianity for the dissipative channels of C
(results are shown in Equation (23)). Then, we attached such (identical) channels to B
and C.

In order to characterize the non-Markovianity of the dissipative channel for mode
C, we constructed a scattering matrix denoted by S̃E(L) for a simplified model consisting
of only mode C and its environmental modes EC

j . The specific form of S̃E(L) is given as
follows:

S̃E(L) =
L−2

∏
j=1

(
S̃SEj S̃EjEj+1

)
S̃SE1 , (L ≥ 2) (16)

where

S̃SEj+1 =


rse 0 tse 0
0 Ij 0 0
−tse 0 rse 0

0 0 0 IL−j−2

, (17)

and

S̃EjEj+1 =


Ij 0 0 0
0 ree tee 0
0 −tee ree 0
0 0 0 IL−j−2

. (18)

Similarly, the scattering matrix for the model that consisted of only channel B and its
environmental modes EB

j could be obtained by altering transmissivity tee → −tee and
tse → −tse.

We could derive the characteristic function of mode C and its environmental modes by
setting ~µ = [0, · · · , 0, µC, µEC

1
, · · · , µEC

L−1
] in Equation (11).The input–output relation for the

characteristic function of dissipative channel C can be given as χout
C,EC = χin

C,EC (S̃−1
E ~µC,EC ),

where ~µC,EC = [µC, µEC
1

, · · · , µEC
L−1

]. According to Equations (13)-(14), we could obtain
the input and output covariance matrices of mode C. For the Gaussian channel based
on the covariance matrices, the input–output relation of mode C after L steps could be
re-expressed as σout,L

C = EL
[
σin

C
]
. Dynamical map EL was always completely positive and

trace-preserving (CPT), and could be formally split as

EL = ΦL,L−1 ◦ EL−1, (19)
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where ◦ indicates the composition of superoperators. When ΦL,L−1 was CPT for all L, the
dynamics is divisible and Markovian. Conversely, when ΦL,L−1 is non-CPT for some values
of L, the dynamics is indivisible and non-Markovian. In our model, the output covariance
matrix of mode C took the following form:

σout,L
C = XLσin

C X T
L + YL, (20)

where XL and YL are 2× 2 real matrices. The following matrix was introduced:

ΛL = YL,L−1 −
i
2

Ω +
i
2
XL,L−1ΩX T

L,L−1, (21)

with XL,L−1 = XLX−1
L−1, YL,L−1 = YL − XL,L−1YL−1X T

L,L−1, and Ω = [0, 1;−1, 0] is the
single-mode symplectic matrix. The forms of matrices of XL and YL could be found in
previous work by one of the authors in [48]. The CPT was preserved when ΛL ≥ 0, and the
dynamical map was non-CPT when ΛL < 0, which meant that all negative eigenvalues
of ΛL contributed to the non-CPT of one-step evolution dynamical map ΦL,L−1. Along
this line, as proposed by Torre et al. in [67], the non-Markovianity of the channel based on
dynamical indivisibility could be quantified by

N (L) = ln

(
L−2

∑
j=1

∑
k=±

|λj,k| − λj,k

2

)
, (22)

where λj,k is eigenvalues of matrix ΛL. Quantity N (L) was always positive and semidefi-
nite, and the dynamics is Markovian when N (L) = 0. After some tedious algebra in our
specific model, eigenvalues of ΛL were calculated by

λj,± = ln

((
XE ±

1
2

√
|YE|2 + 1

)[
1−

c2
1,1(L)

c2
1,1(L− 1)

])
, (23)

where XE and YE, as given in Equation (10), are related to the properties of environmental
state, and c1,1(L) is the element of matrix S̃E(L) at the first row and first column.

Once scattering matrix S̃E(L) had been constructed, and environmental states had
been fixed, eigenvalues λj,± were determined and not related to the properties of the
initial system state. In our CM, the dissipative channels for modes B and C were identical,
which means that (i) scattering matrices for the same collision had the same coefficients of
reflectivity; (ii) environmental states for B and C were the same. Thus, we could simplify
the calculation of non-Markovianity by only considering the dissipative channel for mode
C. The same results applied to the channel of mode B.

