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Abstract: The Shannon entropy in an LS-coupled configuration space has been calculated through
a transformation from that in a jj-coupled configuration space for a Ni-like isoelectronic sequence.
The sudden change of Shannon entropy, information exchange, eigenlevel anticrossing, and strong
configuration interaction have been presented for adjacent levels. It is shown that eigenlevel anti-
crossing is a sufficient and necessary condition for the sudden change of Shannon entropy, and both
of them are a sufficient condition for information exchange, which is the same as the case of the
jj-coupled configuration space. It is found that the structure of sudden change from jj-coupled into
LS-coupled configuration spaces through the LS-jj transformation is invariant for Shannon entropy
along the isoelectronic sequence. What is more, in an LS-coupled configuration space, there are
a large number of information exchanges between energy levels whether with or without strong
configuration interaction, and most of the ground and single excited states of Ni-like ions are more
suitable to be described by a jj-coupled or other configuration basis set instead of an LS-coupled
configuration basis set according to the configuration mixing coefficients and their Shannon entropy.
In this sense, Shannon entropy can also be used to measure the applicability of a configuration basis
set or the purity of atomic state functions in different coupling schemes.

Keywords: Shannon entropy; LS-coupled configuration space; LS-jj transformation; unique notation

1. Introduction

Shannon information entropy [1] has been used to describe a large variety of physical
concepts nowadays and to elucidate the physical and chemical properties of atomic and
molecular systems. To our knowledge, over the past few decades, there have been two main
kinds of theoretical work related to Shannon entropy in the field of atomic and molecular
physics. The first is the theoretical research related to the localization or delocalization
(nonlocality) of electron clouds in position space and momentum space (e.g., [2–12]). The
second kind of theoretical work is to describe the complexity of electron clouds in position
space and momentum space (e.g., [13–18]). As far as we know, in atomic and nuclear
physics, Shannon entropy has also been used to study the quantum chaotic system [19–21]
by using the configuration interaction method to analyze the spectrum and the eigenstates
of the complex atom and heavy nuclei, in which the wavefunction of the excited states are
chaotic superpositions of hundreds or thousands of principal basis states [22,23]. Recently,
in our previous work [24,25], we have found the following in a jj-coupled configuration
space: (1) The sudden change of Shannon entropy is a sufficient and necessary condition
for the eigenlevel anticrossing in a given configuration space whether the total angular
momentum and parity JP of the adjacent levels is the same or not, with the help of which
it is easy to determine the position of eigenlevel anticrossing; the transition probabilities
can be changed dramatically around the anticrossing of eigenlevel, and strongly induced
transition in an external electromagnetic field can take place; (2) The sudden change of
Shannon entropy is a sufficient condition for information exchanges whether JP of the
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adjacent levels is the same or not; (3) There is no necessary causal relationship between the
eigenlevel anticrossing and strong configuration interaction in isoelectronic sequences.

However, we do not know whether the same conclusion exists in an LS-coupled config-
uration space, in other words, whether the transformation between the different coupling
basis sets affects the above conclusion. In addition, there is indeed no discussion about the
information in an LS-coupled configuration space, which is expanded by the LS-coupled
configuration basis set that could be transformed into from the jj-coupled configuration
basis set, although the Shannon entropy was discussed in the jj-coupled configuration space
for a Ni-like isoelectronic sequence [25] in detail. Therefore, it is necessary to check whether
there is any difference between the LS- and jj-coupled configuration space, and the present
work is a continuation of our previous work [24,25] in the LS-coupled configuration space.
In this paper, discrete Shannon entropy in the LS-coupled configuration space has also
been calculated to measure information on the atomic states. In Section 2, we provide a
brief description of the Shannon entropy in jj- and LS-coupled configuration spaces and the
unique algorithm, which can be used to label a level by a configuration state function (CSF)
uniquely in a given configuration space, as proposed by Gaigalas et al. [26]. In Section 3,
the Shannon entropies have been presented for the ground and single excited states in the
LS-coupled configuration space along with the Ni-like isoelectronic sequence. Compared
with the Shannon entropy in the jj-coupled configuration space, the Shannon entropy of the
corresponding energy level in the LS-coupled configuration space is checked in detail. Then,
the relationship between the sudden change of Shannon entropy, information exchange,
eigenlevel anticrossing, and strong configuration interaction has been discussed based
on the calculated energy levels, configuration mixing coefficients, and Shannon entropies.
Finally, some concluding remarks and outlook are summarized in Section 4.

2. Theoretical Considerations

In our previous work [24,25], the atomic state wavefunction was expressed by an
expansion of the jj-coupled configuration basis set, which is obtained by using the relativistic
configuration interaction (RCI) with relativistic one-electron orbitals and multiconfiguration
Dirac–Hartree–Fock (MCDHF) methods with the relativistic electron orbitals generated by
the self-consistent field procedure [27–31].

|Ψr(JP)〉 =
nc
∑

s=1
C(jj)

rs |Γs(JP)〉, r = 1, 2, · · · , nc, (1)

where |Ψr(JP)〉 is the rth atomic state function (ASF) describing the rth level. |Γs(JP)〉, s =
1, 2, · · · , nc are the configuration state functions (CSF) in the jj-coupled configuration space.
In this paper, the even and odd parities are described by the superscripts e and o. nc is the
number of the configuration state functions, which describes the size of the configuration
space. C(jj)

rs , s = 1, 2, · · · , nc are the configuration mixing coefficients for the rth atomic state
function in the jj-coupled configuration space, and the modulus square |C(jj)

rs |2 indicates the
weight of the sth configuration in the rth atomic state, yielding the normalization condition
for the rth atomic state function

nc
∑

s=1
|C(jj)

rs |2 = 1, r = 1, 2, · · · , nc. (2)

Usually, when the distribution of configuration weights is localized, the energy level
is labeled by the dominant component in an expansion of atomic state function, i.e., the
configuration with the largest modulus square, which is usually considered as the notation
of energy level, and then, the notation is regarded as the information of a given level. In
other words, the more remarkable localization of the distribution of configuration weights is,
the more certain the information of the energy level. In this case, the dominant component
is just unique notation. However, for many energy levels, especially for highly excited
states, there are two or more atomic state functions having the same dominant components
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to show nonunique labeling for energy levels as mentioned by Gaigalas et al. [26]. So, a
new algorithm has been proposed to define the unique notation for all levels in a subspace
with the same JP. Most simply, for a given configuration space, the CSF with the largest
configuration weight is used as the notation for the level. Once a CSF notation is assigned,
the corresponding CSF notation is removed from consideration in the determination of
the notation of next level. In the present work, reassigned unique notation marked by
the symbol ‘*’ is performed for those levels that have the same dominant CSF in a given
configuration space with a certain JP. In other words, in those figures and tables in Section 3,
when the unique notations are just the dominant components, their coefficients are written
only in bold font. However, the coefficients are written in bold font and marked by ‘*’
when the unique notations are not the dominant components. In view of this, each level is
labeled as the so-called unique notation instead of the dominant component in this paper.
It can be seen that the dominant-component labeling can be regarded as a special case of
the unique labeling.

In our previous work [24,25], a discrete Shannon entropy had been set up to mea-
sure the information in the jj-coupled configuration space because of the properties of
configuration mixing coefficients, that is, the configuration weights

ρ
(jj)
rs ≡ |C

(jj)
rs |2 ∈ [0, 1], r, s = 1, 2, · · · , nc, (3)

yield the normalization condition

nc
∑

s=1
ρ
(jj)
rs = 1, r = 1, 2, · · · , nc. (4)

Therefore, the Shannon entropy of the rth energy level described by the rth atomic
state function |Ψr(JP)〉 is defined by

S(jj)
Ψr

= −
nc
∑

s=1
ρ
(jj)
rs lnρ

(jj)
rs , r = 1, 2, · · · , nc, (5)

which can be used to indicate the information on a certain energy level in quantity; i.e., the
Shannon entropy can measure the uncertainty of the configurations for each certain atomic
state in a given jj-coupled configuration space.

