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Abstract: The initial field has a crucial influence on numerical weather prediction (NWP). Data
assimilation (DA) is a reliable method to obtain the initial field of the forecast model. At the same time,
data are the carriers of information. Observational data are a concrete representation of information.
DA is also the process of sorting observation data, during which entropy gradually decreases. Four-
dimensional variational assimilation (4D-Var) is the most popular approach. However, due to the
complexity of the physical model, the tangent linear and adjoint models, and other processes, the
realization of a 4D-Var system is complicated, and the computational efficiency is expensive. Machine
learning (ML) is a method of gaining simulation results by training a large amount of data. It achieves
remarkable success in various applications, and operational NWP and DA are no exception. In this
work, we synthesize insights and techniques from previous studies to design a pure data-driven
4D-Var implementation framework named ML-4DVAR based on the bilinear neural network (BNN).
The framework replaces the traditional physical model with the BNN model for prediction. Moreover,
it directly makes use of the ML model obtained from the simulation data to implement the primary
process of 4D-Var, including the realization of the short-term forecast process and the tangent linear
and adjoint models. We test a strong-constraint 4D-Var system with the Lorenz-96 model, and we
compared the traditional 4D-Var system with ML-4DVAR. The experimental results demonstrate
that the ML-4DVAR framework can achieve better assimilation results and significantly improve
computational efficiency.

Keywords: numerical weather prediction; four-dimensional variational assimilation; machine learning;
tangent linear and adjoint models

1. Introduction

Numerical weather prediction (NWP) predicts future atmospheric states using numer-
ical methods on high-performance computers to solve equations describing atmospheric
dynamics and thermal processes under certain initial conditions. Hence, it can be seen as
an initial value problem [1–3]. Information in the atmosphere is often expressed in the form
of data. In order to obtain an accurate initial field, we need to increase the credibility of
the data and artificially remove redundant information. This also means reducing entropy.
Data assimilation (DA) merges observations with numerical model forecasts to estimate
the current optimal atmospheric state. The analysis, which results from data assimilation,
is employed as the initial field for NWP [4]. Four-dimensional variational assimilation
(4D-Var) is the most popular data assimilation method, which is widely used in many
operational NWP centers [5–10].

The calculation of the 4D-Var assimilation system depends on the forecast model
and the functional minimization calculation process to a large extent [11]. The higher the
accuracy of the forecast model, the better the effect of the assimilation system. However,
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the improvement of the model precision will not only increase the prediction time but also
increase the computational cost of the tangent linear and adjoint models in the process of
functional minimization [12]. Meanwhile, the real-time performance of operational forecast
determines the importance of computational efficiency. Therefore, the realization of the
4D-Var system must take into account the improved accuracy of the forecast model in the
case of ensuring calculation efficiency. Currently, the approach that is achieved by reducing
the resolution of the model is often adopted in the operational 4D-Var assimilation systems.

The ensemble assimilation method is an alternative to 4D-Var [13]. Nevertheless, the
ensemble method has a primary problem, which is that the number of ensemble members
is much smaller than the dimensions of the system, resulting in sample errors, false cor-
relations, and low-rank problems [14]. The difficulty of 4D-Var stems from the complex
forecast model. The difficulty of 4D-Var can be cut down by reducing the complexity of the
forecast model.

With the development of machine learning (ML), the application of ML has penetrated
various fields. As a data-driven method, it does not care about the calculation of the
traditional physical model but obtains the underlying features and law through training
data and then gains the simulation results [15]. A great deal of forecast product data
and satellite observations provide a good opportunity for the application of ML in earth
science [16]. The ML method has achieved rich research results in the physical process
simulation [17,18], parameter estimation, and DA [19].