Figure 2 shows non-Markovianity in the θee-θse plane for vacuum environmental state.
By modulating the corresponding transmission angles, the channel could be tuned from
Markovian to non-Markovian. For θee/π = 0.5, the act of environment–environment
collision was a complete reflection, which implies that information exchange between old
and new environmental modes was forbidden. The old and new environmental modes did
not interfere each other. As a consequence, the system could not restore lost information
from the new environmental mode. The dynamics was always Markovian regardless of
θse/π. In contrast, small values of θse and θee meant high transmissivity of BSs. Although
information was likely to leak into the environment, lost information was largely likely to
flow back into the system via environment–environment collisions. High transmissivity
had a positive effect on improving the degree of non-Markovianity.
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Figure 2. Non-Markovianity in θse-θee plane for the case of environmental states being vacuum states
with L = 50.

In addition, collision processes being fixed meant that the scattering matrix was
unchanged. The boundary of Markovian and non-Markovian regions does not change if
the vacuum environmental state is only replaced with generic Gaussian states. The degree
of non-Markovianity of generic Gaussian states can be calculated as follows [48]:

NG(L) = (2nE + 1) cosh(2rE)Nvac(L), (24)

where Nvac is non-Markovianity in the case of the vacuum state as the environmental state.
NG(L) is zero if and only if Nvac(L) = 0. This supports our previous conclusions: the
boundary of Markovian and non-Markovian regions did not change.

3.3. Tripartite Mutual Information

In order to witness the delocalization of information during the time evolution of the
system state, we adopted TMI as the indicator of information scrambling. For our specific
model, TMI regarding auxiliary and system modes was defined as

I3(A : B : C) = I2(A : B) + I2(A : C)− I2(A : BC). (25)

In the right-hand side of Equation (25), quantity I2 is the bipartite mutual information (BMI)
between auxiliary mode and system modes. BMI quantifies total correlations between two
partitions, and the expression of BMI is defined as follows:

I2(A : X) = S(ρA) + S(ρX)− S(ρAX), (26)
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with X = B, C and BC. Here, S(ρX) = −tr[ρX ln ρX ] is the von Neumann entropy of the
reduced density matrix for mode X. Alternatively, von Neumann entropy for a single-mode
Gaussian state ρ could be obtained as follows:

S(ρ) =
N

∑
k=1

f (νk), (27)

where f (x) =
(

x + 1
2

)
ln
(

x + 1
2

)
−
(

x− 1
2

)
ln
(

x− 1
2

)
and νk are the symplectic eigen-

values of the covariance matrix associated to ρ [68,69].
The negative value of TMI was a diagnostic of quantum information scrambling.

This can be understood as follows. According to Equation (25), negative TMI means
that correlation between auxiliary mode and joint system modes is more than the sum of
correlations between the auxiliary modes to each system mode, namely, global information
about A embedded in the joint system could not be accessed by local measurements on
each system mode.

4. Results and Discussions

In this section, we discuss the information dynamics in system modes that interact
with their environmental modes. We first considered the dynamics of the joint auxiliary and
system modes in the absence of environment. In this case, the joint system (consisting of
modes A, B and C) was closed, and TMI was always zero during the dynamics governed by
interactions between the system modes. This implies that the amount of information about
A encoded in the joint part BC was equivalent to that in local parts B and C. However,
when system–environment interactions were switched on, the interplay between unitary
evolution and dissipation led to rich phenomena in the dynamics.

4.1. Markovian Case

In this section, we focus on the Markovian dynamics of TMI. We consider the case of
environmental modes B and C being identical. Environmental modes are prepared in the
three following types:

1. vacuum state: n
EB(C)

j
= 0, r

EB(C)
j

= 0 and α
EB(C)

j
= 0;

2. squeezed same state: squeezed vacuum states with identical squeezing angles n
EB(C)

j
=

0, r
EB(C)

j
6= 0, φ

EB(C)
j

= const.;

3. squeezed alternative state: Squeezed vacuum states with the squeezed directions
of neighboring modes being perpendicular to each other n

EB(C)
j

= 0, r
EB(C)

j
6= 0,

φ
EB(C)

j
= π for odd index j and φ

EB(C)
j

= 0 for even index j.

