
����������
�������

Citation: Alimudin, A.; Ishida, Y.

Matching-Updating Mechanism: A

Solution for the Stable Marriage

Problem with Dynamic Preferences.

Entropy 2022, 24, 263. https://

doi.org/10.3390/e24020263

Academic Editors: Qiang Zhang and

Yifeng Zeng

Received: 4 January 2022

Accepted: 7 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Matching-Updating Mechanism: A Solution for the Stable
Marriage Problem with Dynamic Preferences
Akhmad Alimudin 1,2,* and Yoshiteru Ishida 1

1 Department of Computer Science and Engineering, Toyohashi University of Technology,
Toyohashi 441-8580, Japan; ishida@cs.tut.ac.jp

2 Department of Multimedia Creative Technology, Politeknik Elektronika Negeri Surabaya,
Surabaya 60111, Indonesia

* Correspondence: akhmad.alimudin.qq@tut.ac.jp

Abstract: We studied the stable marriage problem with dynamic preferences. The dynamic preference
model allows the agent to change its preferences at any time, which may cause instability in a
matching. However, preference changing in SMP instances does not necessarily break all pairs of an
existing match. Sometimes, only a few couples want to change their partners, while others choose
to stay with their current partners; this motivates us to find stable matching on a new instance by
updating an existing match rather than restarting the matching process from scratch. By using the
update mechanism, we try to minimize the revision cost when rematching occurs. The challenge
when updating a matching is that a cyclic process may exist, and stable matching is never achieved.
Our proposed mechanism can update a match and avoid the cyclic process.

Keywords: stable marriage problem; update matching; dynamic preferences

1. Introduction

Numerous types of research have been conducted on the stable matching problem
in fields including computer science, mathematics, and economics. The term “matching”
refers to a collection of agents wishing to form a pair that meets each agent’s criteria. The
stable marriage problem (SMP) was introduced by Gale and Shapley [1]. It is one of the
most well-known stable matching problems. Since its original conception in 1962, the
SMP has attracted significant attention from researchers. Numerous extended variants
of SMP have also emerged, such as the stable roommate problem, the college admissions
problem, the hospital/resident problem, and several other stable matching problems [2–5].
The SMP algorithm has been widely used to solve several real-world problems. One of
the most widely used variants is the hospital/resident problem variant [4,6], which is
used to place medical students in hospitals or to select new students. Nowadays, the SMP
algorithm is also widely applied to large-scale computer applications, such as content
delivery networks [7] and job scheduling of virtual machines to servers [8,9].

The SMP is a bipartite matching problem with an equal number of agents on each side.
Each agent expresses a strict order preference that includes all members of the opposite
side. A matching µ is unstable when at least one blocking pair exists. A blocking pair
is formed of a man m and a woman w who are not partners in a matching µ, but prefer
each other over their current partners. In the classical SMP, each agent expresses a strict
order preference for the opposite side. However, in real-world situations, some agents
are occasionally unable to express their actual preference list due to a lack of information
or observations about the opposing side, leading to the agents’ preferences changing
dynamically. For example, consider job scheduling for virtual machines (VMs) to servers.
Computer resource consumption is dynamic, and users must understand the behavior
of their virtual machines to define the minimum and maximum resource requirements
before deploying to the server. However, several users do not have the ability to define the

Entropy 2022, 24, 263. https://doi.org/10.3390/e24020263 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020263
https://doi.org/10.3390/e24020263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1937-6628
https://doi.org/10.3390/e24020263
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020263?type=check_update&version=1


Entropy 2022, 24, 263 2 of 14

minimum and maximum resource requirements for their virtual machines. If the assigned
resources exceed the actual usage of their VM, this leads to a large amount of unused
resources on the server. Meanwhile, the VM’s performance suffers if the allocated resources
are insufficient. All virtual machines and servers need to be rescheduled to improve their
effectiveness. When rescheduling, the scheduler determines the new preference for VMs
and servers by examining the VMs’ historical information. This study aims to find a stable
matching for the SMP with the dynamic preference model, where dynamic preferences
refer to a scenario in which agents’ preferences might change dynamically over time. To
illustrate the problem, we use a simple 3 × 3 SMP.

Example 1. There is a set of men M = {m1, m2, m3} and a set of women W = {w1, w2, w3}. Assume
that agent m1 has dynamic preferences by changing his preference order. Specifically, these dynamic
preferences generate two SMP instances, as depicted in Figure 1:

Instance 0 (I0) Instance 1 (I1)
L0(m1) = w1, w2, w3
L0(m2) = w2, w3, w1
L0(m3) = w3, w1, w2

L0(w1) = m2, m3, m1
L0(w2) = m3, m1, m2
L0(w3) = m1, m2, m3

L0(m1) = w3, w2, w1
L0(m2) = w2, w3, w1
L0(m3) = w3, w1, w2

L1(w1) = m2, m3, m1
L1(w2) = m3, m1, m2
L1(w3) = m1, m2, m3

Figure 1. The 3 × 3 SMP with dynamic preferences.