Dueben and Bauer trained the deep neural network (DNN) using the reanalysis data
on a coarse-resolution grid with a spatial resolution of 6 degrees. They employed the
DNN to forecast 500 hPa geopotential height for global regions and demonstrated the
feasibility of ML in the weather forecast [16]. Weyn et al. utilized the reanalysis data to
train the convolutional neural network (CNN) and built a deep learning weather prediction
(DLWP) to forecast the geopotential height of 500 hPa in the northern hemisphere and
meteorological elements of 300–700 hPa [20]. The experiments show that the prediction
accuracy of the DLWP for the geopotential height of 500 hPa is better than that of the T42IFS
model and lower than that of the T63IFS model. In terms of computational efficiency, the
running time of the DLWP is much lower than that of classical forecasting models, which
proves that ML is an essential means to solve the problem of computational cost effectively.
At present, the simulation accuracy of NWP for subgrid-scale physical processes needs to
be improved. Furthermore, these small-scale processes will affect the accuracy of forecast
results [21]. Therefore, it is crucial to improve the accuracy of the parameterization schemes
of the physical process. Replacing traditional parameterization with ML is a way to improve
accuracy. Rasp et al. used multilayer perceptron (MLP) to simulate a cloud parsing model.
The experimental results show that the MLP parameterization scheme can run stably for a
long time. Under the condition of ensuring the accuracy of the prediction results, the MLP
parameterization scheme can reduce the computational cost [22]. Yuval et al. demonstrate
that it is possible to add physical constraints to the neural network parameterization to
improve the physical interpretability of the neural network parameterization scheme [23].
Song et al. used MLP to model the radiation parameterization scheme. The authors
used the MLP parameterization scheme in the atmospheric model, which significantly
reduced the root mean square error (RMSE) and increased the computational speed [24].
Krasnopolsky gave a detailed introduction to the prospects, methods, evaluation criteria,
and limitations of neural networks in subgrid-scale physical processes [25]. Chantry et al.
successfully emulated the nonorographic gravity wave drag scheme from the operational
forecast model with the MLP [26]. The experimental results demonstrate that the emulator
can be coupled to an operational system for seasonal timescales and is more accurate than
the parameterized scheme used in operational predictions. Bonavita applied the artificial
neural network (ANN) to simulate weak-constraint four-dimensional variational data
assimilation (WC-4DVar) [27]. The results indicate that the assimilation products obtained
by the ANN are similar to WC-4DVar. Furthermore, model errors can be corrected when
the ANN is embedded in WC-4DVar. Hatfield et al. employed the MLP to simulate the
parameterization of nonorographic gravity wave drag and applied the tangent linear and
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adjoint models of the MLP to 4D-Var [28]. The research demonstrates that the tangent
linear and adjoint models of the MLP can be used for data assimilation and weather
forecast. There is no significant difference between the assimilation forecast result of
this method and the operational NWP center. Nonnenmacher takes advantage of the
DNN to simulate the Lorenz-96 model and investigates whether the DNN derivatives are
available [29]. The experimental results prove that the DNN can simulate kinetic models,
and the accuracy of its derivatives is reliable and can be directly used for data assimilation
and parametrization tuning.

Although ML has rich research results in the numerical forecast, most of these results
are only for a single problem in the assimilation system, and it does not propose a pure
data-driven data assimilation solution from a system-wide perspective. Based on the idea of
ML simulator, this paper structures a 4D-Var assimilation system based on machine learing
(ML-4DVAR). It replaces the two most time-consuming processes in the traditional 4D-Var
system with machine learning: one is the forecast model, and the other is the tangent linear
and adjoint models. In order to show the feasibility of the system, we conduct 4D-Var
assimilation experiments with the Lorenz-96 model. The experiments demonstrate that the
ML-4DVAR can get more accurate analysis results and improve computational efficiency
compared to traditional implementations.

The remainder of the paper is organized as follows. Section 2 presents the structure
of the ML-4DVAR. Section 3 investigates the performance of ML-4DVAR with the Lorenz-
96 model. Finally, we conclude the results of this research and discuss future work in
Sections 4 and 5.

2. Methods
2.1. Related Knowledge

4D-Var utilizes the observations at different moments, the background at the initial
moment, and the forecast model to obtain the analysis. The purpose of 4D-Var is to find
an initial condition that makes the forecast trajectory to the greatest extent possible to fit
the observation data in the interval [4]. As shown in Figure 1, the solid red line represents
the predicted trajectory of the background, and the solid blue line represents the forecast
trajectory of the analysis. The role of 4D-Var is to modify the forecast trajectory. We study a
strongly constrained 4D-Var whose cost function is shown in Equation (1):

J(x0) = Jb + Jo

=
1
2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1
2

N

∑
i=0

[H i(Mi(x0))− yo
i ]

TR−1
i [H i(Mi(x0))− yo

i ]

(1)

where x0 is the control variable, xb denotes the background, yo
i represents the observations

at time i, B is the background error covariance matrix, the significance of Ri is the observa-
tion error covariance matrix at time i, H i represents the observation operator at time i, and
Mi is the forecast model at time i. It can be seen from Equation (1) that the cost function J
is composed of two items, The first term represents the square of the deviation between
the control variable and the background; the second term is the sum of the squares of the
differences between the model integrated and the observations.

2.2. Problem Statement

The output of the 4D-Var is called analysis, which is denoted by xa. Generally, the
analysis is gained employing the quasi-Newton iteration method or the conjugate gradient
method to calculate the minimum value of the cost function J. During the calculation,
we need to integrate the forward forecast model and then figure the gradient of the cost
function with respect to the control variable. At present, there are mainly two methods
to compute the gradient: one is the finite difference method, and the other is the adjoint
method. The finite difference method cannot guarantee the computer precision, and the
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amount of calculation is too expensive. The adjoint method for calculating gradients has
two advantages: one is the small amount of computation, and the other is the high computa-
tional accuracy. Therefore, the operational systems generally take advantage of the adjoint
method to calculate the gradients, which requires the tangent linear and adjoint models.
The tangent linear and adjoint models are obtained by linearizing the nonlinear model.
Most atmospheric models are highly nonlinear, including some unresolved parameter
schemes. It often takes much time to integrate these models, and the tangent linear and
adjoint models of these modes are complicated [13]. In 4D-Var, the forecast models are
also essential. Usually, we need to spend a lot of time integrating forecast models, and
tangent linear and adjoint models are closely related to the forecast models. These problems
have seriously affected the performance of 4D-Var, which in turn affected the quality and
timeliness of the weather forecast. With the rapid development of ML, the conditions for
the application of ML to earth science are gradually maturing. We employ ML research to
address the above problems.

