Article

An Edge Server Placement Method Based on
Reinforcement Learning

Fei Luo (U, Shuai Zheng !, Weichao Ding 1'*, Joel Fuentes 2

check for
updates

Citation: Luo, F; Zheng, S.; Ding, W.;
Fuentes, J.; Li Y. An Edge Server
Placement Method Based on
Reinforcement Learning. Entropy
2022, 24,317. https://doi.org/
10.3390/e24030317

Academic Editors: Jaroslaw
Krzywanski, Karolina Grabowska,
Marcin Sosnowski and Dorian
Skrobek

Received: 29 December 2021
Accepted: 18 February 2022
Published: 23 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Yong Li *

School of Information Science and Engineering, East China University of Science and Technology,
Shanghai 200237, China; luof@ecust.edu.cn (F.L.); jesse2017315@gmail.com (S.Z.)

Department of Computer Science and Information Technologies, Universidad del Bio-Bio,
Chillan 3780000, Chile; jfuentes@ubiobio.cl

Correspondence: weich@ecust.edu.cn (W.D.); yongli@ecust.edu.cn (Y.L.)

Abstract: In mobile edge computing systems, the edge server placement problem is mainly tackled
as a multi-objective optimization problem and solved with mixed integer programming, heuristic or
meta-heuristic algorithms, etc. These methods, however, have profound defect implications such as
poor scalability, local optimal solutions, and parameter tuning difficulties. To overcome these defects,
we propose a novel edge server placement algorithm based on deep g-network and reinforcement
learning, dubbed DQN-ESPA, which can achieve optimal placements without relying on previous
placement experience. In DQN-ESPA, the edge server placement problem is modeled as a Markov
decision process, which is formalized with the state space, action space and reward function, and
it is subsequently solved using a reinforcement learning algorithm. Experimental results using
real datasets from Shanghai Telecom show that DON-ESPA outperforms state-of-the-art algorithms
such as simulated annealing placement algorithm (SAPA), Top-K placement algorithm (TKPA), K-
Means placement algorithm (KMPA), and random placement algorithm (RPA). In particular, with
a comprehensive consideration of access delay and workload balance, DQN-ESPA achieves up to
13.40% and 15.54% better placement performance for 100 and 300 edge servers respectively.

Keywords: edge computing; markov decision process; reinforcement learning; access delay; work-
load balance

1. Introduction

Mobile cloud computing is the combination of cloud computing and mobile comput-
ing to bring rich computational resources to end mobile users, network operators, and
cloud computing providers. It has also become one of the new hotspots of the mobile
Internet services, where problems such as network overload /underload uplink and down-
link arise between the cloud and the mobile devices [1]. Mobile edge computing (MEC)
addresses these problems by localizing communication, storage and computing resources
near the user side, and providing resources with lower network latency and reduced
network congestion.

MEC and important parts of its related research have been focused on performance
improvements for task offload [2—4], service migration [5-7], and quality-of-service (QoS)
prediction [8]. Most of the published work consider the premise that the location of
edge server has been previously determined, without considering edge server placement.
However, improper edge server placement may cause some edge servers to be overloaded
or underloaded [9-11], which leads to a QoS decrease. In the contrast, a reasonable edge
server placement scheme can provide edge servers more balanced workloads, and can also
make the overall delay lower, achieving better QoS for users [12,13].

Currently, the edge server placement problem (ESPP) is mainly approached by trans-
forming it into a multi-objective optimization problem, which is further solved by mixed

Entropy 2022, 24, 317. https:/ /doi.org/10.3390/e24030317

https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24030317
https://doi.org/10.3390/e24030317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7062-4404
https://orcid.org/0000-0003-0517-1231
https://doi.org/10.3390/e24030317
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24030317?type=check_update&version=1

Entropy 2022, 24, 317

2 of 14

integer programming, heuristic algorithms or meta-heuristic algorithms [11,12,14]. How-
ever, these methods have profound limitations and performance implications. For instance,
mixed integer programming cannot solve large-scale problems in a limited time [13].
Heuristic algorithms depend on their specific problem models, and it is easy to fall into lo-
cal optimal solutions. Meta-heuristic algorithms are not easily reusable due to a significant
amount of problem-specific parameter tuning [15].

Different from the above methods, this paper proposes a novel edge server placement
algorithm based on deep reinforcement learning, dubbed DQN-ESPA. First, the ESPP is
modeled as a Markov decision process (MDP), where the goal is to balance edge server
workloads and minimize the access delay between the mobile user and edge server. Then,
reinforcement learning is applied to find the optimal solution. Specifically, an agent
continuously learns online and improves its placement decisions through a trial-and-error
learning scheme. The introduction of a deep neural network (DNN) helps to deal with
the exponential growth of states and actions when exploring optimal control in high-
dimensional spaces, known as the curse of dimensionality [16].

The main contributions of this paper can be summarized as follow:

¢ A new solution model is proposed for the ESPP based on MDP and reinforcement
learning. In this model, location sequences of edge servers are modeled as states,
decisions of move direction of edge servers are modeled as actions, and the negative
access delay and standard deviation of workloads are modeled as rewards. By maxi-
mizing the cumulative long-term reward, the ESPP can be solved by the reinforcement
learning algorithm.

* Anedge server placement algorithm based on deep g-network (DQN), named DQN-
ESPA, is proposed to solve the ESPP by combining a deep neural network and a
Q-learning algorithm.