As is well known, in atomic spectroscopy, the LS-coupled configuration notation is
also applied for classifying the levels of atoms and ions frequently. That is, the atomic
state function can also be written as an expansion of configuration basis set in LS-coupled
configuration space, i.e.

|Ψr(JP)〉 =
nc
∑

s=1
C(LS)

rs |Γs(LSJP)〉, r = 1, 2, · · · , nc, (6)

Then, the Shannon entropy in LS-coupled configuration space is expressed by

S(LS)
Ψr

= −
nc
∑

s=1
ρ
(LS)
rs lnρ

(LS)
rs , r = 1, 2, · · · , nc, (7)

where ρ
(LS)
rs is the weight of the sth configuration state function |Γs(LSJP)〉 in the rth atomic

state function |Ψr(JP)〉. In the present work, the configuration mixing coefficients in the
jj-coupled configuration space are transformed into those in the LS-coupled configuration
space through the method, which was proposed by Gaigalas et al. [26,32,33] and is not
necessary to be described in detail in this paper. Therefore, the Shannon entropy in
the LS-coupled configuration space can be obtained for the energy levels of ground and
single excited states of Ni-like isoelectronic sequence. Likely in [25], the LS-coupled
subspaces with even and odd parity for the energy levels of Ni-like ions have been shown in
Tables 1 and 2, respectively, where the closed subshells have been omitted for convenience.
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Table 1. LS-coupled subspaces expanded by the ground and single excited configuration state
functions with JP = 0e, 1e, 2e, 3e, 4e, and 5e.

0e 1e 2e 3e 4e 5e

3d10 1S0 3d94d 3S1 3d94s 1D2 3d94s 3D3 3d94d 3F4 3d94d 3G5
3d94d 1S0 3d94d 1P1 3d94s 3D2 3d94d 3D3 3d94d 1G4 3p54f 3G5
3d94d 3P0 3d94d 3P1 3d94d 3P2 3d94d 1F3 3d94d 3G4
3p54p 1S0 3d94d 3D1 3d94d 1D2 3d94d 3F3 3p54f 3F4
3p54p 3P0 3d94s 3D1 3d94d 3D2 3d94d 3G3 3p54f 1G4
3s4s 1S0 3p54p 3S1 3d94d 3F2 3p54p 3D3 3p54f 3G4

3p54p 1P1 3p54p 3P2 3p54f 3D3
3p54p 3P1 3p54p 1D2 3p54f 1F3
3p54p 3D1 3p54p 3D2 3p54f 3F3
3p54f 3D1 3p54f 1D2 3p54f 3G3
3s4s 3S1 3p54f 3D2 3s4d 3D3
3s4d 3D1 3p54f 3F2

3s4d 1D2
3s4d 3D2

nc(0e) = 6 nc(1e) = 12 nc(2e) = 14 nc(3e) = 11 nc(4e) = 6 nc(5e) = 2

Table 2. LS-coupled subspaces expanded by the single excited configuration state functions with
JP = 0o, 1o, 2o, 3o, 4o, 5o, and 6o.

0o 1o 2o 3o 4o 5o 6o

3d94f 3Po
0 3d94p 1Po

1 3d94p 3Po
2 3d94p 3Do

3 3d94p 3Fo
4 3d94f 3Go

5 3d94f 3Ho
6

3d94p 3Po
0 3d94p 3Po

1 3d94p 1Do
2 3d94p 1Fo

3 3d94f 3Fo
4 3d94f 1Ho

5
3p54d 3Po

0 3d94p 3Do
1 3d94p 3Do

2 3d94p 3Fo
3 3d94f 1Go

4 3d94f 3Ho
5

3p54s 3Po
0 3d94f 1Po

1 3d94p 3Fo
2 3d94f 3Do

3 3d94f 3Go
4

3s4p 3Po
0 3d94f 3Po

1 3d94f 3Po
2 3d94f 1Fo

3 3d94f 3Ho
4

3d94f 3Do
1 3d94f 1Do

2 3d94f 3Fo
3 3p54d 3Fo

4
3p54s 1Po

1 3d94f 3Do
2 3d94f 3Go

3 3s4f 3Fo
4

3p54s 3Po
1 3d94f 3Fo

2 3p54d 3Do
3

3p54d 1Po
1 3p54s 3Po

2 3p54d 1Fo
3

3p54d 3Po
1 3p54d 3Po

2 3p54d 3Fo
3

3p54d 3Do
1 3p54d 1Do

2 3s4f 1Fo
3

3s4p 1Po
1 3p54d 3Do

2 3s4f 3Fo
3

3s4p 3Po
1 3p54d 3Fo

2
3s4p 3Po

2
3s4f 3Fo

2
nc(0o) = 5 nc(1o) = 13 nc(2o) = 15 nc(3o) = 12 nc(4o) = 7 nc(5o) = 3 nc(6o) = 1

3. Results and Discussion

In our previous work [24,25], we calculated the Shannon entropies of the ground
and singly excited states in a jj-coupled configuration space for a Ni-like isoelectronic
sequence and focused on the relationship between the sudden change of Shannon entropy,
eigenlevel anticrossing, information exchange, and strong configuration interaction. In the
present work, all figures present the Shannon entropies for the levels in the LS-coupled
configuration space , configuration weights and eigenlevel anticrossing for selected levels
and the unique notation of each level has also been given in these figures according to the
configuration mixing coefficients.

Figures 1 and 2 show the Shannon entropies in an LS-coupled configuration space and
the unique notations for seven JP = 1e levels of a Ni-like isoelectronic sequence. In Figure 1,
the Shannon entropies have maxima at Z = 87 for the 5th and 6th levels, while for the 4th
and 5th levels, they have maxima at Z = 91, which is likely in Figure 1 in [25]. According to
the configuration mixing coefficients, the information of eigenlevels is exchanged around
the position of the peaks. Definitely, the 4th, 5th, and 6th levels are in turn labeled by
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the so-called unique notations 3d94d 3D1, 3d94d 3S1∗ and 3p54p 3S1∗ in the configuration
subspace with JP = 1e for Z = 87. At Z = 88, the unique notations 3d94d 3S1∗ and 3p54p
3S1∗ exchanged and then the three levels are labeled as 3d94d 3D1, 3p54p 3S1∗, and 3d94d
3S1∗ at Z = 88. Furthermore, the unique notations 3d94d 3D1 and 3p54p 3S1∗ exchange
with each other at Z = 92. However, the 6th level is uniquely relabeled as 3d94d 3P1 at Z
= 91 and 92, so the levels are named as the unique notations 3d94d 3D1, 3p54p 3S1∗, and
3d94d 3P1 at Z = 91 and 3p54p 3S1∗, 3d94d 3D1 and 3d94d 3P1 at Z = 92, respectively. In
a word, the information of the 5th level exchanges with the 6th and 4th levels at Z = 88
and 92 in turn. Figure 2 gives the Shannon entropies of the 8th, 9th, 10th, and 11th levels.
Their sudden changes take place at Z = 38, 70, 75, 81, and 86, where their unique notation
exchanges as well. Definitely, the 10th level exchanges its unique notation with 11th at
Z = 38 and 70 twice, 9th level at Z = 75, and then the 11th level at Z = 81 in turn, while the
unique notations of 8th and 9th exchange with each other at Z = 86.

