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Abstract: In this paper, a novel fractional-order discrete map with a sinusoidal function possessing
typical nonlinear features, including chaos and bifurcations, is proposed. Firstly, the basic properties
involving the stability of the equilibrium points and the symmetry of the map are studied by
theoretical analysis. Secondly, the dynamics of the map in commensurate-order and incommensurate-
order cases with initial conditions belonging to different basins of attraction is investigated by
numerical simulations. The bifurcation types and influential parameters of the map are analyzed via
nonlinear tools. Hopf, period-doubling, and symmetry-breaking bifurcations are observed when a
parameter or an order is varied. Bifurcation diagrams and maximum Lyapunov exponent spectrums,
with both a variation in a system parameter and an order or two orders, are shown in a three-
dimensional space. A comparison of the bifurcations in fractional-order and integral-order cases
shows that the variation in an order has no effect on the symmetry-breaking bifurcation point. Finally,
the heterogeneous hybrid synchronization of the map is realized by designing suitable controllers. It
is worth noting that the increase in a derivative order can promote the synchronization speed for the
fractional-order discrete map.

Keywords: a fractional-order discrete map; chaos; bifurcation; synchronization

1. Introduction

In the last few years, the study of discrete chaotic systems has been a point of discussion
in the fields of control and secure communication. Two principal reasons for this attention
are the chaotic nature and the discrete nature of these kinds of systems. The chaotic nature
seems random but is, indeed, completely determined and can be predicted when the initial
conditions are known. The discrete nature allows for simple implementation and reduced
computational complexity. Therefore, many typical discrete chaotic maps are presented,
such as the Logistic map, the Hénon map, and the Lozi map [1–5].

It is well known that fractional calculus plays a crucial role in many areas, such as elec-
tric fields, population inversion, electromagnetic fields, and secure communication [6–10].
In 1989, Miller and Ross first introduced the υ order fractional sum and the fractional
integral as a fractional sum [11]. Indeed, the first fractional-order maps were derived from
fractional differential equations [12]. The new dynamical properties of the fractional-order
dynamical systems were revealed [13]. Due to further research, more attention has been
paid to the fractional discrete chaotic systems which involve the discrete fractional cal-
culus [14–17]. Compared with the continuous fractional calculus, the discrete ones can
avoid the tedious information and calculation error of the numerical discretization result on
account of the non-local property of the operator [18]. Such dynamical systems described
by fractional difference equations are related to several areas, including viscoelasticity,
electrochemistry, diffusion processes, automatic control, and power electronics [19–25].

A discrete chaotic map involving fractional calculus has complex dynamics. Further-
more, it is not only sensitive to a small disturbance in parameters and initial conditions, but
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also to the change in fractional orders [26]. Therefore, fractional-order discrete maps, with
simple forms and rich dynamics, are more suitable for data encryption and secure commu-
nication [27–29]. To this end, the study of a new fractional-order discrete map is necessary
and important for the development of fractional calculus and dynamics. Recent reports
discuss subjects including: the novel convenient condition for the stability of fractional-
order difference systems in the incommensurate-order case [30]; the complex dynamics in
the discrete memristor-based system with fractional-order difference [31]; the chaos and
projective synchronization of a fractional-order difference map with no equilibria [32]; and
the rich dynamical characteristics of a new fractional-order, 2D discrete chaotic map [33].
These works mainly focus on the stability, dynamics, bifurcation, and synchronization
of fractional-order discrete maps. Moreover, the multistability and coexisting bifurcation
phenomena also exist in fractional chaotic maps [34–36] which have many applications
in chaotic-based engineering. The maps with the characteristic of multistability change
the steady state of small disturbances on the initial conditions. Therefore, determining the
steady state of a dynamical system with a certain condition is a challenge to the theoretical
analysis and the numerical simulation. However, there are very few reports about the effect
of the derivative order on the symmetry-breaking bifurcation point and synchronization
speed for a fractional-order discrete map.