The remainder of this paper is organized as follows. Related work is presented
in Section 2. The ESPP is modeled in Section 3, which abstracts the edge computing
architecture into a network structure composed of users, base stations and edge servers.
The details of DQN-ESPA algorithm are described in Section 4. In Section 5, experiments
are carried out and the performance of the proposed algorithm is evaluated with the other
state-of-date algorithms. Finally, conclusions are drawn and the directions of future work
are presented in Section 6.

2. Related Work

To meet the requirements of high resource utilization and small network delay, the
ESPA selects an appropriate geographical location for the edge server in MEC. For conve-
nience and consistency, edge devices with rich computing and storage resources, such as
the roadside units (RSUs), cloudlets and the MEC edge servers, are uniformly called as
edge servers [17].

Classical approaches have been used for the ESPP, such as the K-Means placement
algorithm (KMPA) [18], the Top-K placement algorithm (TKPA) and the Random placement
algorithm (RPA) [12,19]. Taking the network coverage and deployment cost as optimization
indexes, Liang et al. [20] studied the deployment of RSUs in a two-dimensional vehicle
network using linear programming. Wang et al. [21] introduced the concept of centrality in
social networks into the deployment of RSUs, and proposed a method of RSUs deployment
based on centrality. First, the RSUs deployment problem was abstracted into a linear
programming problem, and then the RSUs problem was transformed into a 0-1 knapsack
problem. Compared to the random deployment method, the efficiency of RSUs deployment
was significantly improved. At present, a large number of research activities on RSUs place-
ment are mainly from the perspective of communications [20,22-24], while less attention is
paid to the demand of computing resources for vehicle applications. Premsankar et al. [25]
considered the placement of RSUs from two aspects of network coverage and computing
resources, and solved the placement problem of RSUs using mixed integer programming.
Zhang et al. [14] put forward an asynchronous particle swarm optimization algorithm to op-

Entropy 2022, 24, 317

3of 14

timize the RSUs deployment from the perspective of positioning accuracy and deployment
cost, hoping to use the least RSUs to obtain the best vehicle positioning accuracy.

Some approaches on the optimal configuration of cloudlets were also studied. Ma et al.
studied in [9] the problem of cloudlet placement in large-scale wireless metropolitan area
networks. By abstracting the problem of cloudlet placement into the problem of integer
linear programming, and considering the limitation that integer linear programming
cannot solve the large-scale problem, the algorithm of k-medoids was used to solve the
problem of cloudlets” placement. Xu et al. [10] considered the placement of cloudlets with
different computing resources, and proposed a fast and effective heuristic algorithm to
minimize access delay. Authors in [11] considered the impact of user’s dynamic request on
cloudlet placement, adopting approximate and iterative algorithms to obtain the optimal
placement scheme. Observing that the deployment cost was not considered in some studies,
Fan et al. [26] established a linear programming model by considering both the deployment
cost and the access delay.

In view of the strategies and configuration used in the problems listed above, subse-
quent research focused on workload balance [27] or access delay [28-30]. Zhao et al. [12]
placed edge servers comprehensively considering both the workload balance and the access
delay. By constructing the placement as a multi-objective optimization problem, they solved
the placement of edge servers through mixed integer planning. Subsequently, Guo et al.
[13] proposed an approximation algorithm based on K-means and mixed integer quadratic
programming. From the perspective of minimizing the number of edge servers deployed
and QoS requirements, Zeng et al. [31] utilized the simulated annealing algorithm and the
greedy placement algorithm, named as SAPA.

Considering the ESPP in particular, the described work have either used mixed in-
teger programming algorithms, heuristic algorithms, and/or meta-heuristic algorithms.
However, different problems arise for various scenarios commonly found in MEC, i.e.
mixed integer programming algorithms cannot solve large-scale problems in a limited time;
heuristic algorithms rely on specific problem models and easily to fall into the local optimal
solution; meta-heuristic algorithms require high levels of parameter-tuning.

Reinforcement learning is commonly used to solve sequence decision-making prob-
lems and find the optimal strategy by maximizing long-term rewards [32]. In edge comput-
ing, it has been used to solve task offloading and resource allocation problems [4,33-35].
To the best of our knowledge, there are no studies on edge server placement in MEC
environments using reinforcement learning. Therefore, this paper proposes a model and
algorithm to solve the ESPP using reinforcement learning, providing users with lower
latency and more balanced workload among edge servers. Typical comparison algorithms
are used to demonstrate the superiority of the proposed algorithm in sequential decision-
making circumstances, such as SAPA, KPMA, TKPA and RPA. Especially, as a variant
of top-k algorithms, the bubble-sort algorithm is implemented in the TKPA experiments
for comparison.

3. System Model

In this section we introduce the MEC model, which simplifies the edge computing
architecture into a network structure consisting of users, base stations and edge servers.
Then, a detailed description of the ESPP is provided. Additionally, we formalize the
workload balance model and access delay, which will be used to evaluate the performance
of the proposed algorithm.

3.1. MEC Model

In order to reduce the delay and solve the user’s limited processing capacity, MEC
migrates the computing and storage capability from the remote data center to the network
edge close to the user. In the mobile edge computing environment, the edge computing
system model can be defined as an undirected graph G = (V, E), which contains users,
base stations and edge servers. As it is shown in Figure 1, bs; represents a base station, es;

Entropy 2022, 24, 317

4 of 14

represents an edge server and md; represents a mobile device. The mobile device forwards
the request to the edge server through the base station, and the edge server returns the
processed result to the mobile device through the base station. The set of points in the
undirected graph G is represented by V. V.= B U S, where B is the set of base stations and
S is the set of edge servers placed in candidate locations. E is the set of connected edges
between the base station and the edge server in G. User requests are forwarded to the
appropriate edge server nearby through the base station, and the edge server returns the
processed results to the user.