Figure 1. 4D-Var assimilation in the NWP.

2.3. The Architecture of ML-4DVAR

The key to constructing ML-4DVAR is to build the ML model to simulate the numerical
prediction model. This precondition requires us to study the equations of the dynamical
system. Ordinary differential equations (ODEs) are often applied to denote, understand,
and predict the systems that change over time. Their basic form is shown in Equation (2):

dx(t)
dt

= f (t, x(t)). (2)

For the purpose of predicting the future, we need to integrate ODEs. Given the time
step dt, the state value at time i + 1 is:

xi+1 = F(xi) = xi +
∫ i+1

i
f (xi)dt. (3)

It can be seen from Equation (3) that the relationship between xi+1 and xi can be
regarded as a functional relationship (or as a mapping from xi to xi+1) , where the indepen-
dent variable is xi and the dependent variable is xi+1. The operatinal systems are hard to
compute mathematically analytical solutions to ODEs, so these equations need to be solved
by numerical methods after discretization in time and space [1]. The formula is shown in
Equation (4):

xi+1 = M(xi) + εi (4)

where M describes the forecast model, and εi is the forecast model error.
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Neural networks are a branch of ML. Neural networks can precisely simulate complex
systems [25], and Vapnik has demonstrated that shallow neural networks can fit any
function [30]. In theory, the neural network can fit any function [31], so we apply the
neural network to simulate function xi+1 = F(xi). The conventional neural networks
include a convolutional layer, pooling layer, fully connected layer, batch normalization
layer, and nonlinear activation function [32]. There are nonlinear calculation processes
in the dynamic system. These nonlinear computational processes may lead to the poor
simulation of traditional neural networks [33]. Compared to traditional neural networks,
the bilinear neural networks (BNNs) with bilinear layers can better simulate dynamical
systems and are physically easier to explain. In this paper, a BNN is used to simulate the
operator f to obtain f̂ (where f̂ represents the neural network operator), and then, the
forecast model based on the BNN is established. The neural network forecast model used
in this paper is shown in Figure 2, where the input value is xi and the output value is xi+1.
The BNN includes two convolutional layers and one bilinear layer, and the convolution
kernels of the two convolutional layers are 4 and 1, respectively. We give dt, enter xi, and
then integrate simulation operator f̂ using the fourth-order Runge–Kutta method to gain
xi+1.

Figure 2. The architecture of the forecast model BNN.

The definition of the symbols in Figure 2 is as follows:

S1 = f̂ (xi)

S2 = f̂ (xi +
dt
2

S1)

S3 = f̂ (xi +
dt
2

S2)

S4 = f̂ (xi + dtS3)

f̂ (x) =
dx
dt

xi+1 = xi +
dt
6
(S1 + 2S2 + 2S3 + S4).

(5)

The training data are generated by integrating the ODEs, and the integration method
used is the fourth-order Runge–Kutta integration method. M̂ represents the neural network
forecast model, xi is the input variable of M̂, xi+1 is the output variable of M̂, and its
output is xk+1. The cost function is defined as shown in Equation (6), and the optimization
algorithm is Adam.

L(W) = ‖xi+1 − M̂(xi)‖2 (6)
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where ‖ · ‖2 represents 2-norm.
After acquiring the BNN, this article uses the BNN and the tangent linear and adjoint

models of the BNN to build ML-4DVAR. The flow of ML-4DVAR is shown in Figure 3.
The following is an explanation of the flowchart. xb, yo

i , and xa have the same meaning
as before, and xi stands for the background forecast at the ith observations time in the
assimilation time window. There are a total of N + 1 observations in the assimilation time
window (i, i + 1). The process of ML-4DVAR is mainly divided into the following steps:

¬ At the start time i of the assimilation time window, the previous forecast is regarded
as the initial field. After the initial field is gained, the NN model forecasts until the
end time i + 1 of the assimilation time window. The forecast obtained in this step is
called the background forecast.

 The cost function is computed. The cost function is the sum of the model observation
equivalents and the observations difference in the assimilation time window. The
model observation equivalents are the output of the observation operator acting on
the background forecast.

® The gradient of the cost function with respect to the control variable is calculated,
and the calculation of the gradient requires the help of the tangent linear and adjoint
models of NN.

¯ We use an appropriate optimization algorithm to estimate the correction value of the
state variable.

° Return to ¬; the following optimization cycle is started and runs until it meets the
accuracy requirements and stops, and xa is output.

± The forecast field at time i + 1 is calculated, the initial field is xa, and the forecast model
is NN, and then, the next analysis cycle begins.

As shown in Figure 3, the forecast model and tangent linear and adjoint models of
ML-4DVAR are all derived from the neural network. The operation of the assimilation
system does not rely on the physical model but entirely on the neural network.