In [37,38], a new two-dimensional sinusoidal discrete map is proposed by nonlinearly
coupling a sinusoidal map with a cubic map. The research results show that the map
possesses complex dynamics, including chaos, symmetry-breaking, and Hopf bifurcations.
Based on these results, we want to know whether these complex dynamics still exist in the
corresponding fractional mode of the map. We know that the order is a very important
parameter for a fractional-order system, which is remarkably different from an integral-
order system. The effect of the order on the dynamics is necessary for the development and
the application of fractional calculus.

Inspired by the aforementioned research background, this paper presents a novel
fractional-order discrete map with a sinusoidal function possessing typical nonlinear
features, including chaos and bifurcations. The basic properties of the map, such as its
stability and symmetry, are studied based on theoretical analysis. The bifurcation types and
influential parameters for the map are investigated via nonlinear tools. The heterogeneous
hybrid synchronization of the map is realized.

2. Discrete Fractional Calculus

In this section, the definitions and theories relating to discrete fractional calculus
will be recalled. In the rest of the paper, the symbol C∆υ

a X(t) means the υ order frac-
tional calculus in the sense of Caputo type delta for a function X(t) : Na → R with
Na = {a, a + 1, a + 2, · · · } [39]. This can be described as follows:

C∆υ
a X(t) = ∆a

−(n−υ)∆nX(t) =
1

Γ(n− υ)

t−(n−υ)

∑
s=a

(t− s− 1)(n−υ−1)∆n
s X(s), (1)

where υ /∈ N represents the derivative order, t ∈ Na+n−υ, and n = dυe+ 1, the υ fractional
sum of ∆n

s X(t) in (1) is defined as

∆a
−υX(t) =

1
Γ(υ)

t−υ

∑
s=a

(t− s− 1)(υ−1)X(s) (2)

where t ∈ Na+υ and υ > 0 [40]. The symbol t(υ) means the falling function, which can be
denoted according to the Gamma function Γ as

t(υ) =
Γ(t + 1)

Γ(t + 1− υ)
(3)
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The numerical solutions for a fractional-order discrete map can be obtained via the
following method. For a fractional difference equation [41]{C∆υ

a x(t) = f (t + υ− 1, x(t + υ− 1)),
∆kx(a) = xk.n = dυe+ 1, k = 0, 1, 2, · · · , n− 1,

(4)

we can obtain the equivalent discrete integral one

x(t) = x0(t) +
1

Γ(υ)

t−υ

∑
s=a+n−υ

(t− s− 1)(υ−1) f (s + υ− 1, x(s + υ− 1)), t ∈ Na+n, (5)

where x0(t) =
n−1
∑

k=0

(t−a)(k)

Γ(k+1) ∆kx(a).

The following theorem is frequently used to estimate the stability of a zero equilibrium
point for a fractional discrete map. For the proof of the theorem, please refer to the
literature [42].

Theorem 1. The zero equilibrium of a linear fractional discrete system:

C∆υ
a X(t) = MX(t + υ− 1), (6)

here X(t) = (x1(t), x2(t), · · · , xn(t))
T, 0 < υ ≤ 1, M ∈ Rn×n and ∀t ∈ Na+1−υ, is asymptoti-

cally stable if

|λi| <
(

2 cos
|argλi| − π

2− υ

)υ

and |argλi| >
υπ

2
, i = 1, 2, · · · , n (7)

For all the eigenvalues λ of M.

Here, we will give the definitions of commensurate-order and incommensurate-order
fractional-order systems.

Definition 1. For a fractional-order system, which can be described by C∆υ
a = f (x(t)), where

x = (x1, x2, · · · , xn)
T is the state vector, υ = (υ1, υ2, · · · , υn)

T is the fractional derivative orders
vector, and υi > 0. The fractional-order system is a commensurate-order system when all the
derivative orders satisfy υ1 = υ2 = · · · = υn; otherwise, it is an incommensurate-order system [43].

3. A Fractional-Order Discrete Sinusoidal Map
3.1. Description of the Map

The two-dimensional discrete map proposed in [37,38] can be described by the follow-
ing equations: {

x(n + 1) = sin(πy(n)),
y(n + 1) = c(1− x2(n))y(n),

(8)

where x(n), y(n) are the state variables and c is a parameter. We can easily determine the
first-order difference of (8), which is formulated as{

∆x(n) = x(n + 1)− x(n) = sin(πy(n))− x(n),
∆y(n) = y(n + 1)− y(n) = c(1− x2(n))y(n)− y(n).