3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5
0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6
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2 . 0
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Figure 1. Shannon entropies for the 4th, 5th, and 6th levels in the LS-coupled subspace with JP = 1e

for Ni-like isoelectronic sequence with Z = 31–95.
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Figure 2. Shannon entropies for the 8th, 9th, 10th, and 11th levels in the LS-coupled subspace with
JP = 1e for Ni-like isoelectronic sequence with Z = 31–95.
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In order to show the unique notation and information exchange for the levels at some
certain Z, Tables 3–6 present the configuration mixing coefficients, which are written in a
bold font for the unique notations and Figure 3 shows the configuration weights for the
atomic state functions of the 4th, 5th, and 6th levels in the subspace with JP = 1e. From
Table 3, it can be seen that for Z = 87, the 5th and 6th levels should be labeled as the unique
notations 3d94d 3S1 and 3p54p 3S1 with “*” instead of their dominant components 3d94d
3P1 and 3p54p 3P1, respectively. In Table 4, at Z = 88, their unique notations become 3p54p
3S1 and 3d94d 3S1, which shows information exchange between the 5th and 6th levels. In
Table 5, for Z = 91, the 2nd and 5th levels should be labeled as unique notations 3d94d
3S1 and 3p54p 3S1 with “*” instead of their dominant components 3d94d 3P1 and 3p54p
3P1, respectively. In Table 6, for Z = 92, the 2nd and 4th levels should be labeled as the
unique notations 3d94d 3S1 and 3p54p 3S1 instead of their dominant components 3d94d
3P1 and 3p54p 3P1, respectively. Apparently, the information exchanges between the 4th
and 5th levels, while there is just the unique notation for the 2nd level. In fact, as shown in
Figure 3, it is necessary to use the unique notation for those levels that have much uncertain
information with the remarkably nonlocalized distribution of configuration weights, and
this nonlocality can measure the purity of atomic state functions. In addition, it can be noted
that the sharp maxima in Shannon entropy indicate strong nonlocality in the distribution
of configuration weights in a given configuration space, whether for LS or jj coupling [25].
It is shown that around Z = 87, it is not suitable to describe the 5th and 6th levels in LS
and jj-coupled configuration spaces due to the strong delocalization of the distribution of
configuration weights, while around Z = 91, LS and jj-coupled configuration basis sets are
also not suitable for the 4th and 5th levels. Figure 4 gives the energy diagrams for the 5th
and 6th levels, both of which anticross at Z = 87. Unlikely in a jj-coupled configuration
space, around the anticrossing, the two levels must be relabeled uniquely. In order to avoid
repetition, only the Shannon entropies and information exchanges are described in the
figures below.

Table 3. Configuration mixing coefficients for the 12 levels in the LS-coupled subspace with JP = 1e

at Z = 87.

CSF 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

3d94d 3S1 −0.0002 −0.6231 −0.4958 −0.2877 −0.3779 * 0.3717 −0.0431 −0.0013 −0.0073 0.0139 0.0114 0.0000
3d94d 1P1 0.0010 0.1521 −0.7492 0.6148 0.1188 −0.1502 −0.0255 0.0024 0.0102 −0.0014 −0.0049 0.0000
3d94d 3P1 0.0014 0.6852 −0.0803 −0.0591 −0.6264 0.3578 −0.0076 0.0003 −0.0001 0.0036 0.0107 0.0001
3d94d 3D1 −0.0121 −0.3303 0.4292 0.7272 −0.3626 0.2141 0.0075 0.0097 0.0152 0.0014 0.0041 0.0039
3d94s 3D1 0.9998 −0.0060 0.0061 0.0078 −0.0081 −0.0041 −0.0050 −0.0029 −0.0104 −0.0010 −0.0030 −0.0023
3p54p 3S1 −0.0010 −0.0661 −0.0346 −0.0525 −0.3332 −0.4436 * 0.6005 0.0319 0.1844 −0.0861 −0.5299 0.0010
3p54p 1P1 0.0022 0.0214 -0.0273 0.0349 0.1726 0.2660 0.7453 −0.0872 −0.4700 0.0733 0.3282 0.0023
3p54p 3P1 0.0034 0.0664 0.0053 0.0524 0.3857 0.5809 0.0208 −0.0039 0.0017 −0.1666 −0.6916 0.0038
3p54p 3D1 −0.0141 −0.0257 0.0109 −0.0071 −0.1712 −0.2456 −0.2833 −0.1534 −0.8434 −0.0920 −0.2922 0.0212
3p54f 3D1 0.0011 0.0021 −0.0025 −0.0050 0.0038 0.0006 0.0022 0.9835 −0.1799 −0.0015 −0.0032 −0.0182
3s4s 3S1 0.0000 −0.0085 −0.0066 −0.0051 −0.0157 −0.0098 0.0256 0.0043 0.0279 −0.9751 0.2175 0.0000
3s4d 3D1 0.0026 0.0016 −0.0018 −0.0030 0.0036 0.0020 0.0036 0.0213 0.0154 0.0024 0.0085 0.9996

Table 4. Configuration mixing coefficients for the 12 levels in the LS-coupled subspace with JP = 1e

at Z = 88.

CSF 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

3d94d 3S1 −0.0002 −0.6207 −0.4972 −0.2855 −0.0432 −0.5311 * −0.0429 −0.0007 −0.0073 0.0132 0.0115 0.0000
3d94d 1P1 0.0010 0.1540 −0.7492 0.6130 −0.0190 0.1952 −0.0252 0.0016 0.0101 −0.0012 −0.0048 0.0001
3d94d 3P1 0.0014 0.6858 −0.0773 −0.0597 −0.2516 −0.6757 −0.0078 0.0003 −0.0001 0.0032 0.0105 0.0001
3d94d 3D1 −0.0119 −0.3318 0.4282 0.7267 −0.1563 −0.3918 0.0073 0.0084 0.0155 0.0013 0.0040 0.0038
3d94s 3D1 0.9998 −0.0060 0.0060 0.0075 −0.0090 −0.0019 −0.0049 −0.0021 −0.0103 −0.0009 −0.0029 −0.0022
3p54p 3S1 −0.0010 −0.0675 −0.0349 −0.0652 −0.5379 * 0.1260 0.6009 0.0183 0.1865 −0.0713 −0.5324 0.0011
3p54p 1P1 0.0022 0.0226 −0.0267 0.0421 0.3027 −0.0936 0.7452 −0.0521 −0.4749 0.0632 0.3302 0.0023
3p54p 3P1 0.0034 0.0685 0.0061 0.0688 0.6673 −0.1974 0.0198 −0.0037 0.0014 −0.1457 −0.6961 0.0038
3p54p 3D1 −0.0138 −0.0266 0.0104 −0.0144 −0.2887 0.0788 −0.2828 −0.0903 −0.8526 −0.0833 −0.2948 0.0209
3p54f 3D1 0.0011 0.0021 −0.0025 −0.0049 0.0034 0.0020 0.0022 0.9941 −0.1064 −0.0013 −0.0029 −0.0175
3s4s 3S1 0.0000 −0.0083 −0.0065 −0.0054 −0.0176 −0.0027 0.0248 0.0023 0.0281 −0.9811 0.1886 0.0000
3s4d 3D1 0.0026 0.0016 −0.0018 −0.0029 0.0040 0.0007 0.0035 0.0194 0.0168 0.0022 0.0086 0.9996
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Table 5. Configuration mixing coefficients for the 12 levels in the LS-coupled subspace with JP = 1e

at Z = 91.