Traditionally, we can use the Gale–Shapley algorithm to find a stable matching solution
for each instance. In Example 1, we can find the stable matching for Instances 0 and 1 by
processing it separately. However, a change in preference for an agent does not necessarily
affect the stability of all pairs in a matching. Some small preference changes may not affect
all agents, and only a few pairs want to change their partners, while others prefer to stay
with their current partners. This motivates us to maintain stability in the SMP with dynamic
preferences by using a matching-updating mechanism. The SMP with dynamic preferences
is an extended version of the original SMP; the goal is to obtain a stable matching on the
SMP instance. The Gale–Shapley algorithm is one way to find a stable matching for the
SMP; by starting with an empty matching, the Gale–Shapley algorithm takes O(n2) to
find a stable matching. This study does not focus on the computational costs of finding a
stable matching, but we try to minimize the revision costs when preferences change. The
definition of revision cost here is the cost/impact when we rematch the instance. Using the
Gale–Shapley algorithm, we can always find a stable matching, but the rematching process
starts from the beginning (empty matching). We try to minimize the revision cost when
rematching by using the match-updating mechanism. As a practical example, when we
perform rematching between VMs and servers, if we perform the rematching using the
Gale–Shapley algorithm, we need to involve all agents in the instance, which means all
VMs and servers need to temporarily stop. However, we can minimize the number of VMs
and servers that have to stop with the match-updating mechanism.

Our contribution in this research is the minimization of the revision cost when per-
forming the rematching. Our theorems and mechanism demonstrate the process of finding
stable matching by updating the previous matching. Our paper is organized as follows.
Section 2 contains a number of studies relevant to this research. In Section 3, we discuss
how to deal with dynamic preferences in the stable marriage problem by updating the
previous stable matching. In Section 4, we discuss our findings and their impacts on future
research. In Section 5, we provide the conclusions of our study.

2. Preliminaries

In this study, we deal with SMP instances that have dynamic preferences. In the
dynamic preference model, the agent is allowed to change their preferences. The agent’s
preference changes may affect the original SMP instance. In other words, changing the
preference of one agent will create another SMP instance. Numerous studies on dynamic
preferences in stable matching have been published. Kanade et al. [10] proposed an



Entropy 2022, 24, 263 3 of 14

algorithm that maintains a matching for evolving preferences of stable matching. Evolving
preference is similar to our dynamic preference model. The goal of their study was to
maintain an approximately stable matching, whereas our goal is to find the stable matching
for all available instances. Chen et al. [11] proposed the concept of robustness and the
near-stability of matching for dynamic preferences. Tobustness means maintaining all
instances produced by dynamic preferences that remain stable in a classical way, whereas
near-stability tries to find the stability by measuring the strength of incentive between two
agents in a blocking pair.

The aim of this study is to find a stable matching within dynamic instances by updating
a previous stable matching. With respect to the creation of a new instance, the previous
stable matching may be stable or unstable for the newly created instance. In order to update
a stable matching, we need to identify the presence of a blocking pair in the matching. If no
blocking pair is confirmed, it means that the given matching from the previous instance
remains stable in the newly created instance. However, when a blocking pair is encountered
in the matching, we need to satisfy the blocking pair. Otherwise, the matching will remain
unstable. When updating a matching, it is essential to keep in mind the domino effect
while we attempt to satisfy the blocking pair. The domino effect of attempting to satisfy
the blocking pair means that we also need to break another pair. Furthermore, we must
be able to re-satisfy the pair that was previously disengaged by the previous step. When
we attempt to revise a pair in matching, the worst-case scenario is that an infinite loop
occurs in a process. As in the open question of Knuth [12], which states that there is a cyclic
process when attempting to satisfy the blocking pair using the Gale–Shapley algorithm,
this situation leads to the matching remaining unstable. Knuth’s open question also shows
that updating a stable matching using the Gale–Shapley algorithm is not possible.

Roth and Vande [13] demonstrated in their work that stable matching is always
possible, even when starting with arbitrary matching. Additionally, this research addressed
Knuth’s [12] open question. Jinpeng Ma [14] examined the Roth and Vande (RV) mechanism
and admitted that stable matching will always be found with a probability of one when
using the RV mechanism, even though it starts from arbitrary matching. Unlike the Gale–
Shapley algorithm, which always produces the same stable matching, the RV mechanism
could produce a variety of stable matchings for each execution, including man-optimal,
woman-optimal, and some fair matching (intermediate) in the lattice structure. However,
Jinpeng Ma also claimed that in the RV mechanism, not all stable matching options can be
achieved using the RV mechanism. In our study, we try to update the stable matching by
modifying the Roth and Vande mechanism. In our dynamic preference model, we have the
previous SMP instance and its stable matching. Furthermore, we use those properties as
input for our proposed algorithm.

2.1. The Stable Marriage Problem

The stable marriage problem (SMP) was introduced by Gale and Shapley [1]. An SMP
is a two-sided matching problem with an equal number of agents on each side. Each agent
expresses a strict order preference that includes all members of the opposite side. The
goal of the Gale–Shapley algorithm is to find a stable matching for all involved agents.
The term “matching” refers to the process of pairing or matching participants (groups of
men and women) in order to satisfy a specified criterion. A matching process is a step to
determine the pairs of participants (sets of men and women) to meet the specified criteria.
The size n of the SMP instance is I = (M, W, L), where M denotes the set of male agents
M = {m1, m2, . . . , mn}, W denotes the set of female agents W = {w1, w2, . . . , wn}, and
L represents a list of the preference order of an agent for the opposite sex. To express
the preference order list of agent m1, we can denote it by L(m1). For such an instance, a
matching µ is a one–one correspondence between the men and the women. If a man m and
a woman w are matched in µ, they are referred to as partners, and we write m = µ(w) and
w = µ(m). µ(m) is the partner of w in µ, and µ(w) is the partner of m in µ. In the SMP, the
stability of matching is determined by the existence of a blocking pair. In a matching µ, a



Entropy 2022, 24, 263 4 of 14

pair (m, w) is said to be a blocking pair if m and w are not a pair in µ, but m prefers w over
µ(m) and w prefers m over µ(w). That is, (w �m µ(m)) ∧ (m �w µ(w)). A matching that
contains at least one blocking pair is called unstable; otherwise, it is stable.