() ()

bs, bs,

((p)

=3
)

bs
) <(<7))> (@)
E A/esi ‘ < md,

E md» bss €52

Figure 1. Edge computing system model.

3.2. Problem Description

In an edge computing system, all edge servers and base stations are represented by
(S, B), where S = {s1,s,...,5m } represents a set of m edge servers. B = {by,by,..., by}
represents a set of n base stations. The workload of each base station b; is represented as
w;, and the distance between the base station b; and the edge server s; is represented as
d(b;,s;j). In order to simplify the problem, five assumptions are given as follows.

1. Eachedge server ishomogeneous and has the same processing and storage capabilities.

2. Let the set of base stations covered by each edge server be B;, the set of base stations
covered by each edge server does not intersect, i.e., B; N B; = &. The union of the set
of base stations covered by all edge serversis B=)", B; .

3. Anedge server is placed next to a base station, and n base stations have n positions.

Only one edge server can be placed in each location.

5. Each edge server is only responsible for processing requests uploaded by base stations
within the signal coverage, and each base station within the signal coverage of each
edge server can only forward requests to the edge server.

=

m edge servers are placed in the location set L with m locations through the placement
strategy, where L = {l1,15,..., I }. Therein, I; represents the placement location of the
edge server s;, which minimizes the delay and workload balance of the entire system. The
workload balance and access delay of the system are described below.

e Workload balance
The edge server s; is responsible for processing network service requests forwarded
through all base stations in the base station set B;. The workload of each base station
is represented as w;, and the workload of the edge server s; is represented as W; which
is the sum of the workloads of all base stations in B;, as shown in Formula (1).

Wi=) w; @

hGB,'

Then the standard deviation of all the edge servers” workloads is shown in Formula
(2), where W = % Y"1 W; is the average workload of m edge servers.

i1 (Wi — W)?
m

WSD =)

Entropy 2022, 24, 317

5o0f 14

e Access delay
Each base station can directly request the edge server to obtain network services
through the link connection. Assuming that the positions of the base station and the
edge server are denoted as [; and s, respectively, the length of the connecting edge
between the two can be obtained based on the longitude and latitude information of
the base station, as shown in Formula (3). In this paper, we use the length of the edge
to measure the data transmission delay between the base station and the edge server.

a(bi,s) = |, = Iy, ©)
Then the average access delay is represented as Formula (4).
1 g
MD — Y, Eb]veB,v d(b]/sl) @

n

4. Algorithm Design

Reinforcement learning consists of an agent and an environment. The agent can change
the current environmental state by executing an action, and the environment gives the agent
a reward according to the action executed by the agent. The goal of reinforcement learning
is to learn the optimal strategy by maximizing the cumulative long-term reward, which is
usually established as an Markov decision process model. The MDP model is denoted as a
state-action-reward-state transition sequence, specifically a 5-tuple (S, A, T, R, 7y) described
as follows:

* Sisalimited state space.

* Aisa limited action space.

e T:SxAxS —|[0,1],itis the state transition model. Specifically, T(s, a,s’) represents
the probability distribution that the agent transitions to state s’ after executing an
action 4 in the state s.

e R:SxA — R, itrepresents the reward function. For example, R(s, a) represents the
reward value given by the environment after the agent executes the action a in the
state s.

e g € [0,1] is a discount factor used to balance the importance of immediate and
long-term rewards.

In the remainder of this section the MDP model is formalized based on the MEC
environment, and the state space, action space and reward function are subsequently
defined. Afterwards, the novel edge server placement algorithm, DQN-ESPA, is introduced.

4.1. MDP Model
4.1.1. State

Consider the scenario of placing m edge servers in n positions, and where only one
edge server can be placed in each position. Each placement is a solution to the problem,
and it is denoted as a different state. Suppose that the location of each edge server is
(lat;, lon;), where lat; is the latitude value of the location of the edge server s;, and lon; is
the longitude value of the location of the edge server s;. The placement sequence will be
((laty,lony), (laty, lony), - - -, (laty, lon,,)) after edge serves are placed. We define the state
space S, where S = ((laty,lony), (laty, lony), - - -, (laty, lony,)). In particular, the placement
sequence varies as the placement of the edge server changes and a new state is generated.

4.1.2. Action

Every time the placement positions of m edge servers are randomly selected from
n positions to get the initial state it is assumed that only one edge server placement is
changed at a time. One additional restriction is that each edge server can only move to a
nearby location. As an example, consider the diagram shown in Figure 2. There are nine
base stations (by, by, - - - , bg), and the edge server s; can be placed at any position of the nine

Entropy 2022, 24, 317

6 of 14

base stations. The initial position of the edge server s; is at the position of the base station
bs, and the edge server s; can move up, down, left, and right to reach the new placement
position. Since the latitude and longitude of each base station are known, the neighbor base
stations of each base station are also known. Hence, moving upward means moving in
the direction of increasing latitude, moving downward means moving in the direction of
decreasing latitude, moving left means moving in the direction of decreasing longitude,
and moving right means moving in the direction of increasing longitude.