CSF 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

3d94d 3S1 −0.0003 −0.6139 * 0.5007 −0.1954 0.2150 −0.5347 −0.0424 0.0003 0.0068 0.0118 −0.0111 0.0000
3d94d 1P1 0.0010 0.1590 0.7491 0.4815 −0.3798 0.1919 −0.0242 −0.0010 −0.0095 −0.0008 0.0044 0.0001
3d94d 3P1 0.0014 0.6872 0.0695 −0.1060 −0.0688 −0.7119 −0.0085 −0.0003 0.0000 0.0024 −0.0098 0.0001
3d94d 3D1 −0.0113 −0.3357 −0.4256 0.5764 −0.4553 −0.4075 0.0067 −0.0073 −0.0149 0.0010 −0.0037 0.0036
3d94s 3D1 0.9998 −0.0059 −0.0056 0.0014 −0.0108 −0.0034 −0.0047 0.0015 0.0098 −0.0006 0.0027 −0.0021
3p54p 3S1 −0.0011 −0.0727 0.0362 −0.3523 −0.4266 * 0.0124 0.6019 −0.0074 −0.1878 −0.0425 0.5364 0.0012
3p54p 1P1 0.0023 0.0268 0.0248 0.2069 0.2438 −0.0302 0.7452 0.0233 0.4763 0.0426 −0.3331 0.0022
3p54p 3P1 0.0036 0.0766 −0.0090 0.4345 0.5449 −0.0544 0.0172 0.0032 −0.0010 −0.1036 0.7031 0.0039
3p54p 3D1 −0.0131 −0.0302 −0.0088 −0.1751 −0.2426 0.0185 −0.2814 0.0382 0.8568 −0.0656 0.2991 0.0199
3p54f 3D1 0.0011 0.0021 0.0024 −0.0026 0.0050 0.0026 0.0021 −0.9988 0.0457 −0.0008 0.0022 −0.0156
3s4s 3S1 0.0000 −0.0078 0.0062 −0.0122 −0.0098 −0.0061 0.0226 −0.0007 −0.0281 −0.9905 −0.1309 0.0000
3s4d 3D1 0.0024 0.0015 0.0016 −0.0004 0.0044 0.0014 0.0032 −0.0164 −0.0171 0.0016 −0.0085 0.9997

Table 6. Configuration mixing coefficients for the 12 levels in the LS-coupled subspace with JP = 1e

at Z = 92.

CSF 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

3d94d 3S1 −0.0003 −0.6118 * 0.5016 −0.0353 0.2904 −0.5352 −0.0422 0.0002 0.0067 0.0115 −0.0109 0.0000
3d94d 1P1 0.0010 0.1604 0.7491 0.1917 −0.5822 0.1918 −0.0239 −0.0009 −0.0093 −0.0007 0.0043 0.0001
3d94d 3P1 0.0014 0.6875 0.0672 −0.1202 0.0018 −0.7129 −0.0087 −0.0003 0.0000 0.0022 −0.0095 0.0001
3d94d 3D1 −0.0111 −0.3368 −0.4249 0.2378 −0.6954 −0.4068 0.0065 −0.0071 −0.0146 0.0009 −0.0036 0.0036
3d94s 3D1 0.9998 −0.0059 −0.0055 −0.0047 −0.0096 −0.0034 −0.0046 0.0014 0.0096 −0.0006 0.0027 −0.0021
3p54p 3S1 −0.0012 −0.0750 0.0369 −0.5278 * −0.1630 0.0051 0.6022 −0.0060 −0.1881 −0.0361 0.5372 0.0012
3p54p 1P1 0.0023 0.0285 0.0240 0.3075 0.0906 −0.0264 0.7451 0.0197 0.4763 0.0378 −0.3336 0.0022
3p54p 3P1 0.0036 0.0800 −0.0104 0.6628 0.2168 −0.0449 0.0164 0.0030 −0.0010 −0.0938 0.7043 0.0039
3p54p 3D1 −0.0128 −0.0317 −0.0081 −0.2799 −0.1063 0.0148 −0.2809 0.0316 0.8572 −0.0616 0.2999 0.0196
3p54f 3D1 0.0011 0.0021 0.0024 0.0005 0.0056 0.0026 0.0021 −0.9991 0.0380 −0.0007 0.0020 −0.0150
3s4s 3S1 0.0000 −0.0077 0.0061 −0.0150 −0.0013 −0.0062 0.0219 −0.0006 −0.0281 −0.9922 −0.1177 0.0000
3s4d 3D1 0.0024 0.0015 0.0016 0.0020 0.0038 0.0014 0.0031 −0.0156 −0.0170 0.0015 −0.0085 0.9997
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Figure 3. Weights of configuration state function in LS-coupled configuration space for the 4th, 5th,
and 6th levels of Ni-like ions with Z = 87, 88, 91, and 92.
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Figure 4. Energy diagrams for the 5th and 6th levels for Ni-like isoelectronic sequence between
Z = 87 and 88.

Figures 5–7 show the Shannon entropies for thirteen levels in a combined configuration
space with JP = 2e and 3e. Figure 5 gives the Shannon entropies for the 8th, 9th, 10th,
11th, and 12th levels. The sudden changes take place at Z = 36, 45, 87, 91, and 92 in
turn. According to their configuration mixing coefficients, the information of the 9th level
exchanges with that of the 10th level at Z = 45 and 91 twice and with the 8th level at Z = 92.
The information of the 11th level exchanges with that of the 10th level at Z = 36, and it
can also be found that the unique notations 3d94d 3P2, 3p54p 1D2, and 3d94d 3F3 have a
triangle rotation for the 10th, 11th, and 12th levels at Z = 87. Figure 6 shows the Shannon
entropies for the 15th, 16th, 17th, 18th, and 19th levels. It is clear that the sudden changes
take place at Z = 37, 76, and 77. The information exchanges between the 18th and 19th
levels at Z = 37 and 77 twice, while at Z = 76, a quadrilateral rotation appears for the 15th,
16th, 17th, and 18th levels with the unique notations 3p54f 1D2, 3p54f 3D2, 3p54f 3F3, and
3p54f 1F3 . In Figure 7, the sudden changes take place at Z = 32, 50, and 73. The information
of the 21th level exchanges with that of the 22nd level at Z = 32, the 20th level at Z = 50,
and the 22nd level at Z = 77 again.
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Figure 5. Shannon entropies for the 8th, 9th, 10th, 11th, and 12th levels in the LS-coupled subspace
with JP = 2e and 3e for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 6. Shannon entropies for the 15th, 16th, 17th, 18th, and 19th levels in the LS-coupled subspace
with JP = 2e and 3e for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 7. Shannon entropies for the 20th, 21th, and 22nd levels in the LS-coupled subspace with
JP = 2e and 3e for a Ni-like isoelectronic sequence with Z = 31–92.

Figures 8 and 9 give the Shannon entropies for the 1st, 2nd, 5th, and 6th levels in the
subspace with JP = 4e and 5e. In Figure 8, the entropies jump at Z = 36, where the unique
notations 3d94d 3G5 and 3d94d 3G4 exchange. Figure 9 shows that the entropies jump at
Z = 62, where the unique notations 3p54f 3G5 and 3p54f 3G4 exchange with each other. By
the way, the 5th and 6th levels, respectively, with JP = 4e and 5e, anticross at Z = 61, as
given in Figure 10. It is shown that, likely in jj-coupled configuration space [25], the levels
with the different J and the same P, which do not have configuration interaction, can also
anticross in the combined subspace besides those levels with the same JP which can interact
with each other.
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Figure 8. Shannon entropies for the 1st and 2nd levels in the LS-coupled subspace with JP = 4e and
5e for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 9. Shannon entropies for the 5th and 6th levels in the LS-coupled subspace with JP = 4e and
5e for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 10. Energy diagrams for the 5th and 6th levels in the LS-coupled subspace with JP = 4e and
5e for a Ni-like isoelectronic sequence with Z = 59–63.
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Figure 11 gives the Shannon entropies for the 3rd and 4th levels in the subspace with
JP = 0o. Both of them have the maxima at Z = 78, where the unique notations 3p54s 3Po

0
and 3p54d 3Po

0 exchange.
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Figure 11. Shannon entropies for the 3rd and 4th levels in the LS-coupled subspace with JP = 0o for
a Ni-like isoelectronic sequence with Z = 31–92.