2.2. Dynamic Preferences in the SMP

In the traditional SMP, each agent’s preference order or rank is fixed. As discussed
in the introduction, we attempted to solve the SMP with a dynamic preference model. In
this study, we assume that the preference list of agents is complete, meaning that each
agent must include all available members of the opposite side in their preference list. As
illustrated in Figure 2, a preference change of agents in the SMP instance may lead to the
creation of another SMP instance.

I0 I1 I2 In

Gale-Shapley 

SM0

Gale-Shapley

SM1

Gale-Shapley

SM2

Gale-Shapley

SMn

Figure 2. Illustration of solving every instance of the SMP using the Gale–Shapley algorithm.

Definition 1. The dynamic preferences describe a situation in which an agent’s preference for an
SMP instance can change through permutation at anytime, leading to the formation of another SMP
instance.

As a consequence of the preference changes, a new instance will be created based on
the number of preferences expressed by agents.

Definition 2. A dynamic instance is a set of SMP instances generated from an original SMP
instance with dynamic preferences.

Dynamic preferences result in a more realistic scenario for a stable matching problem in
which agents do not always express their preferences correctly due to a lack of observations
or information about their opposite side. In the classical SMP, an instance is defined as
I = (M, W, L), where M and W denote the sets of male and female agents, respectively;
L denotes the order of each agent’s preference list for the opposite side. The preference
list of a male agent m can be written as L(m). However, in the case of the SMP with
dynamic preferences, multiple SMP instances may exist as a result of changes in one or
more agents’ preferences. In other words, the number of possible instances that will occur
is i = k1 × k2 × · · · × k2n, where k denotes the number of preferences expressed by each
agent, and n is the size of the SMP. The dynamic instance set is DI = {I1, I1, . . . , Ii}. For
example, if there is a single agent with two distinct preferences in size n of the SMP, there
will be two SMP instances available. In the dynamic preference model, changes in an
agent’s preferences are a permutation of their previous preference list. This means that
no new members will be added or removed from an agent’s preference list during the
preference changes.



Entropy 2022, 24, 263 5 of 14

3. Updating the Stable Matching

As mentioned in the introduction, our goal is to find a stable matching for each
instance. This study attempts to find stable matching for each instance by updating the
previous instance’s stable matching. The steps of finding stable matching using the previous
matching update mechanism are depicted in Figure 3.

I0 I1 I2 In

Gale-Shapley

SM0 SM1 SM2 SMn
Updating Updating Updating

Figure 3. Illustration of finding the stable matching of the SMP by updating the previous matching.

Our steps for determining stable matching for a dynamic instance are as follows:

1. Determining the impacts of modifying an agent’s preferences: We identify the effects
of changing an agent’s preference and determine whether it leads to the occurrence of
a blocking pair in a matching.

2. Initiating an update of the matching if a blocking pair exists.
3. If there is no blocking pair, the previous instance’s matching will likely be stable for

the new instance.

3.1. Identifying the Preference Changes

The preference change of an agent does not always affect the stability of a previous
matching. We classify the types of changes in an agent’s preferences as either major or
minor changes.

Definition 3. A minor preference change is a permutation-based change in an agent’s preference
that does not affect the pair in a stable matching. As a result, this preference change has no direct
impact on the creation of blocking pairs.

Definition 4. A major preference change is a permutation-based change in an agent’s preference
that leads to the creation of a blocking pair. These preference changes may result in the instability of
a matching.

Every agent is allowed to change their preferences at any time in the dynamic pref-
erence model. A change in an agent’s preference does not always lead to a change in
matching. However, it can occasionally allow for the appearance of blocking pairs, leading
to the instability of a previous matching.

Given an SMP with dynamic preferences of size n and with the initial instance I0 =
(M0, W0, L0) and stable matching µ0, where M0 = {m1, m2, . . . , mn}, W0 = {w1, w2, . . . , wn},
if we suppose that a male agent (m1) changes his preference through permutation, we
will have another instance of the SMP: I1 = (M1, W1, L1), where L0(m1) 6= L1(m1). By
referencing the previous SMP instance, we determine the occurrence of potential blocking
pairs. We identify whether the preference change for agent m1 is a minor change or not.



Entropy 2022, 24, 263 6 of 14

Theorem 1. Under the assumption that the preference change occurs on only one side, and if
no agent with a rank lower than µ0(m1) in L0(m1) becomes higher than µ0(m1) in L1(m1), the
change is considered minor.

Proof. Assume that the position of agent µ0(m1) in L0(m1) is the (n− 1)th rank; this means
that agents from the first rank to the (n− 2)th rank in L0(m1) prefer other male agents over
m1. The agent at the nth rank is a worse agent than µ0(m1), which means that µ0(m1) is the
best option for m1 at I0 (man-optimal). Thus, as long as the nth agent’s position remains
lower than µ0(m1) in L1(m1), any permutation in the agent from the 1st rank to µ0(m1) in
L0(m1) does not affect the pair (m1, µ0(m1)). This results in µ0(m1) = µ1(m1).

Based on Theorem 1, we describe the following corollaries.

Corollary 1. If µ0(m1) is the last choice of m1 in L0(m1), then any permutation in L0(m1) leads
to minor change.