()

Figure 2. Diagram with location changes of an edge server.

To normalize the action, the target edge server that needs to be relocated is selected
and the direction of its movement is determined. On one side, in the problem of decision-
making of the target server, the action space is defined as the set of edge servers. Then the
action space can be represented as A; = (0,1,2,- - -, n), where n represents the sequence
number of the nth edge server. On the other side, in the problem of decision-making of
the server’s movements, the action space corresponds to the direction set of the server’s
movement, which is defined as A, = (0,1, 2,3). 0 means moving upwards, 1 means moving
downwards, 2 means left, and 3 means moving right. Therefore, it yields to two discrete
action spaces, i.e., Aj and Aj. In order to simplify the problem model, we combine these
two action spaces into one, which is the multiplication cross of A; and A,. Because there
are n edge servers and each edge server can move in 4 directions, there are 4 * n actions in
total. Therefore, the action space is described as A = (0,1,2, - - - , 4« n). It means that for
the input state sequence with n edge servers, there are 4 * n output actions, and the optimal
action should be selected from 4 * n actions.

Based on action A, the target edge server that needs to be relocated is calculated as
Formula (5).

s;=A/4)

Then the direction of the movement for the edge server s; is calculated as Formula (6),
where % is a mod operator.
di = A%4 (6)

4.1.3. Reward

We evaluate the placement performance of the edge server from two aspects: average
access delay and workload standard deviation. The lower the average delay, the smaller
workload standard deviation, indicating the better placement performance. First, the

Entropy 2022, 24, 317

7 of 14

average access delay and the workload standard deviation are standardized. We use the
Z-Score standardization method. Assuming a sequence (x1, X2, - - - , X,), the standardized
formula is:
=5 Ny X
sd = \/5g i (% =)7 @)
zi= "7

By combining Formulas (2) and (4), the normalization values of the workload balance
and the average access delay of the system can be obtained with their respective historical
data sets (WSD1, WSD5, ..., WSDy,) and (MD;, MD5, ..., MD,;). Then the reward function
is shown in Formula (8).

R = —(aZwsp + BZmp) ®)

Therein, Zysp and Zyp represent the normalization values of the workload balance
and the average access delay, respectively; &« and § represent the weights of two factors,
and their sum is 1.

4.2. DQN-ESPA

Q-learning is a classic non-model-based reinforcement learning algorithm [36] which
is used in a variety of problems, including the optimal control problem in the Markov
decision process [37], human-machine dialogue [38], robot navigation [39], production
scheduling [40], traffic control [41], and so on. The Q-learning algorithm takes the timely
reward value r leaving the current state and the maximum Q value max, Q(s, ") of the
next state s’ as a complete Markov decision sequence gain. We use the Bellman optimal
equation [42] to update the Q value, as shown in Formula (9).

Q(s,a) = Q(s,a) +a(s,a)(r + ymax Q(s',a") — Q(s,a))) €)

In this formula, a(s,a) € [0, 1] is the learning rate and it is related to the state and action;
v € [0,1] is the weight used to balance the timely reward and the long-term reward.

Reward

| " I

Agent

Policy

Environment

Observe state si.q

Figure 3. Deep Q-network used in DQN-ESPA.

After initializing the edge computing environment, m placement positions are ran-
domly selected from the n candidate positions, and the initial state is obtained according
to the state space defined in the MDP model. At the beginning, the agent executes an
action with a random strategy. Each time an action is randomly selected from the action
space defined in the MDP model, the agent enters the next state after executing the action.
Then the environment gives the agent a timely reward according to the reward function
defined in the MDP model. Notice that according to Formula (9) the state action value is
updated. This is reflected as the agent continuously interacts with the environment, i.e., the
strategies learned by the agent improve persistently, and thus the strategy will converge
from a random strategy to the optimal strategy.

During the interaction between the agent and the environment, the agent stores the
state action value Q(s,a) of the action a executed in the state s in a two-dimensional
table. When this table has all state action values, the agent can execute the optimal action

Entropy 2022, 24, 317

8 of 14

accordingly. As shown in [16], when the state space is large, a curse of dimensionality
problem arises. To overcome this problem we use DNN in our DQN to estimate the value
function of Q-learning algorithm [43]. Then, the optimal offload action can be directly
obtained by choosing the one that has the maximum Q-value. Figure 3 depicts the general
DON flow in our algorithm. Our DQN consists of one hidden layer of 50 neurons.

Our edge server placement algorithm, DQN-ESPA, is described in Algorithm 1. DQN-
ESPA updates the parameter to let the approximate function Q approximately represent
the Q value, as shown in Formula (10).