Figures 12–14 give the Shannon entropies for the 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th,
and 12th levels in the subspace with JP = 1o. In Figure 12, the entropies have one maximum
at Z = 49 for the 7th level, two maxima at Z = 50 and 55 for the 6th level, two maxima at
Z = 55 and 59 for the 5th level, and one maximum at Z = 59 for the 4th level. Meanwhile,
the unique notations 3d94f 1Po

1 , 3d94f 3Do
1, and 3d94f 3Po

1 exchange with 3p54s 1Po
1 in turn

at Z = 50, 56, and 59. In Figure 13, the entropies have one, two, and one maxima for the 8th,
9th, and 10th levels at Z = 78 and 81, where the unique notation 3p54d 3Po

1 exchanges with
3p54s 3Po

1 and 3p54d 1Po
1 . In Figure 14, both the entropies of the 11th and 12th levels have

maxima around Z = 70, where the unique notations 3p54d 3Do
1 and 3s4p 3Po

1 exchange.
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Figure 12. Shannon entropies for the 4th, 5th, 6th, and 7th levels in the LS-coupled subspace with
JP = 1o for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 13. Shannon entropies for the 8th, 9th, and 10th levels in the LS-coupled subspace with
JP = 1o for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 14. Shannon entropies for the 11th and 12th levels in the LS-coupled subspace with JP = 1o

for a Ni-like isoelectronic sequence with Z = 31–92.

Figure 15 gives the Shannon entropies for the 5th, 6th, 7th, 8th, and 9th levels in the
subspace with JP = 2o. In Figure 15, the sudden changes of the entropies of the 7th, 8th,
and 9th levels take place at Z = 53. It is interesting that the unique notations 3d94f 3Do

2,
3d94f 3Fo

2 , and 3p54s 3Po
2 form a triangle exchange at Z = 53. There are maxima at Z = 57 for

the 5th level and at Z = 58 for the 6th level. Meanwhile, the unique notations 3d94f 3Po
2 and

3d94f 3Do
2, 3d94f 1Do

2 and 3p54s 3Po
2 exchange at Z = 57, while the unique notations 3d94f

3Do
2, 3p54s 3Po

2 , and 3d94f 3Fo
2 form a triangle exchange at Z = 58.
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Figure 15. Shannon entropies for the 5th, 6th, 7th, 8th, and 9th levels in the LS-coupled subspace
with JP = 2o for Ni-like isoelectronic sequence with Z = 31–92.

Figures 16–18 give the Shannon entropies for the 10th, 11th, 12th, 13th, 14th, 17th,
and 18th levels in the combined subspace with JP = 3o and 4o. In Figure 16, the sudden
changes of the entropies of the 11th and 12th levels take place at Z = 57, where the unique
notations 3d94f 3Go

4 and 3d94f 3Go
3 exchange. Around Z = 64, the entropy has maxima for

the 11th level and the unique notations 3d94f 3Do
3 and 3d94f 3Go

3 for the 10th and 11th levels
exchange at Z = 60. Since the information of the 10th, 11th, and 12th levels is very uncertain
due to strong configuration interaction, especially for 12th level, its unique notation is 3d94f
3Go

4 for Z = 57–59, at Z = 60 becomes 3d94f 3Fo
4 and then 3d94f 1Go

4 at Z = 61. Figure 17 shows
that the entropies of the 13th and 14th levels jump at Z = 36, where the unique notations
3p54d 3Fo

4 and 3p54d 3Fo
3 exchange. Similarly, Figure 18 presents the entropies of the 17th

and 18th levels jump at Z = 40, where the unique notations 3s4f 3Fo
4 and 3s4f 3Fo

3 exchange.
Figure 19 presents the entropies of the 1st and 2nd levels jump at Z = 57, where the

unique notations 3d94f 3Ho
6 and 3d94f 3Ho

5 exchange.
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Figure 16. Shannon entropies for the 10th, 11th, and 12th levels in the LS-coupled subspace with
JP = 3o and 4o for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 17. Shannon entropies for the 13th and 14th levels in the LS-coupled subspace with JP = 3o

and 4o for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 18. Shannon entropies for the 17th and 18th levels in the LS-coupled subspace with JP = 3o

and 4o for a Ni-like isoelectronic sequence with Z = 31–92.
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Figure 19. Shannon entropies for the 1st and 2nd levels labeled as 3d94f 3Ho
6 and 3d94f 3Ho

5 in the
LS-coupled subspace with JP = 5o and 6o for a Ni-like isoelectronic sequence with Z = 31–92.

Tables 7–15 show the sudden change of Shannon entropies, information exchanges,
eigenlevel anticrossings, and configuration mixing coefficients for adjacent levels, where
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the atomic state functions are expressed by the first three CSF components. In these tables,
the sudden change is labeled as “Yes” or “No”, and the eigenlevel anticrossings are the
minima of the energy difference between two adjacent levels. In Table 7, it is clear that
there is no sudden change, eigenlevel anticrossing, and information exchange at Z = 48
and 49 for the 2nd and 3rd levels, which can be described by an LS-coupled configuration
basis set certainly, while in Table 6 in [25], we can see there is information exchange but
no sudden change and eigenlevel anticrossing at Z = 48 and 49 for the 2nd and 3rd levels,
the information of which were uncertain in the jj-coupled configuration basis set. In other
tables, only the information exchange related to sudden change and anticrossing is listed.
Information exchanges unrelated to sudden change and anticrossing are not given. As
stated in [25], from these tables where there is a sudden change in Shannon entropy, there is
an eigenlevel anticrossing and vice versa. At the same time, if there is a sudden change or
an eigenlevel anticrossing, there is an information exchange. In addition, it is also clarified
that there is no necessary connection between a strong configuration interaction and
eigenlevel anticrossing even and information exchange, because the eigenlevel anticrossing
is determined by the Hamiltonian itself, which is independent of the configuration basis
set in different coupling schemes.

Table 7. Types of sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with JP = 0e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

48 No No |2〉 : 0.9943(3d94d 3P0), |3〉 : −0.9887(3d94d 1S0)
49 No No |2〉 : 0.9937(3d94d 3P0), |3〉 : −0.9879(3d94d 1S0)

Table 8. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the LS-coupled subspace with JP = 1e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

37 No ∆E11,10 = 0.00615 |10〉 : −0.9987(3p54 f 3D1), |11〉 : −0.9945(3s4s 3S1)
38 Yes No |10〉 : −0.9942(3s4s 3S1), |11〉 : 0.9985(3p54 f 3D1)

69 No No |10〉 : −0.9827(3s4s 3S1), |11〉 : 0.9989(3p54 f 3D1)
70 Yes ∆E11,10 = 0.0792 |10〉 : 0.9985(3p54 f 3D1), |11〉 : −0.9800(3s4s 3S1)

74 No No |9〉 : −0.6927(3p54p 3P1)− 0.4972(3p54p 3S1∗) +
0.3283(3p54p 1P1), |10〉 : −0.9971(3p54 f 3D1)

75 Yes ∆E10,9 = 0.0613
|9〉 : 0.7579(3p54 f 3D1)− 0.4496(3p54p 3P1)−
0.3254(3p54p 3S1), |10〉 : 0.6509(3p54 f 3D1) +
0.5194(3p54p 3P1) + 0.3694(3p54p 3S1∗)

80 Yes ∆E11,10 = 0.9544
|10〉 : −0.6581(3s4s 3S1)− 0.5462(3p54p 3P1)−
0.3758(3p54p 3S1∗), |11〉 : 0.7513(3s4s 3S1)−
0.4584(3p54p 3P1)− 0.3794(3p54p 3S1)

81 No No
|10〉 : −0.7587(3s4s 3S1)− 0.4745(3p54p 3P1)−
0.3188(3p54p 3S1), |11〉 : 0.6495(3s4s 3S1)−
0.5319(3p54p 3P1)− 0.4290(3p54p 3S1∗)