Proof. If µ0(m1) is the last order in L0(m1), µ0(m1) is considered the best choice that m1
can get because other female agents prefer other male agents over m1. As a result, (m1,
µ0(m1)) will not change, although the rank of µ0(m1) increases in L1(m1).

Corollary 2. If µ0(m1) becomes the first choice of m1 in L1(m1), then it is a minor change.

Proof. If µ0(m1) is the first option in L1(m1), then no agent that is worse than µ0(m1) in
L0(m1) becomes better than µ0(m1) in L1(m1). Moreover, if the rank of µ0(m1) increases in
L1(m1), it strengthens the pair between µ0(m1) and m1.

Corollary 3. If there is any permutation in L0(m1) from the first rank to µ0(m1) or any permuta-
tion from the rank of µ0(m1) + 1 to the nth rank, then it is a minor change.

Proof. The permutation of the first rank to µ0(m1) does not lead to a worse agent being
superior to µ0(m1). Meanwhile, permutations from the rank of µ0(m1) +1 to the lowest-
ranked agent will also be inferior to µ0(m1). According to Theorem 1, it is a minor change
if no agent worse than µ0(m1) at L0(m1) improves in L1(m1).

Theorem 1 and its corollary define the constraints under which the effect of changing
agents on male agents (proposing side) can be identified. However, Theorem 1 and its
corollary hold true when female agents (the proposed side) possess a change in their
preferences. We identify the impact of changing an agent’s preferences using Theorem 1
and its corollary and whether the change has the potential to lead to the establishment of a
blocking pair in the new instance or not. This identification accelerates the decision making
regarding updating a matching.

We define Algorithm 1 to detect potential blocking pairs based on Theorem 1 and its
corollaries. If Theorem 1 and its corollaries are satisfied in an agent, the agent might not
have an incentive to change his/her partner. However, if Theorem 1 and its corollary are
not satisfied, a deeper checking process using the stability-checking algorithm [3] will be
performed. If a blocking pair is detected, the algorithm will mark the pair for removal and
initiate the update of the matching process.

Theorem 1 assumes that the preference changes only occur on one side. Theorem 1
is used to determine the type of preference change that occurs in an agent, i.e., whether
it is a major or minor change. The aim is to determine whether the preference changes
incentivize an agent to change their partner. By checking the type of preference change
for all agents with Theorem 1, we are still able to identify the potential blocking pair, even
though both sides of the agents change their preferences simultaneously. Given an SMP
with dynamic preferences of size n and with initial instance I0 = (M0, W0, L0) and stable
matching µ0, where M0 = {m1, m2, . . . , mn}, W0 = {w1, w2, . . . , wn}, if we suppose that



Entropy 2022, 24, 263 7 of 14

a male agent (m1) and his partner (µ(m1)) change their preference simultaneously, we
will have another instance of the SMP: I1 = (M1, W1, L1), where L0(m1) 6= L1(m1) and
L0(µ(m1)) 6= L1(µ(m1)).

Algorithm 1 Finding a potential blocking pair.
Input:
-Current SMP Instance: mPref, wPref
-Previous SMP Instance: prevMPref, prevWPref, Stable Matching (SM)

1: for m, w in SM do
2: if mPref[m] != prevMPref[m] then
3: for prevW in prevMPref[m] do
4: if prevMPref[m].rank(w) > prevMPref[m].rank(SM(prevW)) then
5: potentialBP.append(prevW)
6: end if
7: end for
8: for woman in mPref[m] do
9: if woman in potentialBP then

10: if wPref[woman].rank(m) > wPref[woman].rank(SM(woman)) then
11: removedPair.append(m, w)
12: end if
13: end if
14: end for
15: end if
16: end for

Corollary 4. If m1 and mµ0(m1) confirm a minor change in I1, then the pair (m1, mµ0(m1)) does
not trigger a blocking pair.

Proof. If agent m1 confirms that his preference change is minor, µ0(m1) is the best possible
woman that agent m1 can get. In addition, if agent µ0(m1) also confirms that her preference
change is minor, then agent m1 is the best possible option for agent µ0(m1) because the
proposer is m1. Thus, if both agents agree that their current partners are the best partners
they can get, then the preference changes of agents µ1 and µ0(m1) do not have the potential
to create a blocking pair.

It is worth noting that Theorem 1 is employed to determine whether a change in an
agent’s preference can motivate an agent to change their current partner. Theorem 1 is
used to verify agents’ wishes about their partners following their preference changes. In
other words, although both agents in a pair confirm a minor change, the pair is still likely
to change if provoked by another agent that does not confirm a minor change.

3.2. Initiating the Matching Update

Once a blocking pair is confirmed to exist in a matching, the next step is to initiate
a matching update. We modified Roth’s and Vande’s mechanism to update the stable
matching. Random Paths to Stability [13] is a mechanism for discovering a stable matching
solution by satisfying the matching’s blocking pair. Ref. [14] summarized the RV mecha-
nism and admitted that stable matching can always be achieved with a probability of one
starting from satisfying blocking pairs in arbitrary matching. Roth’s and Vande’s work can
be analogized as follows:

1. Imagine that there is one room with one entrance; randomly select a pair from each
matching process. Let the selected pair enter the room. The selected pair can be
confirmed as a stable matching in this room because no other choice can break the
pair. Meanwhile, the rest of the agents form a queue outside the room to enter the
room one by one.



Entropy 2022, 24, 263 8 of 14

2. Ask an agent who is in front of the room to enter the room. There will be a matching
process inside the room. The door of the room will remain closed before a stable
matching is formed in the room.