(9)

The corresponding fractional-order discrete map is{C∆υ
a x(t) = sin(πy(t− 1 + υ))− x(t− 1 + υ),

C∆υ
a y(t) = c(1− x2(t− 1 + υ))y(t− 1 + υ)− y(t− 1 + υ),

(10)
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which is determined by using the Caputo-like delta difference with the starting point a.
Based on Equations (4) and (5), we can obtain

x(t) = x(a) + 1
Γ(υ)

t−υ
∑

s=a+1
(t− s− 1)(υ−1)(sin(πy(t− 1 + υ))− x(t− 1 + υ)),

y(t) = y(a) + 1
Γ(υ)

t−υ
∑

s=a+1
(t− s− 1)(υ−1)(c(1− x2(t− 1 + υ))y(t− 1 + υ)− y(t− 1 + υ)),

(11)

where (t−s−1)(υ−1)

Γ(υ) means the discrete kernel function, and (t−s−1)(υ−1)

Γ(υ) = Γ(t−s)
Γ(υ)Γ(t−s−υ+1) .

Therefore, the numerical solution of (10) is
x(n) = x(a) + 1

Γ(υ)

n
∑

j=1

Γ(n−j+υ)
Γ(n−j+1) (sin(πy(j− 1))− x(j− 1)),

y(n) = y(a) + 1
Γ(υ)

n
∑

j=1

Γ(n−j+υ)
Γ(n−j+1) (c(1− x2(j− 1))y(j− 1)− y(j− 1)).

(12)

In this paper, the low limit a is fixed as 0.

3.2. Symmetry and Stability of Equilibrium Points

The fractional-order Map (10) is symmetric because the transformation S : (x, y)→ (−x,−y)
holds, which permits the map invariant for all values of the parameters with the transfor-
mation. For this reason, all attractors of the map will appear in mutually symmetric pairs.
This exact symmetry represents an important feature which demonstrates the occurrence
of multiple co-existing stable states in the state space [44].

In the following, the stability of the equilibrium points of the map will be studied.
Through simple computation, we can cause Map (10) to have only one equilibrium point
E1(0, 0) when c ≤ 1, and two equilibrium points E2,3(±

√
1− 1/c,± 1

π arcsin
√

1− 1/c)
when c > 1. E2 and E3 are symmetric with respect to the origin E1 and, thus, share the
same stability property. The Jacobian matrix of the map evaluated at any equilibrium point
E∗ = (x∗, y∗) is computed as follows:

J1 =

[
−1 π cos πy∗

−2cx∗y∗ c(1− x∗2)− 1

]
The eigenvalues corresponding to the equilibrium point E1(0, 0) are λ1 = −1, λ2 = c− 1.

Only the case of Map (10) with real parameters is considered in this paper. According to
Theorem 1, the zero equilibrium point E1 is unstable due to |argλ1| = 0 < υπ

2 .
For a zero equilibrium point of fractional-order discrete maps, the stability can be

determined based on Theorem 1. For a non-zero equilibrium point, a very simple method
presented in [18] can be used to handle it. For further details about the method, please refer
to Remark 2.5 in the literature [18].

To study the stability of the non-zero equilibrium points E2,3, we let x2 =
√

1− 1
c ,

y2 = 1
π arcsin

√
1− 1

c , x3 = −
√

1− 1
c , y3 = − 1

π arcsin
√

1− 1
c , and introduce the following

variables, transforming{
z21(t− 1 + υ) = x(t− 1 + υ)− x2, z22(t− 1 + υ) = y(t− 1 + υ)− y2,
z31(t− 1 + υ) = x(t− 1 + υ)− x3, z32(t− 1 + υ) = y(t− 1 + υ)− y3.