Figure 3. Schematic diagram of the ML-4DVAR.
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3. Experiments and Results

In this section, we mainly introduce the Lorenz-96 model, the simulation effect of the
BNN on the Lorenz-96 model, and the comparison results between various assimilation
systems. We introduce Original-4DVAR, Joint-4DVAR, and ML-4DVAR that appear in the
experiment. Original-4DVAR is a traditional 4D-Var assimilation system, and its forecast
model and tangent linear and adjoint models are entirely derived from the physical model,
that is, the Lorenz-96 model. Joint-4DVAR is the joint 4D-Var assimilation system, its
forecast model is from Lorenz-96, and the tangent linear and adjoint models are from the
BNN model. ML-4DVAR is a 4D-Var assimilation system based on ML, and its forecast
model and tangent linear and adjoint models are derived from the BNN model.

3.1. Lorenz-96 Model

Atmospheric systems are extremely nonlinear, which means they have a high degree
of complexity, and the amount of code for their numerical models is enormous. In the
research process, the new methods are directly tested on the NWP, their computational
cost is usually high, and it is not easy to obtain the test results in a short time [34]. For
these reasons, researchers often use simplified models to test new methods. For example,
Lorenz studied predictability on low-order systems, and his research results broke the
notion that deterministic systems are entirely predictable; Platzman researched truncated
spectral models on the Burgers equations, laying the foundation for the application of
spectral models in operational systems [35]. The model used in this article is a nonlinear
chaotic dynamic system named the Lorenz-96 model [36,37]. In the research of data
assimilation, the Lorenz-96 model is often used as a test model by researchers [38,39]. The
definition of the Lorenz-96 model is as described in Equation (7). The model contains the
main characteristics of atmospheric motion: the first term on the right side represents the
advection term, the second term is the dissipation term, and the meaning of the third item
indicates external coercion.

dxj

dt
=
(
xj+1 − xj−2

)
xj−1 − xj + F, j = 1, 2, . . . , J (7)

where j represents the grid point coordinates, F is the external forcing parameter, and the
significance of xj is the state variable of the model. The Lorenz-96 model adopts periodic
boundary conditions, which are specifically expressed as x−1 = xJ−1, x0 = xJ , xJ+1 = x1,
J ≥ 4. In this article, we set J = 40 and F = 8. The reason for setting F = 8 in this paper is
that the system is in a state of chaos under this external forcing.

3.2. Performance of the Neural Network Forecast Model

In minimizing the cost function of 4D-Var, it is necessary to calculate the gradient of
the cost function with respect to the control variable. The prerequisite for this purpose is
that the neural network model can precisely simulate the Lorenz-96 model. This article
compares the BNN and the CNN used by Seiya. Seiya employed a traditional neural
network CNN to simulate the Lorenz-96 model [40]. This experiment aims to select a
neural network with excellent simulation results. This article uses MSE as the cost function,
so the RMSE of the predicted value and the actual value is adopted as the evaluation
index. The initial values input to the BNN and CNN are the same. The two models predict
100 steps forward, and the time step dt = 0.05 model time unit (MTU). The results are
shown in Figure 4, where the solid blue line represents the RMSE of the CNN, and the
solid yellow line represents the RMSE of the BNN. It can be seen from the figure that over
time, the BNN has a more prominent advantage in reducing RMSE than the CNN. When
the two models run to the 20th time step, the RMSE of the BNN is 0.010501, the RMSE of
the CNN is 0.237361, the RMSE of the BNN is 95.6% lower than that of CNN under the
same conditions. It can be seen from the experimental results that the error between the
predicted value and the real value will increase rapidly at the beginning. When it reaches a
particular moment, the increase of the error will slow down until the error stabilizes. For a
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period of time, the neural network can simulate dynamical systems. After analyzing the
experimental results, we found that the simulation effect of BNN was better, so we chose
BNN to simulate the Lorenz-96 model.
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Figure 4. Comparison of the BNN and the CNN simulation effects.

In order to further observe and analyze the simulation performance of the BNN, we
plotted the distribution of the predicted values and the true values over 100-time steps. As
shown in Figure 5, Figure 5a is the distribution of the BNN predicted values in time and
space, Figure 5b is the distribution of real values in time and space, and Figure 5c is the
distribution of difference values. Before the 20th time step, both errors are minimal in each
component. After the 20th time step, the error is gradually obvious. The error increases
and then oscillates around the maximum value in this process.
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Figure 5. The temporal and spatial distribution of the output values of the BNN and the Lorenz-96
model under the same initial conditions, (a) the output of the BNN, (b) the output of the Lorenz-96
model, and (c) the difference between the two models.

3.3. The Cost Function Settings

4D-Var needs to construct a cost function. In this article, the cost function used by
Original-4DVAR is in the form of Equation (2). The background error covariance matrix
B is calculated using the NMC method, and the calculation formula of the NMC method
is shown in Equation (8). In the NMC method, the structure of B is the average of the
difference between many (for example, 50) two different short-term forecasts at the same
time, and the magnitude of B is appropriately scaled. In this article, λ is the scale parameter.
The observation error covariance matrix Ri = 0.5I, and the observation operator H i = I.
The length of the assimilation time window is 0.05 MTU. There are four observations in
each assimilation time window, and the time interval of each observation is equal, which is
0.0125 MTU.