Without loss of generality, we set the parameter of BSs between modes B and C to be
θss = 0.4π. Figure 3 shows the dynamics of TMI. Parameters of BSs were set to be θ

B(C)
se

= θ
B(C)
ee = 0.35π to achieve a Markovian channel. For any choice of environmental state,

the TMI always asymptotically approached zero in the long-term limit (at large L), which
implied that information was eventually lost to the environment. At the early stage of the
evolution, however, TMI showed damping oscillations. In particular, for the vacuum and
squeezed alternative states, TMI became negative, implying the presence of information
scrambling. This can be interpreted as the input vacuum and squeezed states or squeezed
states with perpendicular squeezing directions becoming entangled by passing through
the BS.

Figure 3a shows that the squeezed same environmental state seemed to always prevent
information from being delocalized. For this case, mode C was prepared in the squeezed
vacuum state with the same squeezing angle to its environment. In order to investigate
the origin of information scrambling, we examined the effect of different squeezing angles
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between mode C and environmental modes. We defined the difference as δφ = φ
EB(C)

j
− φC,

and show the time evolution of TMI for different δφ in Figure 3b. As δφ increased, there
was a crossover from all positive to negative transient TMI during time evolution. The
minimal negative transient TMI appeared when the angle difference was δφ = π, i.e., the
squeezing angles of mode C and environments were perpendicular to each other.

0 10 20 30 40 50 60
-0.3

0

0.3

 I
3
(A

,B
,C

)
(a)

 vaccum  squeezed-same  squeezed-alternative

0 10 20 30 40 50 60

 L

-0.3

0

0.3

 I
3
(A

,B
,C

)

(b)
 =0  = /6  = /3  =2 /3  =

Figure 3. L dependence of TMI for various environmental states. Auxiliary mode is first entangled
with system mode B via two-mode squeezed state with ξAB = 1, the system is in squeezed vacuum
state with ξC = 1, and tuneable parameters of BSs are θss = 0.4π and θB

se = θC
se = θB

ee = θC
ee = 0.35π.

(a) Environmental modes are in vacuum state, squeezed same states with all squeezing angles are
φ

EB(C)
j

= 0, ∀j and squeezed alternative states with perpendicular squeezing direction between

neighbors, φ
EB(C)

j
= π for odd index j and φ

EB(C)
j

= 0 for even index j. Squeezing strengths of

environmental parts are r
EB(C)

j
= 0.5. (b) For squeezed same environmental states, the properties of

TMI change with phase difference δφ = φ
EB(C)

j
− φC. Squeezing strengths of environmental parts are

r
EB(C)

j
= 0.5.

So far, we discussed the case in which mode C was a squeezed state. Since mode B
was entangled with the auxiliary mode A in TMSV state, the reduced state of mode B was a
thermal state with effective photon number sinh2 ξAB. We focused on whether unbalanced
states in system modes affected the appearance of information scrambling. With this goal
in mind, we set mode C to be a thermal state that was identical to the reduced state of mode
B, and investigated the time evolution of TMI. The result is shown in Figure 4. Even if the
states of modes B and C were effectively identical to each other and not entangled through
the BS, transient TMI may be negative during evolution, implying that dissipation was
responsible for information scrambling. In addition, the squeezing angle of environmental
states did not change the value of TMI.
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Figure 4. L dependence of TMI for squeezed same environmental states with different squeezing
angles. System mode C is in thermal state with nC = sinh2 ξAB. Squeezing parameters of system are
ξAB = 1, and squeezing strengths of environment are r

EB(C)
j

= 0.5. Transmission angles of collisions

are θss = 0.4π, θ
B(C)
se = θ

B(C)
ee = 0.35π.

4.2. Non-Markovian Case

In this section, we discuss the effect of the non-Markovianity of channels on informa-
tion scrambling. We explored the difference of information dynamics in the non-Markovian
case. As mentioned in Section 3.2, the non-Markovianity of channels can be switched
on by tuning parameters θse and θee of BSs. Once parameter θse is fixed, the degree of
non-Markovianity decreases with θee and vice versa. Here, we set system mode C to be in
a squeezed vacuum state, and the environmental modes in the vacuum state.

Figure 5 shows the time evolution of BMI and TMI for fixed θse and θee. Figure 5a,c
show that, as θee increased, the decay of BMI between auxiliary mode and joint system
modes became faster, meaning that the encoded information is leaking out into the environ-
ment. This is because the larger θee the less information gained by the new environmental
mode through environment–environment collision, and consequently less information
is flowing back to the system. Nevertheless the information could still flow back to the
system which is revealed by the nonmonotonic decay of BMI at the early stage of the time
evolution. Correspondingly, the TMI also oscillates before the encoded information in the
system modes is completely lost.