Two new maps with zero equilibrium points are obtained:{C∆υ
a(z21(t) + x2) =

C∆υ
a z21(t) = sin(πz22(t− 1 + υ) + y2)− z21(t− 1 + υ)− x2,

C∆υ
a(z22(t) + y2) =

C∆υ
a z22(t) = c(1− (z21(t− 1 + υ) + x2)

2)(z22(t− 1 + υ) + y2)− z22(t− 1 + υ)− y2,
(13)

and
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{C∆υ
a(z31(t) + x3) =

C∆υ
a z31(t) = sin(πz32(t− 1 + υ) + y3)− z31(t− 1 + υ)− x3,

C∆υ
a(z32(t) + y3) =

C∆υ
a z32(t) = c(1− (z31(t− 1 + υ) + x3)

2)(z32(t− 1 + υ) + y3)− z32(t− 1 + υ)− y3,
(14)

which correspond to E2,3, respectively. For Maps (13) and (14), the Jacobian matrixes
evaluated at the zero equilibrium point are

J2 =

[
−1 π cos(πy2)

−2cx2y2 c(1− x2
2)− 1

]
and J3 =

[
−1 π cos(πy3)

−2cx3y3 c(1− x3
2)− 1

]
By simple calculation, we can obtain the eigenvalues of J2

λ3,4 =
c
2
±
√

c(cx24 − 2cx22 − 8πx2y2 cos(πy2)) + c− cx2
2 − 2

2
,

and the eigenvalues of J3

λ5,6 =
c
2
±
√

c(cx34 − 2cx32 − 8πx3y3 cos(πy3)) + c− cx3
2 − 2

2
.

From the above results, we can see that the stability of the equilibrium points strongly
depends on the parameter c. If c = 2.5 and υ = 0.98, the eigenvalues are λ3,5 = −0.5 +
1.3858i, and λ4,6 = −0.5− 1.3858i. Based on Theorem 1, we can obtain

|argλi| = 1.9171 >
υπ

2
= 1.5379, i = 3, 4, 5, 6,

|λi| = 2.0736 >

(
2 cos

|argλi| − π

2− υ

)υ

= 0.7285, i = 3, 4, 5, 6,

which implies that the equilibrium points E2,3 are unstable.

4. Dynamics of the Fractional-Order Discrete Map
4.1. The Commensurate-Order Case

In this subsection, dynamics of Map (10) in commensurate-order case with different
parameters and initial conditions will be studied.

Firstly, the parameter c is fixed as 2.5 and two initial conditions are taken as
IN1 = (0.2, 0.2) and IN2 = (−0.2,−0.2); the attractors of the map are depicted in Fig-
ure 1 as the derivative order υ varies. The intervals x ∈ [−1, 1] and y ∈ [−1, 1] are taken as
the reference region. From this, it can be seen that the map has two mutually symmetric
fixed points in the reference region when υ = 0.5. The two points follow a Hopf bifurcation
and give rise to a pair of limit cycles when υ increases to 0.7; this can be seen in Figure 1a,b.
The map has two symmetric six-period attractors for υ = 0.8, evident in Figure 1c. As
the order increases further to 0.99, the route to chaos of the map is the period-doubling
bifurcation. Furthermore, we can see that the two symmetric single-scroll chaotic attractors
approach each other gradually in the reference region (Figure 1d,f). It is worth pointing out
that the merger of two attractors, however, cannot be observed even though υ = 0.99. The
bifurcation diagrams and the corresponding maximum Lyapunov exponent spectrum, with
respect to υ, are depicted in Figure 2. Each bifurcation diagram in the figure shows plots
of local maxima of the map coordinate x in terms of υ, where blue and red diagrams are
produced with the initial conditions IN1 and IN2, respectively. Hopf and period-doubling
bifurcations can also be verified by Figure 2a. The maximum Lyapunov exponent spec-
trums, which represent the qualitative properties of dynamics, coincide with each other for
IN1 and IN2, as shown in Figure 2b. It clearly shows the change from period to chaos of
Map (10) as the order varies.
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Figure 1. Phase diagram of the map as the order increases from 0.5 to 0.99 with IN1 and IN2.
(a) υ = 0.5; (b) υ = 0.7; (c) υ = 0.8; (d) υ = 0.89; (e) υ = 0.9; (f) υ = 0.99.

Figure 2. Bifurcation diagrams and maximum Lyapunov spectrum of Map (10) with the variation in
the order υ when c = 2.5: (a) the bifurcation diagrams with IN1 and IN2; (b) the corresponding maxi-
mum Lyapunov spectrum. Blue and red diagrams are produced by scanning the order downwards
starting with IN1 and IN2.