B ≈ λE
{[

x f (48h)− x f (24h)
][

x f (48h)− x f (24h)
]T
}

(8)
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The cost function form of 4D-Var employing the tangent linear and adjoint models
of the BNN is similar to Equation (2), but the background error covariance matrix B is
different. The B is set to αI. The observation error covariance matrix and observation
operator are the same as in Original-4DVAR. This experiment utilizes different α to test
the assimilation effect, and the results obtained are shown in Figure 6. When α = 1, the
RMSE is the largest, and its value equals 0.387314; when α = 0.01, the RMSE is the smallest,
and its value is equal to 0.170927, the difference between the two is 0.216387. When α is in
the range of [0, 0.1], the RMSE changes very little. In this interval, the maximum RMSE
only increases by 0.22% compared to the minimum RMSE. When α = 0.01, RMSE achieves
the minimum value, so the next experiment in this article chooses the cost function when
α = 0.01, and its form is shown in Equation (9).

J(x0) = Jb + Jo

= α
1
2

(
x0 − xb

)T
I−1
(

x0 − xb
)

+
1
2

N

∑
i=0

[H i(Mi(x0))− yo
i ]

TR−1
i [H i(Mi(x0))− yo

i ]

(9)

������ ������ ������ ������ ������ ������
α

���

���

���

���

���

���
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�

��������
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Figure 6. The value of RMSE under different α.

3.4. Evaluation

The evaluation indicators selected in this paper are root mean square error (RMSE),
determinable coefficient (R2), and Nash–Sutcliffe model efficiency (NSE), which are used
to evaluate the assimilation forecast performance of the system. The selection of these
indicators is based on the evaluation indicators used by Lei et al. when evaluating the air
temperature data products of the Global Land Data Assimilation System (GLDAS) [41].

• The root mean square error (RMSE) is the square root of the ratio of the square of the
difference between the two datasets to the number of observations [42]. RMSE signifies
the total error between the two datasets. The overall errors are the constitution of two
errors: the first part of errors are systematic errors, and the second part of errors are
unsystematic errors. The value range of RMSE is [0,+∞). The closer the RMSE is to 0,
the smaller the difference between the two datasets. The definition of RMSE is shown
in Equation (10).

RMSE =

[
1
n

n

∑
i−1

(xi − yi)
2

]1/2

(10)
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• Determinable coefficient (R2) is a statistic that measures the goodness of fit [43]. R2

is the ratio of the covariance of the two datasets to the standard deviation of the
two datasets. The value range of R2 is [0, 1]. The closer R2 is to 1, the stronger the
correlation between the two datasets. The definition of R2 is shown in Equation (11).

R2 =

 ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2

2

(11)

• Nash–Sutcliffe model efficiency (NSE) is often employed to quantify the prediction
accuracy of simulation models (such as hydrological models). It can be used to
express the accuracy of model output results [44]. NSE is obtained by subtracting
the mean squared error of the target dataset and the standard dataset to the variance
of the standard dataset from one. The value range of NSE is (−∞, 1]. The closer
the NSE value is to 1, the better the predictive ability of the model and the higher
the consistency between the target dataset and the standard dataset. Its definition is
shown in Equation (12).

NSE = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x̄)2 (12)

where xi and yi represent the value on the i grid point, x̄ and ȳ signify the average
value of x and y, the dataset x represents standard data. In this article, xt is used as
the standard data, and xa or x f is used as the target data.

3.5. 4D-Var Experiments

We tested the performance of the newly built 4D-Var and compared the Original-
4DVAR, Joint-4DVAR, and ML-4DVAR. The observations required by these three systems
are the same, and they are all acquired by adding disturbances to the real values; the
disturbances follow a Gaussian distribution with mean 0 and variance 0.5, as shown in
Equation (13). The real values are the solutions of the Lorenz-96 model at each moment
under given initial conditions.

yo
i = xt

i + σ

σ ∼ N (0, 0.5)
(13)

where σ represents the disturbances.

3.5.1. The Joint-4DVAR

In order to better compare the assimilation performance of Joint-4DVAR, we computed
the RMSE, R2 and NSE of xa of Original-4DVAR and Joint-4DVAR. The assimilation results
of Joint-4DVAR and Original-4DVAR are shown in Figure 7. The solid yellow line represents
the RMSE of xa of Original-4DVAR, and the solid blue line represents the RMSE of xa of
Joint-4DVAR. Figure 7a shows the RMSE at each analysis time, Figure 7b shows the R2 at
each analysis time, and Figure 7c shows the NSE at each analysis time. It can be seen from
the figure that at each analysis moment, the RMSE of Joint-4DVAR is less than the RMSE of
Original-4DVAR, and the R2 and NSE of Joint-4DVAR are greater than the R2 and NSE of
Original-4DVAR. The results in the figure qualitatively show that the assimilation effect
of Joint-4DVAR is better than that of Original-4DVAR. As shown in the figure, RMSE, R2,
and NSE rose rapidly during the first period and stabilized after the 30th time step. This
phenomenon is because the assimilation system, the background, and the observation need
to be run in when the assimilation system is just started. This period is also called the start-
up time. During the spin period, the results of the assimilation system are not available.
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Figure 7. RMSE, R2, and NSE of Joint-4DVAR and Original-4DVAR. (a) RMSE, (b) R2, (c) NSE.