85 No No |8〉 : 0.8019(3p54p 3D1) + 0.4483(3p54p 1P1)−
0.3518(3p54 f 3D1), |9〉 : 0.9358(3p54 f 3D1)

86 Yes ∆E9,8 = 0.3714
|8〉 : 0.8901(3p54 f 3D1)− 0.3896(3p54p 3D1)−
0.2188(3p54p 1P1), |9〉 : 0.7633(3p54p 3D1) +
0.4552(3p54 f 3D1) + 0.4253(3p54p 1P1)
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Table 8. Cont.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

87 Yes ∆E6,5 = 0.2609
|5〉 : −0.6264(3d94d 3P1) + 0.3856(3p54p 3P1)−
0.3779(3d94d 3S1∗), |6〉 : 0.5809(3p54p 3P1)−
0.4435(3p54p 3S1∗) + 0.3717(3d94d 3S1)

88 No No
|5〉 : 0.6672(3p54p 3P1)− 0.5379(3p54p 3S1∗) +
0.3027(3p54p 1P1) ,|6〉 : −0.6757(3d94d 3P1)−
0.5310(3d94d 3S1∗)− 0.3918(3d94d 3D1)

91 Yes ∆E5,4 = 0.3299
|4〉 : 0.5764(3d94d 3D1) + 0.4815(3d94d 1P1) +
0.4345(3p54p 3P1), |5〉 : 0.5449(3p54p 3P1)−
0.4553(3d94d 3D1)− 0.4266(3p54p 3S1∗)

92 No No
|4〉 : 0.6627(3p54p 3P1)− 0.5278(3p54p 3S1∗) +
0.3074(3p54p 1P1) ,|5〉 : −0.6953(3d94d 3D1)−
0.5821(3d94d 1P1) + 0.2904(3d94d 3S1)

Table 9. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the LS-coupled subspace with JP = 2e and 3e.

Z Sudden
Change Eigenlevel Anticrossing Configuration Mixing Coefficients

31 No ∆E22,21 = 3.0× 10−5 |21〉 : −0.6796(3p54 f 3F2)− 0.5693(3p54 f 1D2∗)− 0.4624(3p54 f 3D2),
|22〉 : −0.8603(3p54 f 3G3)− 0.3915(3p54 f 1F3)− 0.3265(3p54 f 3F3)

32 Yes No |21〉 : −0.8571(3p54 f 3G3)− 0.3965(3p54 f 1F3)− 0.3286(3p54 f 3F3),
|22〉 : −0.6854(3p54 f 3F2)− 0.5668(3p54 f 1D2∗)− 0.4568(3p54 f 3D2)

35 No No |10〉 : −0.7312(3d94d 3F3) + 0.6100(3d94d 1F3)− 0.3018(3d94d 3D3),
|11〉 : 0.7267(3d94d 3F2) + 0.6762(3d94d 1D2)− 0.1170(3d94d 3P2)

36 Yes ∆E11,10 = 0.00025 |10〉 : 0.7253(3d94d 3F2) + 0.6769(3d94d 1D2)− 0.1204(3d94d 3P2),
|11〉 : −0.7315(3d94d 3F3) + 0.6074(3d94d 1F3)− 0.3057(3d94d 3D3)
|18〉 : 0.7251(3p54 f 1D2)− 0.6756(3p54 f 3F2) + 0.1290(3p54 f 3D2),
|19〉 : 0.6373(3p54 f 1F3) + 0.5552(3p54 f 3F3)− 0.5342(3p54 f 3G3)

37 Yes ∆E19,18 = 0.00049 |18〉 : 0.6363(3p54 f 1F3) + 0.5534(3p54 f 3F3)− 0.5373(3p54 f 3G3),
|19〉 : 0.7367(3p54 f 1D2)− 0.6682(3p54 f 3F2) + 0.0356(3s4d 1D2)

44 No No |9〉 : −0.6318(3d94d 3D2) + 0.4842(3d94d 1D2)− 0.4767(3d94d 3F2),|10〉 :
0.7672(3d94d 3F2) + 0.6257(3d94d 1D2)− 0.1390(3d94d 3P2)

45 Yes ∆E10,9 = 0.00075 |9〉 : −0.7051(3d94d 3F2)− 0.6760(3d94d 1D2) + 0.1895(3d94d 3P2),|10〉 :
−0.6321(3d94d 3D2)− 0.5616(3d94d 3F2) + 0.3931(3d94d 1D2)

48 No ∆E21,20 = 0.0026
|20〉 : −0.6155(3p54 f 3D3) + 0.6027(3p54 f 1F3) + 0.3895(3p54 f 3G3)−
0.3182(3p54 f 3F3∗),
|21〉 : −0.7491(3p54 f 3G3)− 0.5608(3p54 f 3F3)− 0.3202(3p54 f 3D3)

49 No No
|20〉 : 0.6178(3p54 f 1F3)− 0.5314(3p54 f 3D3) + 0.5453(3p54 f 3G3)−
0.1865(3p54 f 3F3∗),
|21〉 : −0.6457(3p54 f 3G3)− 0.6153(3p54 f 3F3)− 0.4490(3p54 f 3D3)

50 Yes No |20〉 : −0.6694(3p54 f 3G3)− 0.6038(3p54 f 1F3) + 0.4265(3p54 f 3D3),
|21〉 : −0.6457(3p54 f 3G3)− 0.6153(3p54 f 3F3)− 0.4490(3p54 f 3D3)

72 No No |21〉 : −0.7163(3p54 f 3D3)− 0.5624(3p54 f 3F3) + 0.3765(3p54 f 1F3),
|22〉 : 0.6647(3p54 f 3F2) + 0.5863(3p54 f 1D2) + 0.4473(3p54 f 3D2)

73 Yes ∆E22,21 = 0.0021 |21〉 : 0.6645(3p54 f 3F2) + 0.5858(3p54 f 1D2) + 0.4480(3p54 f 3D2),
|22〉 : 0.7172(3p54 f 3D3) + 0.5613(3p54 f 3F3)− 0.3768(3p54 f 1F3)

75 Yes ∆E16,15 = 0.1307 |15〉 : 0.5613(3p54 f 3D2)− 0.5387(3p54p 3D2) + 0.4467(3p54p 1D2∗),
|16〉 : −0.6291(3p54 f 3D2) + 0.4665(3p54 f 3F2)− 0.4393(3p54p 3D2)

∆E17,16 = 0.1326 |17〉 : 0.7658(3p54 f 3F3)− 0.4401(3p54 f 3G3)− 0.3439(3p54 f 3D3),
|18〉 : 0.7425(3p54 f 1F3) + 0.5870(3p54 f 3D3)− 0.2581(3p54 f 3G3)

76 Yes ∆E18,17 = 0.1121 |15〉 : −0.8421(3p54 f 3D2) + 0.5204(3p54 f 3F2) + 0.0617(3p54 f 1D2),
|16〉 : 0.7619(3p54 f 3F3)− 0.4451(3p54 f 3G3) + 0.3340(3p54 f 1F3)

∆E19,18 = 0.2295
|17〉 : 0.7359(3p54 f 1F3) + 0.5936(3p54 f 3D3)− 0.2484(3p54 f 3G3),
|18〉 : 0.6036(3p54p 3D2)− 0.4937(3p54p 1D2∗)− 0.4938(3p54p 1D2),
|19〉 : −0.6992(3p54 f 1D2) + 0.4244(3p54 f 3F2) + 0.3512(3p54p 3D2)

77 No No |18〉 : 0.7867(3p54 f 1D2)− 0.5112(3p54 f 3F2)− 0.2660(3p54 f 3D2),
|19〉 : 0.6852(3p54p 3D2)− 0.5638(3p54p 1D2∗) + 0.3998(3p54p 3P2)
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Table 9. Cont.