Q(st,ar) = Q(st, at,6) (10)

Algorithm 1 DQN-ESPA

1: Initialization of Replay memory M
2: Initialization of Q function with random parameters 0
3: Initialization of Q function with parameters 6~
4: Randomly select m placement positions from n candidate placement positions
5: Construct the initial state s; based on step 4
6: t<+ 1
7: while t < T do
8: generate a random number rnd in [0,1]
9: if rnd > € then
10: Select a; = argmax, Q¢ (s¢, a;0)
11: else
12: Select action a; randomly
13: endif
14: Execute action a;, observe 7y, 541
15: Store experience (s, at, ¢, 54+1) in M
16: Sample minibatch of (s, a¢, 1¢,5¢41) randomly from M
17: if t + 1is the final one then
18: SetZ; =r;
19: else .
20: SetZ; =ri+ Yy maxg, 4 Q¢ (St+1, ai41; 97)
21: end if
22: Gradient descent step is executed on (Z; — Q¢ (st,a;6))% by 6
23 Reset QO = Qin every C steps

24: t+t+1
25: end while

At time step ¢, the state s; = ((laty,lony), (laty,lony), ..., (laty, lony,)) is set as the
input of the neural network to get the current state action Q¢ (s, a¢; 6;) value, as shown on
lines 4 and 5 in Algorithm 1. From line 7 to line 13, the algorithm selects an action according
to the € — greedy policy. In order to reduce the connection between the estimated value and
the target value and improve training efficiency, DQN-ESPA adds a target network. The
target network and the estimated network have the same parameters. Every C time steps,
the agent assigns the parameters of the estimated network to the target network (line 23 in
Algorithm 1). The target value Z is defined in Formula (11):

Z =re(st,ar) + 7y max Qi (st41,ar41;0;) (11)
t

6, represents the parameters of the target network before a certain iteration time.
The loss function L; in DQN-ESPA is described in Formula (12):

Li(ei) = Est,ﬂt,rt,5t+1 [(Z - Qt(st/ at, 91‘))2] (12)

DQN-ESPA uses an experience pool M to store state action transition sequences
(¢, a¢,1¢,5¢.41)- According to the experience replay strategy, DQN-ESPA randomly selects a

Entropy 2022, 24, 317

9of 14

batch of samples from the experience pool for training at each iteration step (lines 15 and
16 in Algorithm 1).
To differentiate the gradient from the loss function, we define it as Formula (13):

Vo.Li(0;) = Es,a,,1,5,1 [(Z — Qe (st,a1;6)) Vo, Qe (51, a1; 6;)] (13)

Thus, the gradient Vgl.Qt(st,at ;0;) guides loss function to be reduced at a feasible
direction. Finally, we can update the parameters as:

Oiy1 = 0iy1 +aVg,Li(0;) (14)

where « is the learning rate in (0,1).
As it can be seen on line 14 in Algorithm 1, the agent’s experience (s¢, ¢, 1t,5141) iS
stored in replay memory, therefore there is no need for transition probabilities.

5. Performance Evaluation

The average access delay and workload balance are adopted as evaluation indicators
to evaluate the performance. The proposed DQN-ESPA is compared to classical algorithms
such as SAPA, KMPA, TKPA and RPA. All the experiments were carried out using a real
dataset, and the impact of different edge server numbers and placement performance
carefully studied.

5.1. Configuration of the Experiments

The parameters used in the experiments are set uniformly: the storage space M =
100, 000, the learning rate & = 0.01, the batch size K = 64, the parameter update frequency
C = 100, and the discount factor ¢y = 0.9.

In order to evaluate the overall results of the experiments, the experimental results
will be normalized through the log function shown in Formula (15):

norm; = 1g(x)/1g(max) (15)

where x is the sample value that needs to be normalized and max is the maximum value in
the sample. Then the overall evaluation indicator is defined as:

index(ad, wb) = punormgg + (1 — p)normy,, (16)

In this formula, norm,, is the normalized value of average delay, norm,, is the nor-
malized value of workload balance, and y is the weighting factor, i1 € [0, 1]. In this paper y
issetas y = 0.5.

All the algorithms, including KMPA, TKPA, RPA, and DQN-ESPA, were implemented
in Python 3.6, The benchmarks were executed on a computer system with Intel (R)Xeon (R)
CPU E5-26200@2.00 Ghz, 128 GB memory and operated in Linux distribution Ubuntu 16.04.

5.2. Dataset Description

The dataset used in the experiments was obtained from Shanghai Telecom (http:
/ /sguangwang.com/TelecomDataset.html, accessed on 17 February 2022). It contains
anonymous calls/Internet information from mobile user requests to 3233 base stations. The
exact location of all base stations is included. The dataset contains 4.6 million call records,
and 7.5 million Internet traffic records of approximately 10,000 anonymous mobile users
gathered for 6 consecutive months. Each call/traffic record contains detailed start time
and end time for each mobile user and its corresponding base station. From the Shanghai
Telecom dataset we selected the data of 3000 valid base station.

http://sguangwang.com/TelecomDataset.html
http://sguangwang.com/TelecomDataset.html

Entropy 2022, 24, 317

10 of 14

5.3. Experimental Results

In order to study the performance effect on the variety of the number of edge servers
to be placed, the placement performance are evaluated when the number of edge servers
varies between 100 and 300.

The access delay and workload balance of DQN-ESPA are shown in Figure 4a,b when
placing 100 edge servers. As the number of iterations increases, the average delay of
the entire system continues to decline. It can also be seen that the workload standard
deviation continuously decreases. The average access delay and the workload standard
deviation of the compared algorithms are shown in Figure 4c,d. The results show that the
DQN-ESPA is able to obtain both the lowest average delay and the minimum workload
standard deviation.