3. Repeat the second step until there are no remaining queues and a stable matching is
obtained. As a result, a stable matching will be obtained without any blocking pairs.

The RV mechanism begins the matching process by asking a single random pair
to enter the room. Typically, a blocking pair will be selected in the initialization process.
Following that, the remaining agents in the queue will be asked to enter the room separately.
In the RV mechanism, new agents are not permitted to enter the room until all agents in the
room reach stability. Therefore, this motivated us to shorten the finding of stable matching
in the RV mechanism. The RV mechanism begins the matching process with a single pair for
the initial part, while our proposed algorithm enables the initial process with multiple pairs.
This significantly speeds up the process of finding stable matches by introducing multiple
pairs into the room simultaneously. Here is our mechanism for updating a stable matching:

1. Imagine that there is one room with one entrance; select some pairs that have been
confirmed as a stable matching. Let of all the selected pairs enter the room together.
Meanwhile, the rest of the agents form a queue outside the room to enter the room
one by one.

2. Ask an agent who is in front of the room to enter the room. There will be a matching
process inside the room. The door of the room will remain closed before a stable
matching is formed in the room.

3. Repeat the second step until there is no remaining queue and a stable matching is
obtained. As a result, a stable matching will be obtained without any blocking pairs.

Figure 4 shows an illustration of the original RV mechanism and our updating mecha-
nism. Our mechanism allows more than one pair to enter the room at the initial stage.

Matching Process Room

Gale-Shapley Algorithm

(w1, m1) w2 m3 m2 w3

Queue line

1 2 3 4 5
(w2, m1), (w1, m3) w3 m2

Matching Process Room

Gale-Shapley Algorithm

Queue line

1 2 3

(a) (b)

Figure 4. Comparison of the original Roth and Vande mechanism (a) and our update mechanism (b).

3.3. Reducing the Previous Matching

Given an SMP of size n with an instance I = (M, W, L), where M = {m1, m2, . . . , mn},
W = {w1, w2, · · · , wn}, the matching µ is unstable if there exists a blocking pair (mi, wj)
such that (wj �mi µ(mi)) ∧ (mi �wj µ(wj)) for mi ∈ M, wj ∈ W, where i = 1, 2, . . . , n and
j = 1, 2, . . . , n. Equivalently, the stability for matching µ can be expressed as: (µ(mi) <mi wj)
∨ (µ(wj) <wj mi) for ∀mi ∈ M, ∀wj ∈W, where i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem 2. If we remove any one pair from the stable matching µ and SMP instance I, the reduced
matching µr will remain stable for the reduced instance Ir.

Proof. Without loss of generality, we assume the removal of (m1, w1) = (m1, µ(m1)). Then,
M ′ ≡ M\m1 and W ′ ≡ W\w1, µr = {(m2, µ(m2)), . . . , (mn, µ(mn))}. The stability
condition for the matching µr is expressed as: (µ(mi) <mi wj) ∨ (µ(wj) <wj mi) for
∀mi ∈ M ′, ∀wj ∈W ′, where i = 2, . . . , n and j = 2, . . . , n.

When we remove m1 from the preference list of women and w1 from the preference
list of men, there are only two possibilities for men: mi prefers w1 to the partner µ(mi)
in the stable matching µ, or mi prefers the partner µ(mi) to w1 in the stable matching µ.
Likewise, there are only two possibilities for women, which makes 2 × 2 = 4 combined



Entropy 2022, 24, 263 9 of 14

cases altogether. We will check the stability condition above for the reduced matching µr
for the reduced instance Ir.

Case 1: If (w1 �mi µ(mi)) and (µ(wj) �wj µ(m1)), then the statement (µr(wj) <wj mi)
for the stability condition of matching µr is true.

Case 2: If (µ(mi) �mi w1) and (m1 �wj µ(wj)), then the statement (µr(mi) <mi wj)
for the stability condition of matching µr is true.

Case 3: If (µ(mi) �mi w1) and (µ(wj) �wj µ(m1)), then both statements (µr(mi) <mi

wj) and (µr(wj) <wj mi) for the stability conditions of matching µr are true.
Case 4: If (w1 �mi and (m1 �wj µ(wj)), since both conditions of agents cannot directly

provide the true statement, then we need further investigation for this condition: mi and
wj are a pair µ and are also in µr. Then, we can write mi = µ(wj) and wj = µ(mi). If
we remove w1 from the men’s preferences, then µ(mi) increases; still, we cannot confirm
whether µ(mi) becomes mi’s first choice or not. If we assume that µ(mi) is not mi’s first
choice, then mi prefers another woman (wx) over µ(mi), that is, (wx �mi µ(mi)). Currently,
the partner of wx is µ(wx). Since µ is stable, then (mi �wx µ(wx)) is not possible in µ,
although we also remove m1 from the women’s preferences. Then, wx and mi never become
partners in µ. Thus, the statement (µr(mi) <mi wj) holds true for the stability condition of
matching µr. The true condition holds for all possible combinations of pair removals. That
said, the stability condition for matching µr still holds true.

As discussed in Section 3.2, we meant to obtain as many pairs as possible for the initial
stage. The pairs wishing to enter at the initial step must be stable with each other. Therefore,
we reduce the size of the previous matching to obtain a stable matching with a smaller
size. The reduction procedure is performed by removing the unwanted pairs (m, w) from a
matching µ that causes the formation of a blocking pair. It should be noted that removing
m and w from the previous matching is not permanent. The removal is intended to keep
the remaining pairs stable. Thus, the stable reduced matching can be used as the initial
stage for finding a stable matching. To accomplish this, we must introduce a procedure
for determining which pairs to exclude from the matching µ. By using Theorem 2, we can
safely remove any pair from the previous matching to get the reduced stable matching.