Secondly, the order υ = 0.95 is fixed and the bifurcation diagrams and maximum
Lyapunov exponent spectrum versus c with IN1 and IN2 are plotted in Figure 3. From
Figure 3a we can see that a positive solution branch (blue) in the bifurcation diagram
is corresponding to the positive initial condition IN1, while a negative solution branch
(red) is corresponding to the negative initial condition IN2. The map stabilizes at the
equilibrium point E1 when −1 ≤ c < 1. A typical symmetry-breaking bifurcation occurs
when c = 1. The maximum Lyapunov exponent spectrum in Figure 3b, showing certain
chaotic and periodic features, is consistent with the bifurcation diagrams in Figure 3a. Here,
the maximum Lyapunov exponent is computed based on the Jacobian matrix algorithm for
discrete fractional maps [45].
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Figure 3. Bifurcation diagrams and maximum Lyapunov spectrum of Map (10) as the parameter
c varies when υ = 0.95: (a) the bifurcation diagrams with IN1 and IN2; (b) the corresponding
maximum Lyapunov spectrum. Blue and red diagrams are produced with the initial conditions IN1
and IN2, respectively.

Thirdly, the dynamics of the map with the variation in both c and υ is studied. The
change in the range of c is −2.5 ≤ c ≤ 2.5, and that of the order υ is 0.6 ≤ υ ≤ 0.99.
The corresponding bifurcation diagrams and maximum Lyapunov exponent spectrums
in three-dimensional space are depicted in Figure 4 with IN1 and IN2. From Figure 4a,b,
it can be seen that the dynamics of Map (10) with the variation in c becomes regular as υ
decreases to 0.6, and complex as υ increases to 0.99. The qualitative behavior of the map
can be reflected by the maximum Lyapunov exponent spectrums in Figure 4c.

Figure 4. Bifurcation diagrams and maximum Lyapunov exponent spectrums in a three-dimensional
space with different initial values as the parameter c and the order υ vary: (a) the bifurcation
diagram with IN1; (b) the bifurcation diagram with IN2; (c) the corresponding maximum Lyapunov
exponent spectrums.

Finally, in this case, we focus on the dynamics of the map with integral-order. The
bifurcation diagram of the map versus the parameter c with IN1 and IN2 is shown in
Figure 5a. The corresponding maximum Lyapunov exponent spectrum is depicted in
Figure 5b. Thus, it is evident that the qualitative properties of the dynamics of the map is
similar to the case of the fractional-order one. The typical symmetric-breaking bifurcation
can also be observed when c = 1, which means that the increase in the order does not affect
the bifurcation point of the symmetric-breaking bifurcation. Comparing Figure 3a with
Figure 5a, we can see that the notable difference is that the bifurcation point of the map
from period-2 to the fixed point E1 is slightly greater than c = −1 when υ < 1, and equal
to c = −1 when υ = 1. In this case, it implies that the order affects the bifurcation point.
Therefore, the results demonstrate that the order is a very important bifurcation parameter
which affects the dynamics of the map.
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Figure 5. Bifurcation diagrams and maximum Lyapunov spectrum of the Map (10) as the parameter
c varies when υ = 1: (a) the bifurcation diagrams with the IN1 and IN2; (b) the corresponding
maximum Lyapunov exponent spectrum.

4.2. The Incommensurate-Order Case

In this subsection, the dynamics of Map (10) in incommensurate-order case with
different parameters and initial conditions will be investigated. The incommensurate-order
case of Map (10) can be written in the following form:{C∆υ1

a x(t) = sin(πy(t− 1 + υ1))− x(t− 1 + υ1),
C∆υ2

a y(t) = c(1− x2(t− 1 + υ2))y(t− 1 + υ2)− y(t− 1 + υ2),
(15)

where υ1 and υ2 denote the derivative orders.
Firstly, the bifurcation and maximum Lyapunov exponent spectrum of Map (15) versus