1e6

6.0
~2.0
£5.51 210l
2 5
S50 818
[} el
L
Sus "
2
1.6
4.0
1.5
0 2500 5000 7500 10000 0.00 0.25 050 0.75 1.00
Iteration Iteration Ted
. (2) 5 s (b)
I DON-ESPA SAPA
I KMPA N DON-ESPA
SAPA 2 TKPA
- 51 TKPA T 4 mmm RPA
;‘E, N RPA ; . KMPA
% 41 g
® T 31
el Q
o 3 -
(%] ©
3 29
Q X
<< 2 4 S
=
14 "
0 © 0 @

Figure 4. Results with the placement of 100 edge servers at 3000 base station locations. (a) Access
delay of DQN-ESPA with the variety of iterations; (b) Workload balance of DQN-ESPA with the
variety of iterations; (c) Average access delay of the compared algorithms; (d) Average workload
standard deviation of the compared algorithms.

Figure 5 shows the experimental results when placing 300 edge servers. Therein,
Figure 5a,b correspond to the DQN-ESPA delay and workload balance with the variety
of the number of iterations. Similar to the previous experiment, the average delay and
the workload standard deviation decreases with the rise of the number of iterations. The
average delay and the standard deviation of the workload balance of all the compared
algorithms are presented in Figure 5c,d. It shows that the DQN-ESPA obtains the lowest
average delay. It also shows that KMPA can obtain relative low average delay when
placing edge servers, but the workload standard deviation obtained by KMPA is much
bigger than the other four algorithms. Meanwhile, TKPA obtains the minimum workload
balance standard deviation, but it gets the worse average delay comparing to DQN-ESPA
and KMPA.

It can also been seen that DQN-ESPA does not always achieve the best performance
on the indicator of workload balance standard deviation, e.g., TKPA and SAPA obtain less

Entropy 2022, 24, 317

11 0f 14

workload balance standard deviation placing 300 edge servers in Figure 5d. Therefore, to
further compare the algorithms’ performance, we utilize the overall evaluation indicator
presented in Formula (16) to evaluate their comprehensive performance, and the results
are shown in Table 1. It shows that the comprehensive performance ranking from high to
low of the compared algorithms is DON-ESPA > SAPA > KMPA > TKPA > RPA.

We also introduce the relative comprehensive performance improvement ratio RP to
evaluate the performance, as shown in Formula (17). Therein, indexpgn_gspa is the compre-
hensive performance of DQN-ESPA, while index,, is the comprehensive performance of
the compared algorithms, and alg € {SAPA,KMPA, TKPA, RPA}. When placing 100 edge
servers, the overall indicator of DQN-ESPA outperforms SPPA, KMPA , TKPA, and RPA by
1.75%, 5.80%, 12.61%, and 13.40%, respectively. When placing 300 edge servers, the overall
indicator of DQN-ESPA outperforms SAPA, KMPA, TKPA, and RPA by 2.39%, 5.22%,
13.26%, and 15.54%, respectively. The results indicate that DQN-ESPA comprehensively
considers the average delay and workload balance, and subsequently achieves the best
comprehensive performance among the compared algorithms considered in this evaluation.

index; ¢ — indexpoN_gspa

C= - 17
indexgq 17
1e5
7.3
3.6
27.24
- g
g 341 87.1
o K
©3.2] 7.0
[} e
8 3.0 369
<
2.8+ 968
6.71
2.6
6.61
0 2500 5000 7500 10000 0.00 0.25 050 0.75 1.00
Iteration Iteration Ted
(a) 1e6 (b)
I DON-ESPA 2 0_ TKPA
3.5 mmm KA ’ SAPA
SAPA N DON-ESPA
3.01 2
T £ 1.5
52.5 8
320 1.0
(2]
151 3
=
=< 1.0 ;_., 0.5+
0.5
0.0

0.0-
(c) (d)

Figure 5. Results with the placement of 300 edge servers at 3000 base station locations. (a) Access
delay of DQN-ESPA with the variety of iterations; (b) Workload balance of DQN-ESPA with the
variety of iterations; (c) Average access delay of the compared algorithms; (d) Average workload
standard deviation of the compared algorithms.

Table 1. Overall performance indicators.

No. DQN-ESPA SAPA KMPA TKPA RPA

100 0.8380 0.8529 0.8896 0.9589 0.9677
300 0.8144 0.8343 0.8593 0.9389 0.9643

Entropy 2022, 24, 317 12 of 14

6. Conclusions

In this paper we proposed a novel algorithm, DQN-ESPA, for the ESPP in MEC systems.
We abstract ESPP in a Markov decision sequence, and the edge server placement problem
is solved through deep reinforcement learning. Utilizing a real dataset from Shanghai
Telecom, we compared DQN-ESPA to several state-of-the-art algorithms, such as SAPA,
KMPA, TKPA and RPA, and use the average access delay and workload balance of the entire
system as evaluation indicators. Experimental results show that in comparison to SAPA,
KMPA, TKPA and RPA, DQN-ESPA is able to achieve up to 13.40% better performance
with 100 edge servers, and up to 15.54% better performance with 300 edge servers.

Although DQN-ESPA surpasses typical comparison algorithms, its convergence speed
is relatively slow. This matter will be further studied as future work. In terms of new
applications for the proposed algorithm, in the field of edge computing task offloading is
another hot topic, and DQN-ESPA can be further studied to solve comprehensive problems
for task offloading and the ESPP.

Author Contributions: Conceptualization, Y.L.; Methodology, W.D.; Supervision, FL.; Writing—
original draft, S.Z.; Writing—review editing, J.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the project on Shanghai Science and Technology Innova-
tion Action Plan (No. 20dz1201400, No. 227ZR1416500) and sponsored by Shanghai Sailing Pro-
gram (20YF1410900).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in the experiments was obtained from Shanghai
Telecom: http:/ /sguangwang.com/TelecomDataset.html, accessed on 17 February 2022.