In order to quantitatively compare the assimilation effects of Joint-4DVAR and Original-
4DVAR, the average values of RMSE, R2, and NSE are recorded in Table 1. The three
indicators are the average from the 50th analysis time to the 1000th analysis time. As can
be seen from the table, Joint-4DVAR compared with Original-4DVAR, RMSE is reduced
by approximately 43.9%, R2 is approximately increased by 0.5%, and NSE increases by
approximately 0.5%. The RMSE of Joint-4DVAR is the smallest. The results demonstrate
that the overall error of Joint-4DVAR is the smallest, and the difference between xa and xt

of Joint-4DVAR is 0.171967. Joint-4DVAR has the largest R2. The results show that xa and xt

of Joint-4DVAR have the highest degree of fit. If xa and xt are put into the regression model,
98.0741% of the fluctuation of xt can be explained by xa. Joint-4DVAR has the largest NSE.
The results indicate that the xa and xt of Joint-4DVAR have the best consistency.

Table 1. Comparison of the analysis of Joint-4DVAR and Original-4DVAR.

RMSE R2 NSE

Joint-4DVAR 0.171965 0.997868 0.997706
Original-4DVAR 0.306383 0.993088 0.992716

The short-term forecast x f is usually also used to test the assimilation effect. x f is the
result of forecasting employing xa. The accuracy of x f is not only related to the assimilation
module of the system but also depends on the performance of the forecasting module. The
comparison results of x f of Joint-4DVAR and Original-4DVAR are displayed in Table 2.
The results in Table 2 are the average values from the 50th time step to the 1000th time step.
It can be seen that compared with Original-4DVAR, Joint-4DVAR has the most significant
change in RMSE, which is approximately a decrease of 39.7%, while R2 is approximately
0.4%, and NSE is approximately 0.5%.
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Table 2. Comparison of the forecast of Joint-4DVAR and Original-4DVAR.

RMSE R2 NSE

Joint-4DVAR 0.181307 0.997697 0.997452
Original-4DVAR 0.300698 0.993383 0.992985

The computational efficiency of the numerical prediction system is crucial. In NWP,
data assimilation accounts for about 50% of the total running time [28]. While improving the
accuracy of assimilation results, we must also pay attention to the time spent in assimilation.
The time taken for Joint-4DVAR and Original-4DVAR to run for 1000 time steps is shown in
Table 3. It can be seen from the table that the running time of Joint-4DVAR is significantly
shorter than that of Original-4DVAR. The running time of Joint-4DVAR is reduced by
479.174939 s compared with the running time of Original-4DVAR, and the reduced running
time accounts for about 65.9% of the running time Original-4DVAR.

Table 3. Comparison of the running time of Joint-4DVAR and Original-4DVAR (unit: s).

Time

Joint-4DVAR 248.116567
Original-4DVAR 727.291506

The above-mentioned experimental results are the average of 50 experiments, and each
experiment has been carried out for 1000 analysis cycles to avoid chance. It can be seen from
the results that the assimilation performance of Joint-4DVAR is better than that of Original-
4DVAR. Joint-4DVAR not only makes the assimilation result from xa closer to the true xt; it
also makes the forecast result in x f more accurate. Joint-4DVAR can run stably for a long
time, and the system’s stability is trustworthy. The calculation efficiency of Joint-4DVAR is
higher than that of Original-4DVAR. This shows that the running time of the assimilation
module of Joint-4DVAR is less than that of Original-4DVAR. Through experiments and
analysis of experimental results, we can find that the assimilation performance of Joint-
4DVAR is superior to that of Original-4DVAR, and the calculation efficiency of Joint-4DVAR
is more efficient than that of Original-4DVAR.

3.5.2. The ML-4DVAR

ML-4DVAR and Original-4DVAR are different in two ways. The first is the neural
network forecast module, and the second is the 4D-Var assimilation module built using
the tangent linear and adjoint models of the BNN. We calculated and plotted the RMSE,
R2, and NSE of xa of ML-4DVAR at each moment. As shown in Figure 8, the solid yellow
line represents Original-4DVAR, and the solid blue line represents ML-4DVAR. Figure 8a
shows the RMSE at each time, Figure 8b shows the R2 at each time, and Figure 8c shows
the NSE at each time. It can be seen from the figure that at each moment, the RMSE of
ML-4DVAR is smaller than that of Original-4DVAR, and the R2 and NSE of ML-4DVAR are
larger than those of Original-4DVAR.

The RMSE, R2, and NSE of ML-4DVAR and Original-4DVAR are recorded in Table
4. It can be seen from the table that compared with Original-4DVAR, ML-4DVAR has
an approximately 44.5% reduction in RMSE, approximately 0.5% increase in R2, and
approximately 0.5% increase in NSE. It can be seen from the table that compared with
Original-4DVAR, the RMSE of x f of ML-4DVAR is reduced by 42.5%, R2 is increased by
about 0.4%, and NSE is increased by about 0.5%. The running time of ML-4DVAR is
569.110456 s lower than that of Original-4DVAR, which accounts for about 78.3% of the
running time of ML-4DVAR. These experimental results indicate that xa and x f of ML-
4DVAR are closer to xt than xa and x f of Original-4DVAR. The running time of ML-4DVAR
is shorter than that of Original-4DVAR.
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Figure 8. RMSE, R2, and NSE of ML-4DVAR and Original-4DVAR at analysis time. (a) RMSE, (b) R2,
(c) NSE.