Consider the following examples in Figure 5.

1st 2nd 3rd 4th

m1 w1 w2 w3 w4

m2 w1 w2 w3 w4

m3 w1 w2 w3 w4

m4 w1 w2 w3 w4

1st 2nd 3rd 4th

w1 m4 m3 m2 m1

w2 m4 m3 m2 m1

w3 m4 m3 m2 m1

w4 m4 m3 m2 m1

Men preference Women preference

Figure 5. A 4 × 4 SMP instance before reduction.

We have stable matching (man-optimal) {(w1, m4), (w2, m3), (w3, m2), (w4, m1)}. Now,
we will try to reduce the instance by randomly removing one pair in the stable matching.
Suppose that we remove (w2, m3). Thus, the size of the SMP instance will change to 3 × 3,
as depicted in Figure 6.

Figure 6 shows the result of reducing the SMP instance from 4× 4 to 3× 3 by randomly
deleting one pair, which keeps the reduced matching stable with respect to the reduced
instance.

Example 2. Given the SMP instance I = (M, W, L), a set of men M = {m1, m2, m3, m4, m5}, and
a set of women W = {w1, w2, w3, w4, w5}, we assume that agent m1 changes his preference and
generate two SMP instances, as depicted in Figure 7:



Entropy 2022, 24, 263 10 of 14

1st 2nd 3rd 4th

m1 w1 w3 w4

m2 w1 w3 w4

m4 w1 w3 w4

1st 2nd 3rd 4th

w1 m4 m2 m1

w3 m4 m2 m1

w4 m4 m2 m1

Men preference Women preference

Figure 6. A 4 × 4 SMP instance before reduction.

Instance 0 (I0) Instance 1 (I1)
L0(m1) = w5, w4, w1, w3, w2
L0(m2) = w1, w3, w4, w2, w5
L0(m3) = w1, w3, w2, w4, w5
L0(m4) = w3, w2, w4, w1, w5
L0(m5) = w5, w2, w1, w3, w4

 

L0(w1) = m5, m4, m2, m1, m3
L0(w2) = m2, m5, m3, m1, m4 
L0(w3) = m1, m3, m2, m4, m5 
L0(w4) = m1, m2, m4, m3, m5 
L0(w5) = m3, m4, m2, m5, m1

L1(m1) = w2, w5, w1, w3, w4
L1(m2) = w1, w3, w4, w2, w5
L1(m3) = w1, w3, w2, w4, w5
L1(m4) = w3, w2, w4, w1, w5
L1(m5) = w5, w2, w1, w3, w4

L1(w1) = m5, m4, m2, m1, m3
L1(w2) = m2, m5, m3, m1, m4 
L1(w3) = m1, m3, m2, m4, m5 
L1(w4) = m1, m2, m4, m3, m5 
L1(w5) = m3, m4, m2, m5, m1

Figure 7. The 5 × 5 SMP instances with dynamic preferences.

The stable matching of instance 0 is µ0 = {(w1, m2), (w2, m4), (w3, m3), (w4, m1), (w5, m5)}.
Now, we want to find the stable matching of instance 1 by updating µ0. Comparing L0 and
L1, it is known that the pair (w3, m1) will become a blocking pair in matching µ0 if we use L1
as the preference. (w3, m1) blocks (w3, m3) and (w4, m1) in matching µ0. By using Theorem 2,
we allow the removal of the pair (w4, m1). Removing (w4, m1) from instance 1 will produce
the reduced matching µr = {(w1, m2), (w2, m4), (w3, m3), (w5, m5)}, which is stable with respect
to the reduced SMP instance (Ir). As illustrated in Figure 4b, members of µr may immediately
enter the room together. Meanwhile, the removed pair (w4, m1) forms a queue outside the
room.

Algorithm 2 summarizes our work in this study. By combining Algorithm 1 with
the reduced pair, we can start updating the previous matching and obtain the new stable
matching for a new instance. Since we can start the initial stage by processing several pairs
simultaneously, the revision cost of rematching can be minimized.

3.4. Controlling the Matching Orientation

An exciting aspect of the RV mechanism is the variety of the stable matchings obtained.
Unlike the Gale–Shapley algorithm, which always provides the same stable matching, the
RV mechanism can produce a different stable matching for each execution. While it is
impossible to guarantee that all stable matchings in the lattice structure are obtained, man-
and woman-optimal matching can be guaranteed. According to Jinpeng Ma’s research,
certain circumstances can result in a stable match that leads to a particular orientation or,
at the very least, in close proximity to the optimal orientation within the lattice structure.
According to his study, if the last agent in the matching process is a male agent, a man-
optimal or fairly stable match is obtained that is close to the man-optimal orientation in
the lattice structure. In the opposite direction, if the last agent in the matching process
is a woman, it will obtain a woman-optimal or fair stable matching that is close to the
woman-optimal orientation in the lattice structure. This allows us to control the orientation
of the stable matching that we want to produce by sorting the queueMember variable in
Algorithm 2. By simply putting all male agents at the end of the queue, we will be able
to obtain the man-optimal matching, or we can put all the female agents at the end of the
queue if we want woman-optimal matching.