Acknowledgments: Yongjun Luo and Chunhua Gu are thanked for expert advice and
inspiring discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2016, 16, 1397-1411. [CrossRef]

2. Mao, Y,; Zhang,].; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices.
IEEE]. Sel. Areas Commun. 2016, 34, 3590-3605. [CrossRef]

3. Arkian, H.R; Diyanat, A.; Pourkhalili, A. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT
crowdsensing applications. J. Netw. Comput. Appl. 2017, 82, 152-165. [CrossRef]

4. Gu, L.; Zeng, D.; Guo, S.; Barnawi, A.; Xiang, Y. Cost efficient resource management in fog computing supported medical
cyber-physical system. IEEE Trans. Emerg. Top. Comput. 2015, 5, 108-119. [CrossRef]

5. Taleb, T.; Ksentini, A. An analytical model for follow me cloud. In Proceedings of the 2013 IEEE Global Communications
Conference (GLOBECOM), Atlanta, GA, USA, 9-13 December 2013; pp. 1291-1296.

6. Taleb, T.; Ksentini, A.; Frangoudis, P. Follow-me cloud: When cloud services follow mobile users. IEEE Trans. Cloud Comput.
2016, 7, 369-382. [CrossRef]

7. Wang, S.; Guo, Y.; Zhang, N.; Yang, P; Zhou, A.; Shen, X.S. Delay-aware microservice coordination in mobile edge computing: A
reinforcement learning approach. IEEE Trans. Mob. Comput. 2019, 20, 939-951. [CrossRef]

8. Wang, S.; Zhao, Y.; Huang, L.; Xu, J.; Hsu, C.H. QoS prediction for service recommendations in mobile edge computing. J. Parallel
Distrib. Comput. 2019, 127, 134-144. [CrossRef]

9. Ma, L,;Wu,]J,; Chen, L. DOTA: Delay bounded optimal cloudlet deployment and user association in WMANS. In Proceedings of
the 2017 17th IEEE/ ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14-17
May 2017; pp. 196-203.

10. Xu, Z,; Liang, W.; Xu, W,; Jia, M.; Guo, S. Capacitated cloudlet placements in wireless metropolitan area networks. In

Proceedings of the 2015 IEEE 40th Conference on Local Computer Networks (LCN), Clearwater Beach, FL, USA, 26-29 October
2015; pp. 570-578.

http://sguangwang.com/TelecomDataset.html
http://doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1016/j.jnca.2017.01.012
http://dx.doi.org/10.1109/TETC.2015.2508382
http://dx.doi.org/10.1109/TCC.2016.2525987
http://dx.doi.org/10.1109/TMC.2019.2957804
http://dx.doi.org/10.1016/j.jpdc.2017.09.014

Entropy 2022, 24, 317 13 of 14

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

Meng, J.; Shi, W.; Tan, H.; Li, X. Cloudlet placement and minimum-delay routing in cloudlet computing. In Proceedings of the
2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), Chengdu, China, 10-11 August
2017; pp. 297-304.

Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C.H. Edge server placement in mobile edge computing. J. Parallel Distrib. Comput. 2019,
127,160-168. [CrossRef]

Guo, Y,; Wang, S.; Zhou, A.; Xu, J.; Yuan, J.; Hsu, C.H. User allocation-aware edge cloud placement in mobile edge computing.
Software Pract. Exp. 2020, 50, 489-502. [CrossRef]

Zhang, R.; Yan, E; Xia, W,; Xing, S.; Wu, Y.; Shen, L. An optimal roadside unit placement method for vanet localization. In
Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4-8 December 2017 ; pp. 1-6.
Lu, H.; Gu, C; Luo, F; Ding, W,; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based
on deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847-861. [CrossRef]

Curran, W.; Brys, T.; Taylor, M.; Smart, W. Using PCA to efficiently represent state spaces. arXiv 2015, arXiv:1505.00322.

Dolui, K.; Datta, S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In
Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6-9 June 2017; pp. 1-6.

Lhderanta, T.; Leppnen, T.; Ruha, L.; Lovén, L.; Harjula, E.; Ylianttila, M.; Riekki, J.; Sillanp, M.J]. Edge computing server
placement with capacitated location allocation. J. Parallel Distrib. Comput. 2021, 153, 130-149. [CrossRef]

Zhao, X.; Zeng, Y.; Ding, H.; Li, B.; Yang, Z. Optimize the placement of edge server between workload balancing and system
delay in smart city. Peer-to-Peer Netw. Appl. 2021, 14, 3778-3792. [CrossRef]

Liang, Y.; Liu, H.; Rajan, D. Optimal placement and configuration of roadside units in vehicular networks. In Proceedings of the
2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6-9 May 2012; pp. 1-6.

Wang, Z.; Zheng, J.; Wu, Y,; Mitton, N. A centrality-based RSU deployment approach for vehicular ad hoc networks. In
Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21-25 May 2017.