υ1 with IN1 and IN2 when υ2 = 1 and c = 2.5 are plotted in Figure 6, which reflects the
effect of order υ1 on the dynamics of the map. It is clear that periodic and chaotic windows
appear alternately with the variation in υ1. Secondly, the bifurcation and corresponding
maximum Lyapunov exponent spectrum of Map (15) versus υ2 are depicted in Figure 7.
It can be observed that the route to chaos of the map is a typical Hopf bifurcation. The
period-doubling bifurcations and chaotic windows appear alternately with the variation
in υ2. Finally, the change intervals of υ1 and υ2 are set as 0.65 ≤ υ1 ≤ 1 and 0 ≤ υ2 ≤ 1,
respectively. Bifurcations of Map (15), with the variation of two orders, are shown in a
three-dimensional space, evident in Figure 8a,b. It can be observed from the maximum
Lyapunov exponent spectrums in Figure 8c that the chaotic region becomes larger and
chaos intensity strengthens.

Figure 6. Bifurcation diagrams and maximum Lyapunov spectrum of Map (15) as the order υ1 varies:
(a) the bifurcation diagrams with IN1 and IN2; (b) the corresponding maximum Lyapunov spectrum.



Entropy 2022, 24, 320 9 of 14

Figure 7. Bifurcation diagrams and maximum Lyapunov spectrum of Map (15) as the order υ2 varies:
(a) the bifurcation diagrams with IN1 and IN2; (b) the corresponding maximum Lyapunov spectrum.

Figure 8. Bifurcation diagrams and maximum Lyapunov exponent spectrums in a three-dimensional
space with different initial values as υ1 and υ2 vary: (a) the bifurcation diagram with IN1; (b) the
bifurcation diagram with IN2; (c) the corresponding maximum Lyapunov exponent spectrums.

Through a comparison of the map with those in [31–36], we can see that it has a typical
symmetry, which may cause the symmetry-breaking bifurcation as a parameter varies.
Meanwhile, the coexisting attractors also exist in the fractional chaotic map. In the aspect
of algorithms, the bifurcation diagrams and the maximum Lyapunov exponent spectrums,
in a three-dimensional space, give a clear presentation of the dynamics with the variation
in a parameter and an order.

5. Heterogeneous Hybrid Synchronization

In this section, the heterogeneous hybrid synchronization of Map (10) will be investigated.
A fractional discrete Lorenz map studied in [46] is taken as the drive system, which is

given by the following fractional equations:{C∆υ
a x1(t) = γδx1(ω)− δy1(ω)x1(ω),

C∆υ
a y1(t) = δ(−y1(ω) + x1

2(ω)),
(16)

here 0 < υ < 1. The Map (16) has a chaotic attractor when γ = 1.25, δ = 0.75 and υ = 0.98.
The controlled Map (10) is as follows:{C∆υ

a x2(t) = sin(πy2(ω))− x2(ω) + u1(ω),
C∆υ

a y2(t) = c(1− x2
2(ω))y2(ω)− y2(ω) + u2(ω),

(17)

where u1(ω) and u2(ω) are the hybrid synchronization controllers. The error state vari-
ables are defined as e1(t) = x2(t) − x1(t), ey(t) = y2(t) + y2(t). If the two error state
variables tend to zero as t→ ∞ , Maps (16) and (17) are synchronized. It should be men-
tioned that e1(t)→ 0 means the state variables x1(t) and x2(t) are synchronized, and



Entropy 2022, 24, 320 10 of 14

e2(t)→ 0 means state variables y1(t) and y2(t) are anti-synchronized. Therefore, the mode
of synchronization of Maps (16) and (17) is hybrid.

The following theorem is given to ensure that the synchronization between the two
maps can be realized.

Theorem 2. The two Maps (16) and (17) are synchronized if the controllers are designed as follows:{
u1(ω) = x1(ω)− sin(πy2(ω)) + γδx1(ω)− δy1(ω)x1(ω),
u2(ω) = −c(1− x2

2(ω))y2(ω)− δ(−y1(ω) + x1
2(ω))− y1(ω).

(18)

Proof. By simple calculation, we can obtain the error dynamical system{C∆υ
a e1(t) = sin(πy2(ω))− x2(ω)− γδx1(ω) + δy1(ω)x1(ω) + u1(ω),

C∆υ
a e2(t) = c(1− x2

2(ω))y2(ω)− y2(ω) + δ(−y1(ω) + x1
2(ω)) + u2(ω).