Entropy 2022, 24, 263 11 of 14

Algorithm 2 Updating stable matching.
Input:
-Current SMP Instance: mPref, wPref
-Previous SMP Instance: prevMPref, prevWPref, Stable Matching (SM)

1: for m, w in SM do
2: if mPref[m] != prevMPref[m] then
3: for prevW in prevMPref[m] do
4: if prevMPref[m].rank(w) > prevMPref[m].rank(SM(prevW)) then
5: potentialBP.append(prevW)
6: end if
7: end for
8: for woman in mPref[m] do
9: if woman in potentialBP then

10: if wPref[woman].rank(m) > wPref[woman].rank(SM(woman)) then
11: removedPair.append(m, w)
12: end if
13: end if
14: end for
15: end if
16: if wPref[w] != prevWPref[w] then
17: for prevM in prevWPref[w] do
18: if prevWPref[w].rank(m) > prevWPref[w].rank(SM(prevM)) then
19: potentialBP.append(prevM)
20: end if
21: end for
22: for man in wPref[w] do
23: if man in potentialBP then
24: if mPref[man].rank(w) > mPref[man].rank(SM(man)) then
25: removedPair.append(m, w)
26: end if
27: end if
28: end for
29: end if
30: end for
31: SM = SM - removedPair
32: roomMember = member of SM
33: queueMember = member of removedPair
34: for newMember in queueMember do
35: roomMember.append(newMember)
36: /* see the Appendix A Algorithm A1 for pathToStability function */
37: pathToStability(newMember)
38: end for

4. Discussion

We propose an algorithm for finding stable matching in the SMP with dynamic preferences.
In the SMP with dynamic preferences, an agent’s preferences might change dynamically, affecting
the stability of the previous stable matching. One traditional method for maintaining matching
stability is to perform rematching each time the preferences change, as illustrated in Figure 2.
However, in some situations, preference changes do not always affect the matching stability,
such as with minor changes in preference. In other words, the prior matching remains stable in
the presence of the new preference. This motivates us to update the matching to find a stable
matching with dynamic preferences. In certain circumstances, such as when the preferences
changes are minor, the match-updating method can accelerate the discovery of a stable match for
the new instance. In this study, we are not focused on the computational cost while performing
the rematching process. With the match-updating mechanism, we try to minimize the revision
cost that needs to be paid.



Entropy 2022, 24, 263 12 of 14

Our current study is a preliminary step toward resolving issues in the SMP with
dynamic preferences. In the SMP with the dynamic preferences, changing an agent’s prefer-
ences will generate new instances, which may affect the stability of the matching obtained.
Refs. [15,16] investigated the new concept of stability for stable matching problems with
dynamic preferences. They tried to broaden the definition of stability in stable match-
ing problems with dynamic preferences. The concept of new stability in stable matching
problems with dynamic preferences was determined by measuring the strength of each
founded matching against all available instances. To measure a matching’s stability and
strength, they needed to find a stable matching for each instance. Our current study will
positively impact this problem by empowering the discovery of stable matching for each
available stable matching instance. Our findings will aid future research in stable matching,
especially with the dynamic preference model. The process of determining stable matching
in an SMP with dynamic preferences can be accelerated by employing our theorem and
proposed algorithm.

In our previous studies [8,9], we tried to find a matching between containers and
servers. A matching process was carried out by using the Gale–Shapley algorithm between
three containers and three servers [9]. The rematching process was performed in the
traditional way by processing the new preferences using the Gale–Shapley algorithm. In
our previous study, we also tried to find the matching between containers and servers
under probabilistic preferences [8]. We focused on managing the rematching process
between containers and servers when dealing with dynamic preferences. When an agent’s
preferences changed, the container scheduler performed the rematching process. With our
current research, we can speed up rematching by updating the previous matching. Our
match-updating method can accelerate the search for a stable matching for the new instance
if the preference changes are minor. However, this update method still has limitations and
weaknesses. For some situations, such as if all agents’ preferences are changed and no one
confirms the minor preference changes, the match-updating process cannot be accelerated.
Moreover, if all agents want to change their current partners, the computational cost of
finding a stable matching in a new instance will be higher than with the traditional way of
finding a stable matching due to the extra cost of the preference change checking process.

5. Conclusions

In the SMP with dynamic preferences, agents can modify their preferences at any
time, leading to the creation of a new SMP instance. As the consequence of the preference
changes, the matching obtained may become unstable. We proposed a mechanism for
finding a stable matching by updating an existing matching. A cyclic process (infinite loop)
may exist when updating a matching. We employed the RV mechanism to prevent this
cyclic process when updating a matching. We attempted to update a matching by isolating
the pairs that contribute to its instability, thus generating a smaller matching with a stable
condition (reduced stable matching). Our proposed mechanism can update a matching
without worrying about the cyclic process. As a result, our match-updating method can
accelerate the process of finding a stable matching for a new instance when the preference
changes are minor. That said, the main contributions of this paper are Theorems 1 and 2,
which can shorten the search for stable matching with dynamic preferences. Thus, we can
minimize the revision cost when performing the rematching.

For the SMP with dynamic preferences, our current work is a preliminary step toward
resolving the bigger issues of the SMP with dynamic preferences. This paper aims to
find a stable matching for each generated instance of the SMP with dynamic preferences.
However, defining the new stability concept for the SMP with dynamic preferences would
be the interesting part of the SMP with dynamic preferences.