Aslam, B.; Amjad, F.; Zou, C.C. Optimal roadside units placement in urban areas for vehicular networks. In Proceedings of the
2012 IEEE Symposium on Computers and Communications (ISCC), Cappadocia, Turkey, 1-4 July 2012; pp. 000423-000429.
Trullols, O.; Fiore, M.; Casetti, C.; Chiasserini, C.F,; Ordinas, J.B. Planning roadside infrastructure for information dissemination
in intelligent transportation systems. Comput. Commun. 2010, 33, 432-442. [CrossRef]

Balouchzahi, N.M.; Fathy, M.; Akbari, A. Optimal road side units placement model based on binary integer programming for
efficient traffic information advertisement and discovery in vehicular environment. IET Intell. Transp. Syst. 2015, 9, 851-861.
[CrossRef]

Premsankar, G.; Ghaddar, B.; Di Francesco, M.; Verago, R. Efficient placement of edge computing devices for vehicular applications
in smart cities. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei,
Taiwan, 23-27 April 2018; pp. 1-9.

Fan, Q.; Ansari, N. Cost aware cloudlet placement for big data processing at the edge. In Proceedings of the 2017 IEEE
International Conference on Communications (ICC), Paris, France, 21-25 May 2017.

Jia, M,; Cao, J.; Liang, W. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks.
IEEE Trans. Cloud Comput. 2015, 5, 725-737. [CrossRef]

Lewis, G.; Echeverria, S.; Simanta, S.; Bradshaw, B.; Root, J. Tactical cloudlets: Moving cloud computing to the edge. In
Proceedings of the 2014 IEEE Military Communications Conference, Baltimore, MD, USA, 6-8 October 2014; pp. 1440-1446.

Li, H,; Dong, M.; Liao, X,; Jin, H. Deduplication-based energy efficient storage system in cloud environment. Comput. J. 2015,
58, 1373-1383. [CrossRef]

Li, H.; Dong, M,; Ota, K.; Guo, M. Pricing and repurchasing for big data processing in multi-clouds. IEEE Trans. Emerg. Top.
Comput. 2016, 4, 266-277. [CrossRef]

Zeng, E; Ren, Y.; Deng, X.; Li, W. Cost-effective edge server placement in wireless metropolitan area networks. Sensors 2019,
19, 32. [CrossRef]

Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource management with deep reinforcement learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks, Atlanta, GA, USA, 9-10 November 2016; pp. 50-56.

Skarlat, O.; Nardelli, M.; Schulte, S.; Borkowski, M.; Leitner, P. Optimized IoT service placement in the fog. Serv. Oriented Comput.
Appl. 2017, 11, 427-443. [CrossRef]

Yang, L.; Cao, J.; Liang, G.; Han, X. Cost aware service placement and load dispatching in mobile cloud systems. IEEE Trans.
Comput. 2015, 65, 1440-1452. [CrossRef]

Messaoudi, F; Ksentini, A.; Bertin, P. On using edge computing for computation offloading in mobile network. In Proceedings of
the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4-8 December 2017; pp. 1-7.

Watkins, C.J. Technical note g-learning. Reinf. Learn. 1993, 8, 279-292.

Bertsekas, D.P. Stable optimal control and semicontractive dynamic programming. SIAM]. Control. Optim. 2018, 56, 231-252.
[CrossRef]

Scheffler, K.; Young, S. Automatic learning of dialogue strategy using dialogue simulation and reinforcement learning. In
Proceedings of the Second International Conference on Human Language Technology Research, Citeseer, San Francisco, CA,
USA, 24-27 March 2002; pp. 12-19.

http://dx.doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1016/j.jpdc.2021.03.007
http://dx.doi.org/10.1007/s12083-021-01208-0
http://dx.doi.org/10.1016/j.comcom.2009.11.021
http://dx.doi.org/10.1049/iet-its.2014.0051
http://dx.doi.org/10.1109/TCC.2015.2449834
http://dx.doi.org/10.1093/comjnl/bxu122
http://dx.doi.org/10.1109/TETC.2016.2517930
http://dx.doi.org/10.3390/s19010032
http://dx.doi.org/10.1007/s11761-017-0219-8
http://dx.doi.org/10.1109/TC.2015.2435781
http://dx.doi.org/10.1137/17M1122815

Entropy 2022, 24, 317 14 of 14

39.

40.

41.

42.
43.

Yang, G.S.; Chen, EK.; An, C.W. Mobile robot navigation using neural Q-learning. In Proceedings of the 2004 International
Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26-29 August 2004; Volume 1,
pp- 48-52.

Wang, Y.C.; Usher,].M. Application of reinforcement learning for agent-based production scheduling. Eng. Appl. Artif. Intell.
2005, 18, 73-82. [CrossRef]

Djonin, D.V,; Krishnamurthy, V. Q-Learning Algorithms for Constrained Markov Decision Processes With Randomized Monotone
Policies: Application to MIMO Transmission Control. IEEE Trans. Signal Process. 2007, 55, 2170-2181. [CrossRef]

Bellman, R. Dynamic programming. Science 1966, 153, 34-37. [CrossRef]

Mnih, V.; Kavukcuoglu, K; Silver, D.; Rusu, A.A.; Veness,].; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A K,;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-533. [CrossRef]

http://dx.doi.org/10.1016/j.engappai.2004.08.018
http://dx.doi.org/10.1109/TSP.2007.893228
http://dx.doi.org/10.1126/science.153.3731.34
http://dx.doi.org/10.1038/nature14236

	Introduction
	Related Work
	System Model
	MEC Model
	Problem Description

	Algorithm Design
	MDP Model
	State
	Action
	Reward

	DQN-ESPA

	Performance Evaluation
	Configuration of the Experiments
	Dataset Description
	Experimental Results

	Conclusions
	References