Z Sudden
Change Eigenlevel Anticrossing Configuration Mixing Coefficients

86 Yes No
|10〉 : −0.6814(3d94d 3D2)− 0.4893(3d94d 3P2∗) + 0.3657(3d94d 1D2),
|11〉 : 0.7121(3d94d 3F3)− 0.5042(3d94d 1F3) + 0.4197(3d94d 3D3),
|12〉 : −0.6912(3p54p 3D2)− 0.5647(3p54p 1D2∗) + 0.3972(3p54p 3P2)

87 Yes ∆E12,11 = 0.0484
|10〉 : −0.6320(3p54p 3D2)− 0.5136(3p54p 1D2∗) + 0.3492(3p54p 3P2),
|11〉 : −0.6463(3d94d 3D2)− 0.4138(3d94d 3P2∗)− 0.3501(3d94d 3F2),
|12〉 : 0.7119(3d94d 3F3)− 0.5037(3d94d 1F3) + 0.4199(3d94d 3D3)

90 No No |9〉 : −0.7679(3d94d 3F2)− 0.4893(3d94d 1D2)− 0.2641(3p54p 3D2),
|10〉 : −0.6552(3p54p 3D2)− 0.5333(3p54p 1D2∗) + 0.3714(3p54p 3P2)

91 Yes ∆E9,8 = 0.0073
|8〉 : 0.9084(3d94d 3G3),
|9〉 : −0.6139(3p54p 3D2)− 0.5030(3p54p 1D2∗)− 0.4321(3d94d 3F2),
|10〉 : −0.6901(3d94d 3F2)− 0.4892(3d94d 1D2) + 0.3496(3p54p 3D2)

92 No No |8〉 : −0.6908(3p54p 3D2)− 0.5648(3p54p 1D2∗) + 0.3941(3p54p 3P2),
|9〉 : 0.9084(3d94d 3G3)

Table 10. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with JP = 4e

and 5e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

35 No No |1〉 : 0.9999(3d94d 3G5),
|2〉 : 0.7968(3d94d 3G4) + 0.5952(3d94d 1G4)− 0.1029(3d94d 3F4)

36 Yes ∆E2,1 = 6.0× 10−5 |1〉 : 0.7940(3d94d 3G4) + 0.5980(3d94d 1G4)− 0.1086(3d94d 3F4),
|2〉 : 0.9999(3d94d 3G5)

61 No ∆E6,5 = 3.0× 10−5 |5〉 : 0.9998(3p54 f 3G5),
|6〉 : 0.7470(3p54 f 3G4) + 0.6330(3p54 f 1G4)− 0.2025(3p54 f 3F4)

62 Yes No |5〉 : 0.7467(3p54 f 3G4) + 0.6332(3p54 f 1G4)− 0.2032(3p54 f 3F4),
|6〉 : 0.9999(3p54 f 3G5)

Table 11. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with
JP = 0o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

77 No No |3〉 : 0.8557(3p54s 3P0)− 0.5126(3p54d 3P0),
|4〉 : 0.8559(3p54d 3P0) + 0.5153(3p54s 3P0)

78 Yes ∆E4,3 = 0.5284 |3〉 : 0.7783(3p54d 3P0)− 0.6231(3p54s 3P0),
|4〉 : 0.7807(3p54s 3P0)− 0.6242(3p54d 3P0)

Table 12. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with
JP = 1o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

49 Yes ∆E7,6 = 0.11137 |6〉 : −0.8459(3d94 f 1P1) + 0.4001(3p54s 1P1) + 0.2725(3p54s 3P1),
|7〉 : 0.6894(3p54s 1P1) + 0.5366(3p54s 3P1) + 0.4689(3d94 f 1P1)

50 Yes No |6〉 : 0.7357(3p54s 1P1) + 0.5383(3p54s 3P1)− 0.3928(3d94 f 1P1),
|7〉 : 0.8819(3d94 f 1P1) + 0.3097(3p54s 1P1) + 0.2658(3p54s 3P1)

55 Yes ∆E6,5 = 0.01691 |5〉 : −0.6319(3d94 f 3D1)− 0.5370(3p54s 1P1)− 0.3847(3p54s 3P1),
|6〉 : −0.6149(3d94 f 3D1) + 0.5948(3p54s 1P1∗) + 0.4461(3p54s 3P1)

56 No No |5〉 : 0.7995(3p54s 1P1) + 0.5853(3p54s 3P1)− 0.0874(3d94 f 1P1),
|6〉 : −0.8760(3d94 f 3D1)− 0.3710(3d94 f 3P1) + 0.2959(3d94 f 1P1)

58 No No |4〉 : 0.8778(3d94 f 3P1)− 0.4081(3d94 f 3D1)− 0.1928(3p54s 1P1),
|5〉 : 0.7813(3p54s 1P1) + 0.5686(3p54s 3P1) + 0.2271(3d94 f 3P1)

59 Yes ∆E5,4 = 0.05159 |4〉 : 0.7126(3p54s 1P1) + 0.5247(3p54s 3P1)− 0.4141(3d94 f 3P1),
|5〉 : 0.8031(3d94 f 3P1) + 0.3757(3p54s 1P1)− 0.3721(3d94 f 3D1)
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Table 12. Cont.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

71 Yes ∆E12,11 = 0.6555 |11〉 : 0.5798(3s4p 3P1) + 0.5195(3p54d 3D1∗) + 0.4108(3s4p 1P1),
|12〉 : −0.5895(3s4p 3P1) + 0.4898(3p54d 3D1) + 0.4141(3p54d 1P1)

72 No No |11〉 : 0.6459(3s4p 3P1) + 0.4563(3p54d 3D1) + 0.4540(3s4p 1P1),
|12〉 : 0.5487(3p54d 3D1)− 0.5155(3s4p 3P1) + 0.4591(3p54d 1P1)

77 No No |8〉 : 0.7658(3p54d 3P1)− 0.5392(3p54d 3D1)− 0.2530(3p54s 3P1),
|9〉 : 0.7611(3p54s 3P1)− 0.5425(3p54s 1P1)− 0.2490(3p54d 3D1)

78 Yes ∆E9,8 = 0.3099 |8〉 : 0.5958(3p54d 3P1)− 0.5647(3p54s 3P1) + 0.4131(3p54s 1P1),
|9〉 : −0.5764(3p54s 3P1)− 0.5193(3p54d 3P1) + 0.4059(3p54s 1P1)

81 Yes ∆E10,9 = 0.2760 |9〉 : 0.6168(3p54s 3P1) + 0.5274(3p54d 1P1)− 0.4421(3p54s 1P1),
|10〉 : −0.6001(3p54d 1P1)− 0.5210(3p54s 3P1)− 0.4081(3p54d 3P1)

82 No No |9〉 : 0.7611(3p54d 1P1)− 0.4172(3p54d 3P1)− 0.3845(3p54d 3D1),
|10〉 : 0.7695(3p54s 3P1)− 0.5492(3p54s 1P1)− 0.2383(3p54d 1P1)

Table 13. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with
JP = 2o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

52 Yes ∆E9,8 = 0.02944
|7〉 : −0.6123(3d94 f 3P2)− 0.5682(3d94 f 3D2∗) + 0.5127(3d94 f 1D2),
|8〉 : 0.7880(3d94 f 3F2) + 0.4498(3d94 f 1D2) + 0.4166(3d94 f 3D2),
|9〉 : −0.9773(3p54s 3P2)

53 Yes ∆E8,7 = 0.05352
|7〉 : −0.8822(3p54s 3P2) + 0.2936(3d94 f 3D2)− 0.2600(3d94 f 1D2),
|8〉 : −0.5882(3d94 f 3P2)− 0.4620(3p54s 3P2)− 0.4815(3d94 f 3D2∗),
|9〉 : 0.7865(3d94 f 3F2) + 0.4403(3d94 f 1D2) + 0.4294(3d94 f 3D2)