Table 4. The assimilation performance and computational efficiency of ML-4DVAR and Original-
4DVAR.

RMSE R2 NSE Time (Unit: s)

xa ML-4DVAR 0.169947 0.997871 0.997760 158.181050
Original-4DVAR 0.306383 0.993088 0.992716 727.291506

x f ML-4DVAR 0.175781 0.997716 0.997605 158.181050
Original-4DVAR 0.300698 0.993383 0.992985 727.291506

This paper compares the assimilation performance and computational efficiency of
ML-4DVAR and Joint-4DVAR. The assimilation and computing performance of ML-4DVAR
and Joint-4DVAR are shown in Table 5. It can be seen that the assimilation performance
of ML-4DVAR is better than that of Joint-4DVAR, and the running time of ML-4DVAR is
less than that of Joint-4DVAR. The assimilation performance of ML-4DVAR is only slightly
better than that of Joint-4DVAR. We compare the three indicators of xa. Compared with
Joint-4DVAR, the RMSE of ML-4DVAR is reduced by 1.2%, and the increase in R2 and NSE
is less than 10−4. The running time of ML-4DVAR is 36.2% less than that of Joint-4DVAR.
These results show that the neural network prediction model can significantly improve the
computational efficiency of the numerical prediction system.
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Table 5. The assimilation performance and computational efficiency of ML-4DVAR and Joint-4DVAR.

RMSE R2 NSE Time (Unit: s)

xa ML-4DVAR 0.169947 0.997871 0.997760 158.181050
Joint-4DVAR 0.171965 0.997868 0.997706 248.116567

x f ML-4DVAR 0.175781 0.997716 0.997605 158.181050
Joint-4DVAR 0.181307 0.997697 0.997452 248.116567

3.5.3. The MLO-4DVAR

In the real world, the real model is not available, making it impossible to train neural
networks using the data generated by the real model. Although the real model data are not
available, the observation data are available. The observations can generally be regarded
as the real values added with disturbance. In data assimilation, it is assumed that the
disturbance follows a normal distribution. In order to be close to the real situation, this
article uses observation data as training data, trains the neural network model, and then
tests the performance of the neural network model. We built an assimilation system on the
trained neural network model. The system is named MLO-4DVAR, where the subscript O
represents the neural network model trained on observation data. The RMSE, R2, and NSE
of xa at each moment are shown in Figure 9.

Figure 9. (a) RMSE, (b) R2, and (c) NSE of MLO-4DVAR and Original-4DVAR.

In the first period, the assimilation effect of MLO-4DVAR is not as good as that of
Original-4DVAR. After the 50th time step, the assimilation effect of MLO-4DVAR is better
than that of Original-4DVAR. Since the neural network model used by MLO-4DVAR is
obtained by training observation data, it has not reached stability during the spin-up
period. So, in the first period, the effect of MLO-4DVAR was not very good. The results of
the assimilation performance and computational efficiency of MLO-4DVAR and Original-
4DVAR are recorded in Table 6. The results in the table are the average value from the 50th
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time step to the 1000th time step. We compare RMSE, R2, and NSE of MLO-4DVAR and
Original-4DVAR xa. Compared with Original-4DVAR, the RMSE of MLO-4DVAR has been
reduced by 30.4%, and R2 and NSE have increased by approximately 0.4%. The calculation
efficiency of MLO-4DVAR is 76.1% higher than that of PHY-NPS. The assimilation effect
and calculation efficiency of MLO-4DVAR are better than those of Original-4DVAR. MLO-
4DVAR and ML-4DVAR are numerical prediction systems based on neural networks. The
difference between them is the difference in training data. It can be seen from Table 7 that
ML-4DVAR has the best assimilation performance and computational efficiency. The above
experimental results demonstrate that although the performance of the neural network
model trained with observation data is not the best, it is available.

Table 6. The assimilation performance and computational efficiency of MLO-4DVAR and Original-
4DVAR.

RMSE R2 NSE Time (Unit: s)

xa MLO-4DVAR 0.213248 0.996640 0.996481 173.746833
Original-4DVAR 0.306383 0.993088 0.992716 727.291506

x f MLO-4DVAR 0.285967 0.993881 0.993653 173.746833
Original-4DVAR 0.300698 0.993383 0.992985 727.291506

Table 7. The assimilation performance and computational efficiency of MLO-4DVAR and ML-4DVAR.