Author Contributions: Conceptualization, A.A. and Y.I.; methodology, A.A. and Y.I.; validation, A.A.
and Y.I.; investigation, A.A. and Y.I.; writing—original draft preparation, A.A.; writing—review and
editing, A.A.; visualization, A.A.; supervision, Y.I. All authors have read and agreed to the published
version of the manuscript.



Entropy 2022, 24, 263 13 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable
suggestions and comments. Supported by Toyohashi University of Technology and Ministry of
Education, Culture, Sports, Science and Technology Japan. Supported by Toyohashi University of
Technology and the Global Rotation Program, MEXT, Japan.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithm A1 Procedure of the path to stability.
Input:
-SMP Instance (manPrefers and womanPrefers)

1: M = {}
2: procedure PATHTOSTABILITY(newMember)
3: freeMember.append(newMember)
4: while freeMember do
5: proposer = freemember.pop(0)
6: if proposer == woman then
7: womanList = womanPrefers[proposer]
8: for man in womanList do
9: if man is roomMember then

10: manList = manPrefers[man]
11: if man in M then
12: manFiance = M(man)
13: if manList.index(proposer) < manList.index(manFiance) then
14: freeMember.append(manFiance)
15: M(proposer) = man
16: end if
17: else
18: M(proposer) = man
19: end if
20: end if
21: end for
22: else
23: manList = manPrefers[proposer]
24: for woman in manList do
25: if woman is roomMember then
26: wList = womanPrefers[woman]
27: if woman in M then
28: womanFiance = M(woman)
29: if wList.index(proposer) < wList.index(womanFiance) then
30: freeMember.append(womanFiance)
31: M(proposer) = woman
32: end if
33: else
34: M(proposer) = woman
35: end if
36: end if
37: end for
38: end if
39: end while
40: return M
41: end procedure



Entropy 2022, 24, 263 14 of 14

References
1. Gale, D.; Shapley, L.S. College admissions and the stability of marriage. Am. Math. Mon. 1962, 69, 9–15. [CrossRef]
2. Irving, R.W. An efficient algorithm for the “stable roommates” problem. J. Algorithms 1985, 6, 577–595. [CrossRef]
3. Gusfield, D.; Irving, R.W. The Stable Marriage Problem: Structure and Algorithms; MIT Press: Cambridge, MA, USA, 1989.
4. Manlove, D.F. Hospitals/residents problem. In Encyclopedia of Algorithms; Springer: New York, NY, USA, 2008.
5. Iwama, K.; Miyazaki, S. A survey of the stable marriage problem and its variants. In Proceedings of the International

Conference on Informatics Education and Research for Knowledge-Circulating Society (ICKS 2008), Kyoto, Japan, 17 January
2008; pp. 131–136.

6. Irving, R.W.; Manlove, D.F.; Scott, S. The hospitals/residents problem with ties. In Scandinavian Workshop on Algorithm Theory;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 259–271.

7. Dilley, J.; Maggs, B.; Parikh, J.; Prokop, H.; Sitaraman, R.; Weihl, B. Globally distributed content delivery. IEEE Internet Comput.
2002, 6, 50–58. [CrossRef]

8. Alimudin, A.; Ishida, Y. Dynamic assignment based on a probabilistic matching: Application to server-container assignment.
Procedia Comput. Sci. 2020, 176, 3863–3872. [CrossRef]

9. Alimudin, A.; Ishida, Y. Service-Based Container Deployment on Kubernetes Using Stable Marriage Problem. In Proceedings of
the 2020 the 6th International Conference on Frontiers of Educational Technologies, Tokyo, Japan, 5–8 June 2020; pp. 164–167.

10. Kanade, V.; Leonardos, N.; Magniez, F. Stable matching with evolving preferences. arXiv 2015, arXiv:1509.01988.
11. Chen, J.; Skowron, P.; Sorge, M. Matchings under preferences: Strength of stability and tradeoffs. ACM Trans. Econ. Comput. 2021,

9, 1–55. [CrossRef]
12. Knuth, D.E. Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms;

American Mathematical Society: Providence, RI, USA, 1997; Volume 10.
13. Roth, A.E.; Vate, J.H.V. Random paths to stability in two-sided matching. Econom. J. Econom. Soc. 1990, 58, 1475–1480. [CrossRef]
14. Ma, J. On randomized matching mechanisms. Econ. Theory 1996, 8, 377–381. [CrossRef]
15. Chen, J.; Niedermeier, R.; Skowron, P. Stable marriage with multi-modal preferences. In Proceedings of the 2018 ACM Conference

on Economics and Computation, Ithaca, NY, USA, 18–22 June 2018; pp. 269–286.
16. Aziz, H.; Biró, P.; Gaspers, S.; De Haan, R.; Mattei, N.; Rastegari, B. Stable matching with uncertain linear preferences. In

International Symposium on Algorithmic Game Theory; Springer: Berlin/Heidelberg, Germany, 2016; pp. 195–206.

http://doi.org/10.1080/00029890.1962.11989827
http://dx.doi.org/10.1016/0196-6774(85)90033-1
http://dx.doi.org/10.1109/MIC.2002.1036038
http://dx.doi.org/10.1016/j.procs.2020.09.002
http://dx.doi.org/10.1145/3485000
http://dx.doi.org/10.2307/2938326
http://dx.doi.org/10.1007/BF01211824

	Introduction
	Preliminaries
	The Stable Marriage Problem
	Dynamic Preferences in the SMP

	Updating the Stable Matching
	Identifying the Preference Changes
	Initiating the Matching Update
	Reducing the Previous Matching
	Controlling the Matching Orientation

	Discussion
	Conclusions
	Appendix A
	References