In contrast, as shown in Figure 5b, when the parameter θee is fixed, the decay rate of
BMI becomes larger as θse decreases. The behavior of TMI shows the similar trends. It is
counterintuitive that the strong non-Markovianity speeds up the leaking of information.
We interpret this point by considering that non-Markovianity is measured by the indivisi-
bility of dissipative channel. Indeed, the negative eigenvalues become smaller (or say the
absolute value become larger) as θse decreasing which indicate the strong non-Markovianity,
meanwhile, the reflectivity of BS between C and environmental modes is however getting
smaller which facilitate the lost of information from system mode.
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Figure 5. L dependence of BMI and TMI for states of dissipative channel being vacuum state

with θss = 0.4π. (a,c) Dynamics of BMI and TMI with different transmission angle θ
B(C)
ee when

θ
B(C)
se = 0.25π. (b,d) Dynamics of BMI and TMI with different θ

B(C)
se when θ

B(C)
ee = 0.2π.

Another way to tune the degree of non-Markovianity of the channel is to change the
states of environmental modes. According to Equation (24), non-Markovianity is amplified
as the the effective photon number of environmental thermal state increasing. In Figure 6a,
we show the time-evolution of BMI and TMI for different nE. The transient value of both
BMI and TMI was proportional to the effective photon number as shown in the inset of
Figure 6b. In this case, non-Markovianity only quantitatively modified the time evolution
of information.

The degree of non-Markovianity can thus indeed affect the dynamics of information,
but there was no explicit relationship between the presence of non-Markovianity and the
occurrence of information scrambling in our CM.



Entropy 2022, 24, 345 14 of 19

0 10 20 30 40 50 60
0

0.5

1

1.5

 I
2
(A

,B
C

)

(a)
 n

E
 = 1

 n
E
 = 3

 n
E
 = 5

 n
E
 = 8

 n
E
 = 10

0 10 20 30 40 50 60

 L

-0.06

-0.04

-0.02

0

 I
3
(A

,B
,C

)

(b)

1 3 5 8 10
 n

E

-0.04

-0.02

0

 I
3
(A

,B
,C

)

 L = 9

Figure 6. The L dependence of BMI and TMI with the environment part being different thermal

states with the thermal mean number n in fixed transmission angle θ
B(C)
se = 0.3π and θ

B(C)
ee = 0.15π.

Transmission angle θss = 0.4π.

5. Summary

In summary, we proposed an all-optical scheme to simulate the CM. By virtue of the
characteristic function formalism, we were able to deal with a large number of bosonic
modes and take the interactions between different modes into account. We considered cases
in which system and environmental modes are in various Gaussian states. We investigated
the stroboscopic evolution of information, which was initially encoded to one of the system
modes via entangling it with an auxiliary mode in a three-mode system in the presence of
dissipations.

By varying the parameters of BSs in the all-optical network, the dissipative channel can
be tuned from Markovian into non-Markovian. In the Markovian case, if the system mode
is prepared in the squeezed vacuum state, vacuum and squeezed alternative environmental
states may scramble information during the dynamics. When the environment was a
squeezed same state, there was a crossover from the absence to the presence of information
scrambling by changing the difference of squeezing angles between system modes and
environmental modes. We also investigated the case in which two system modes were
effectively equivalent in terms of thermal states. Results revealed that the occurrence of
information scrambling is induced by dissipation instead of unbalanced system states.
In the non-Markovian case, non-Markovianity could indeed affect the time evolution of
information; however, there was no explicit relationship between the non-Markovianity of
the channels and the appearance of information scrambling in our CM.

Thanks to high stability, the arbitrary control of transmissivity, modular nature, and
flexible scalability, the all-optical platform could be utilized to simulate Gaussian boson
sampling [77–80], Anderson localization [81], quantum walk [82], and quantum state
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transfer [83,84]. Recently, temporal steering was utilized as another potential candidate for
witnessing information scrambling [85].The experimental realization of temporal steering
in the framework of CM is an intriguing perspective.
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Appendix A

In this appendix, we show the specific forms of Equation (15) where matrix elements
σX are two-dimensional matrices. The detailed forms of the diagonal matrix elements are
given as follows:

σA =
1
2

(
cosh(ξAB) 0

0 cosh(ξAB)

)
, (A1)