RMSE R2 NSE Time (Unit: s)

xa MLO-4DVAR 0.213248 0.996640 0.996481 173.746833
ML-4DVAR 0.169947 0.997871 0.997760 158.181050

x f MLO-4DVAR 0.285967 0.993881 0.993653 173.746833
ML-4DVAR 0.175781 0.997716 0.997605 158.181050

4. Discussion

In the study, we make use of the tangent linear adjoint models of the ML model in
4D-Var. The prerequisite for applying the tangent linear and adjoint models of the ML
model in 4D-Var is that the ML model accurately simulates the physical model. First, the
BNN was built according to the characteristics of the physical model. Then, Joint-4DVAR is
established, in which the tangent linear and adjoint models are derived from the BNN, and
the prediction model is derived from the physical model. After that, this article tests the
performance and computational efficiency of ML-4DVAR. ML-4DVAR is an assimilation
system based on the ML model. Its prediction model and tangent linear and adjoint models
are all provided by the ML model. Finally, we train the ML model on the observation data
and build the 4D-Var assimilation system on this basis. The above results are discussed
as follows:

The BNN trained on Lorenz-96 model data can simulate the Lorenz-96 model. The
RMSE of the one-step predicted value and the actual value of the BNN is 4.46 × 10−4, it
can be seen that the RMSE is very small. The consequences indicate that BNN can simulate
and predict dynamic systems well. The reason is that the bilinear operation embedded in
the neural network is an essential feature of the dynamic system [33].

The Joint-4DVAR is reliable, and its computational efficiency is satisfactory. Through
the analysis of the experimental results, we can see that the overall error between the
Joint-4DVAR analysis and the forecast and the true is more minor. The forecast models
of Joint-4DVAR and Original-4DVAR are derived from physical models. The assimilation
module of Joint-4DVAR is different from that of Original-4DVAR. The 4D-Var used in
the assimilation module of Joint-4DVAR is built based on the tangent linear and adjoint
models of the neural network. The 4D-Var employed by the assimilation module Original-
4DVAR is established based on the tangent linear and adjoint models of the physical
model. The performance of Joint-4DVAR is better than that of Original-4DVAR, and the
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calculation efficiency is higher, indicating that the performance and calculation efficiency
of the assimilation module of Joint-4DVAR is higher than that of Original-4DVAR. The
results show that the tangent linear and adjoint models of the neural network can be used
in 4D-Var, and its calculation results are more accurate, and the running time is shorter.

This article builds ML-4DVAR on the Lorenz-96 model. It can be seen from the experi-
mental results that the performance of ML-4DVAR is better than that of Original-4DVAR,
and the computational efficiency of ML-4DVAR is higher. This article also compares the
assimilation performance and computational efficiency of ML-4DVAR and Joint-4DVAR.
We can see that compared with Joint-4DVAR, the assimilation performance of ML-4DVAR
is improved very little, while the computational efficiency of ML-4DVAR is greatly im-
proved. The assimilation modules of ML-4DVAR and Joint-4DVAR are the same, and
their prediction modules are different. ML-4DVAR uses the neural network models for
prediction, and Joint-4DVAR utilizes the physical models. The calculation efficiency of
ML-4DVAR is higher than that of Joint-4DVAR. The result shows that neural networks can
accelerate the forecasting process.

Neural networks trained using observation data are available. Although MLO-4DVAR
was not very stable during the first period, after the 50th time step, MLO-4DVAR can be
employed for assimilation and forecasting. We compared Joint-4DVAR, ML-4DVAR, and
MLO-4DVAR. The assimilation performance and computational efficiency of ML-4DVAR
are the best. This results indicate that the pure data-driven numerical prediction system is
feasible in the Lorenz-96 model.

In summary, the BNN can simulate dynamic models well. The performance of Joint-
4DVAR is excellent, which shows that the physical model and the 4D-Var based on the
tangent linear and adjoint models of the ML model can work together. Among the three
assimilation systems, Original-4DVAR, Joint-4DVAR, and ML-4DVAR, the system with the
best assimilation performance and calculation efficiency is ML-4DVAR. The results prove
that the assimilation system composed of the ML model and its tangent linear and adjoint
models are satisfactory. This paper establishes the 4D-Var assimilation system based on ML.
This study provides a method to obtain the tangent linear and adjoint models in 4D-Var.

5. Conclusions

In order to reduce the development difficulty of the tangent linear adjoint model and
improve the computational efficiency of 4D-Var, we establish ML-4DVAR. ML-4DVAR’s
forecast model and tangent linear and adjoint models are derived from the ML model.
The experiments show that the assimilation performance and computational efficiency of
ML-4DVAR are better than those of Original-4DVAR. The results prove that building the
4D-Var assimilation system based on ML is feasible. This study shows that the forecast
model based on the ML model and the Jacobians of the ML model can work stably for a
long time in 4D-Var. This study expands the application scope of neural networks in NWP
and provides a reference for the future combination of ML and DA.

However, there is still a problem in this study. From the experimental results, it can be
seen that the results of ML-4DVAR are not available in the first 50 steps of the system just
running. In the future, we need to improve and perfect the assimilation performance of the
assimilation system in the early stage.

Nowadays, with the generation of large amounts of data and the emergence of various
open-source software, we can build ML models more simply. Building a ML model is
cheaper and faster than a physical model. There are two main applications of ML in
NWP: one is to improve the accuracy of weather forecast [26], and the other is to improve
calculation efficiency. We need to build appropriate the ML models for different problems
in this process. This method can reduce the difficulty of developing tangent linear and
adjoint models, thereby expanding the application range of 4D-Var. The ultimate goal
is to improve the accuracy of weather forecast in order to better understand and predict
atmospheric systems. In the future, we need to build a suitable ML model for the actual
atmospheric model in the future to support the application of ML in numerical weather
prediction.
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