56 No No

|5〉 : −0.7305(3d94 f 3P2) + 0.5644(3d94 f 3D2)− 0.3171(3d94 f 1D2),
|6〉 : −0.6507(3d94 f 1D2) + 0.6110(3d94 f 3F2)− 0.4310(3d94 f 3D2),
|7〉 : −0.9740(3p54s 3P2),
|8〉 : 0.6597(3d94 f 3P2) + 0.5330(3d94 f 3D2∗)− 0.5211(3d94 f 1D2)

57 Yes ∆E6,5 = 0.0630 |5〉 : −0.6371(3d94 f 3P2) + 0.4874(3d94 f 3D2∗) + 0.5234(3p54s 3P2),
|6〉 : −0.8445(3p54s 3P2) + 0.3667(3d94 f 3D2)− 0.3514(3d94 f 3P2)

∆E7,6 = 0.0486 |7〉 : 0.6767(3d94 f 1D2) + 0.3833(3d94 f 3D2)− 0.6046(3d94 f 3F2),
|8〉 : −0.6644(3d94 f 3P2) + 0.5236(3d94 f 3D2)− 0.5239(3d94 f 1D2)

58 Yes No

|5〉 : −0.9156(3p54s 3P2),
|6〉 : −0.6810(3d94 f 3P2) + 0.5946(3d94 f 3D2)− 0.2973(3p54s 3P2),
|7〉 : 0.6797(3d94 f 1D2)− 0.6067(3d94 f 3F2) + 0.3811(3d94 f 3D2),
|8〉 : −0.6686(3d94 f 3P2) + 0.5272(3d94 f 1D2)− 0.5132(3p54s 3D2∗)

Table 14. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with JP = 3o

and 4o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

35 No No |13〉 : 0.9996(3p54d 3F4),
|14〉 : 0.7238(3p54d 3F3) + 0.6750(3p54d 1F3)− 0.1405(3p54d 3D3)

36 Yes ∆E14,13 = 0.00023 |13〉 : 0.7238(3p54d 3F3) + 0.6745(3p54d 1F3)− 0.1418(3p54d 3D3),
|14〉 : 0.9995(3p54d 3F4)

39 No ∆E18,17 = 4.0× 10−5 |17〉 : −0.9998(3s4 f 3F4), |18〉 : −0.9998(3s4 f 3F3)
40 Yes No |17〉 : −0.9997(3s4 f 3F3), |18〉 : −0.9998(3s4 f 3F4)

56 No ∆E12,11 = 2.0× 10−5 |11〉 : −0.6741(3d94 f 3G4) + 0.5781(3d94 f 1G4)− 0.4577(3d94 f 3F4),
|12〉 : −0.7050(3d94 f 3G3)− 0.6430(3d94 f 1F3) + 0.2952(3d94 f 3D3)

57 Yes No |11〉 : −0.6919(3d94 f 3G3)− 0.6483(3d94 f 1F3) + 0.3109(3d94 f 3D3),
|12〉 : −0.6742(3d94 f 3G4) + 0.5762(3d94 f 1G4)− 0.4596(3d94 f 3F4)
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Table 14. Cont.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

60 No |10〉 : 0.6384(3d94 f 3F3) + 0.6009(3d94 f 3G3) + 0.4524(3d94 f 3D3∗),
|11〉 : −0.6691(3d94 f 1F3)− 0.6224(3d94 f 3G3∗) + 0.3780(3d94 f 3D3)

61 No |10〉 : 0.6403(3d94 f 3G3) + 0.6279(3d94 f 3F3) + 0.4269(3d94 f 3D3),
|11〉 : −0.6764(3d94 f 1F3)− 0.5816(3d94 f 3G3) + 0.4096(3d94 f 3D3∗)

62 No |10〉 : 0.6861(3d94 f 3G3) + 0.6103(3d94 f 3F3) + 0.3915(3d94 f 3D3),
|11〉 : −0.6815(3d94 f 1F3)− 0.5266(3d94 f 3G3) + 0.4461(3d94 f 3D3∗)

63 No ∆E11,10 = 0.0274 |10〉 : 0.7356(3d94 f 3G3) + 0.5830(3d94 f 3F3) + 0.3443(3d94 f 3D3),
|11〉 : −0.6815(3d94 f 1F3) + 0.4857(3d94 f 3D3∗)− 0.4548(3d94 f 3G3)

64 Yes No |10〉 : 0.7824(3d94 f 3G3) + 0.5448(3d94 f 3F3) + 0.2864(3d94 f 3D3),
|11〉 : −0.6730(3d94 f 1F3) + 0.5240(3d94 f 3D3∗) + 0.3696(3d94 f 3G3)

Table 15. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the LS-coupled subspace with JP = 5o

and 6o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

56 Yes ∆E2,1 = 0.00028 |1〉 : (3d94 f 3 H6),
|2〉 : 0.7408(3d94 f 3 H5) + 0.6615(3d94 f 1 H5)− 0.1173(3d94 f 3G5)

57 No No |1〉 : 0.7396(3d94 f 3 H5) + 0.6622(3d94 f 1 H5)− 0.1205(3d94 f 3G5),
|2〉 : (3d94 f 3 H6)

4. Summary and Outlook

Based on the transformation between jj- and LS-coupled configuration basis sets,
the Shannon entropies in the LS-coupled configuration space have been obtained for the
ground and excited states of a Ni-like isoelectronic sequence. As we already know, the
role of Shannon entropy can be considered as an information measurement of an atomic
state in a given configuration space. The smaller the entropy, the more localization in the
distribution of configuration weights, the more certain the information of the energy level,
and the more meaningful the configuration. However, in the LS-coupled configuration
space, the Shannon entropy is generally higher than that in the jj-coupled configuration
space for the ground and single excited states of most of Ni-like ions. Large Shannon
entropy stands for the delocalization of configuration weights, which describes the extent of
configuration interaction in a certain atomic state function. If there is a strong configuration
interaction, it may be invalid that the energy level is labeled by the dominant component
in a given configuration space. As a result of this, the unique algorithm has to be used
to label the level uniquely in order to describe their information. On the basis of unique
notation, a relationship has also been found among the sudden change of Shannon entropy,
information exchange, eigenlevel anticrossing, and strong configuration interaction in
LS-coupled configuration space.

As we hope, the conclusion is exactly the same as that of our previous work [25], but the
situation is more complicated than before, especially for information exchange. Firstly, the
sudden change of Shannon entropy in an LS-coupled configuration space is a sufficient and
necessary condition for the eigenlevel anticrossing, which means that the sudden change of
Shannon entropy can be considered as the effective indicator of the eigenlevel anticrossing
likely in a jj-coupled configuration space. Secondly, if there are sudden changes of Shannon
entropy in an LS-coupled configuration space and eigenlevel anticrossings, information
exchange must take place, which is very much the same in a jj-coupled configuration space.
Thirdly, Shannon entropy describes the nonlocality of configuration expansion in an atomic
state function, which can reflect the strength of configuration interaction. Compared with
the Shannon entropy in an LS-coupled configuration space, the Shannon entropy is so small
in a jj-coupled configuration space that the information of most energy levels is certain
and can be labeled by their dominant component. On the contrary, the Shannon entropy
in an LS-coupled configuration space is larger for the levels of most of Ni-like ions, so the
unique notation has to be used in order to describe the information of energy levels. In
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addition, there is much more information exchange in an LS-coupled configuration space
than that in a jj-coupled configuration space but no sudden change of Shannon entropy
and eigenlevel anticrossing. In a word, the structure of Shannon entropy along the Ni-like
isoelectronic sequence can not be changed due to the LS-jj transformation; the structure of
sudden change is invariant. Furthermore, it is expected that in a proper coupling scheme
(e.g., one of LS, jj, LK, and jK coupling schemes or others) the structure of sudden change
of Shannon entropy would be shown remarkably.
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