σB =

(
αB + βB γB

γB αB − βB

)
, (A2)

σC =

(
αC + βC γC

γC αC − βC

)
, (A3)

Specific forms of elements in Equations (A2) and (A3) are

αB(C) =
1
2

(
cosh(ξAB)|cL,k|2 + cosh(ξC)|cL+2,k|2

)
+

1
2

[
L−1

∑
w=1

(
cosh(2rEB

w
) +

(
nEB

w
+

1
2

))
|cw,k|2

]

+
1
2

[
2L+1

∑
z=L+3

(
cosh(2rEC

z−L−2
) +

(
nEC

z−L−2
+

1
2

))
|cz,k|2

]

βB(C) =
1
4

sinh(ξC)
(

c∗2L+2,k + c2
L+2,k

)
+

1
2
<
(

L−1

∑
w=1

sinh(2rEB
w
)e

iφEB
w c∗2w,k +

2L+1

∑
z=L+3

sinh(2rEC
z
)e

iφ
EC

z−L−2 c∗2z,k

)

γB(C) =
1
4i

sinh(ξC)
(

c∗2L+2,k − c2
L+2,k

)
+

1
2
=
(

L−1

∑
w=1

sinh(2rEB
w
)e

iφEB
w c∗2w,k +

2L+1

∑
z=L+3

sinh(2rEC
z−L−2

)e
iφ

EC
z−L−2 c∗2z,k

)

where ci,j expresses the matrix element in the i-th row and j-th column of S−1(L), and the
matrix is given in the main text. Subscript k varies with subscript B(C) of αB(C), βB(C) and
γB(C); k = L is for subscript B, and k = L+ 2 is for subscript C. ξAB and ξC are the squeezed
parameters of joint system AB and system part C, respectively. For the environmental
part, n

EB(C)
j

, r
EB(C)

j
, and φ

EB(C)
j

are the thermal mean photon number, squeezed strength, and

squeezed angle of the j-th environmental state in the dissipative channel B(C), respectively.
Off-diagonal matrix elements are governed in the following form:

σAB =
sinh(ξAB)

2

(
<(c∗L,L) =(c∗L,L)

=(c∗L,L) −<(c∗L,L)

)
, (A4)



Entropy 2022, 24, 345 16 of 19

σAC =
sinh(ξAB)

2

(
<(c∗L,L+2) =(c∗L,L+2)

=(c∗L,L+2) −<(c∗L,L+2)

)
, (A5)

σBC =
1
2

(
K + M P + Q
P−Q K + M

)
, (A6)

with matrix elements in a general form:

K = <
(
cosh(ξAB)cL,Lc∗L,L+2 + cosh(ξC)cL+2,Lc∗L+2,L+2

)
+<

[
L−1

∑
w=1

(
cosh(2rEB

w
) +

(
nEB

w
+

1
2

))
cw,Lc∗w,L+2

]

+<
[

2L+1

∑
z=L+3

(
cosh(2rEC

z−L−2
) +

(
nEC

z−L−2
+

1
2

))
cz,Lc∗z,L+2

]
M = sinh(ξC)<

(
c∗L+2,Lc∗L+2,L+2

)
+<

(
L−1

∑
w=1

sinh(2rEB
w
)e

iφEB
w c∗w,Lc∗w,L+2 +

2L+1

∑
z=L+3

sinh(2rEC
z−L−2

)e
iφ

EC
z−L−2 c∗z,Lc∗z,L+2

)
P = sinh(ξC)=

(
c∗L+2,Lc∗L+2,L+2

)
+=

(
L−1

∑
w=1

sinh(2rEB
w
)e

iφEB
w c∗w,Lc∗w,L+2 +

2L+1

∑
z=L+3

sinh(2rEC
z−L−2

)e
iφ

EC
z−L−2 c∗z,Lc∗z,L+2

)

Q =
1
2
=
(
cosh(ξAB)cL,Lc∗L,L+2 + cosh(ξC)cL+2,Lc∗L+2,L+2

)
+

1
2
=
[

L−1

∑
w=1

(
cosh(2rEB

w
) +

(
nEB

w
+

1
2

))
cw,Lc∗w,L+2

]

+
1
2
=
[

2L+1

∑
z=L+3

(
cosh(2rEC

z−L−2
) +

(
nEC

z−L−2
+

1
2

))
cz,Lc∗z,L+2

]
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