(19)

By substituting the Controller (17) into (18), the error dynamical system can be simplified
as the following form: {C∆υ

a e1(t) = −e1(ω),
C∆υ

a e2(t) = −e2(ω).
(20)

For convenience of analysis, (20) is rewritten in the compact form

C∆υ
a(e1(t), e2(t)) = N× (e1(ω), e2(ω))T, (21)

where N =

[
−1 0
0 −1

]
. It is clear that the eigenvalues of the matrix N satisfy the

following stability condition:

|λi| <
(

2 cos
|argλi| − π

2− υ

)υ

and |argλi| >
υπ

2
, i = 1, 2 (22)

Therefore, the zero equilibrium point of (20) is globally, asymptotically stable according
to Theorem 1, which implies that the hybrid synchronization between Maps (16) and (17)
is realized. �

The numerical simulation results are depicted in Figure 9. The system parameters of
the two maps are fixed as γ = 1.25, δ = 0.75, b = 2.2, c = 0.95, and the order is υ = 0.98 in
the numerical simulation. The initial conditions of (16) and (17) are (x10, y10) = (0.1, 0.1)
and (x20, y20) = (0.2, 0.2), respectively. It can be seen that the error state variables e1 and
e2 converge to zero rapidly as n increases (Figure 9a,b). In Figure 9c,d, the corresponding
state variables of the maps are synchronized under the Controllers (18).

Furthermore, the synchronization of Maps (16) and (17) with the same controllers
and different orders (υ= 0.98,0.9, 0.8, 0.7, 0.6, 0.5) is also analyzed, evident in Figure 10.
Comparing the results in the case of υ = 0.98, we find that the error state variables e1 and
e2 need more time to converge to zero when the order decreases from 0.98 too. It can be
concluded that the increase in the order will promote the synchronization speed of the
Map (10).
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Figure 9. The simulation results for the synchronization of the map when υ = 0.98 with the variation
in n: (a) the error state variable e1; (b) the error state variable e2; (c) the state variables x1, x2; (d) the
state variables y1, y2.

Figure 10. The error state variables of synchronization with different values of order: (a) the error
state variable e1; (b) the error state variable e2.

6. Discussion

A novel fractional-order discrete map with a sinusoidal function is presented. Typical
nonlinear features, including chaos and bifurcations, of the map are analyzed. The basic
properties involving the stability of the equilibrium points and symmetry of the map are
studied by theoretical analysis. The dynamics of the map in commensurate-order and
incommensurate-order cases are investigated. The bifurcation types and influential param-
eters for the map are analyzed via bifurcation diagrams and maximum Lyapunov exponent
spectrums. Hopf, period-doubling, and symmetry-breaking bifurcations are observed
when a system parameter is varied. The bifurcation diagrams and maximum Lyapunov
exponent spectrums, with both a variation in a system parameter and a derivative order or
two orders, are shown in a three-dimensional space. The results indicate that the variation
in the order has no effect on the symmetry-breaking bifurcation point. The heterogeneous
hybrid synchronization of the map is realized by designing suitable controllers. Numerical
simulations are carried out to verify the effectiveness of the controllers.
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It is worth noting that an order of a fractional-order system is a very important
parameter. For the map studied in the paper, the increase in the derivative order has no
effect on the symmetry-breaking bifurcation point but can promote the synchronization
speed. These results are important for the application of the fractional-order discrete
sinusoidal map in encryption and secure communication. This is due to the fact that
the rich dynamics of the map will increase the security of transmission signals. It lays a
good foundation for the future analysis or engineering application of the fractional-order
discrete map.

The influence of the order on the symmetry-breaking bifurcation point and synchro-
nization speed is proved by the results of the fractional-order discrete sinusoidal map.
However, its generalization for all the fractional-order maps is pending further research.
The main reasons are the complex forms and rich dynamics of fractional-order discrete
maps. Therefore, to establish the universality of the conclusion is one of our next aims.
Furthermore, it is well known that global dynamics can obtain the main characteristics of a
system from a global perspective and it is very important for practical application. Further
work will consider the analysis of global dynamics for a fractional-order discrete map and
try to apply it to synchronization control.
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