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Abstract: An information outbreak occurs on social media along with the COVID-19 pandemic
and leads to an infodemic. Predicting the popularity of online content, known as cascade prediction,
allows for not only catching in advance information that deserves attention, but also identifying
false information that will widely spread and require quick response to mitigate its negative impact.
Among the various information diffusion patterns leveraged in previous works, the spillover effect of
the information exposed to users on their decisions to participate in diffusing certain information
has not been studied. In this paper, we focus on the diffusion of information related to COVID-19
preventive measures due to its special role in consolidating public efforts to slow down the spread of
the virus. Through our collected Twitter dataset, we validate the existence of the spillover effects.
Building on this finding, we propose extensions to three cascade prediction methods based on Graph
Neural Networks (GNNs). Experiments conducted on our dataset demonstrated that the use of the
identified spillover effects significantly improves the state-of-the-art GNN methods in predicting the
popularity of not only preventive measure messages, but also other COVID-19 messages.

Keywords: cascade prediction; information diffusion; COVID-19; graph neural networks; spillover
effects; Twitter

1. Introduction

The outbreak of the COVID-19 pandemic leads to an infodemic, which is partially at-
tributed to the outbreak of information on major online social networks (OSNs), including
Twitter, Facebook, Instagram, and YouTube [1]. Due to physical isolation and social dis-
tancing, people spent much more time on OSNs, engaging in expressing opinions, catching
up-to-the-minute development of the pandemic and even looking for medical support and
knowledge to ease mental depression and seek psychological comfort. This new change of
information perception makes OSNs an essential communication channel for healthcare
departments and medical staff to disseminate official policies and professional advice
promoting effective measures to prevent the spread of the COVID-19 virus, e.g., wearing
masks, vaccination and social distancing. Meanwhile, misinformation and false news also
take advantage of OSNs to spread with unprecedented speed and volume and result in
risk-taking behaviours that will harm public health. As a consequence, this information
explosion on OSNs impedes the efficacy of pandemic response and increases public con-
fusion about who and what preventive measures to trust [2]. To combat theinfodemic, one
widely accepted approach is known as cascade prediction, the purpose of which is to learn
the popularity of messages according to its early adopters. Accurate prediction can help
the public catch information deserving special attention, and assist healthcare departments
with identifying misinformation that requires fast response to control its negative impact.

Research on cascade prediction has been sustained, with a large number of prediction
models developed. Earlier models rely on hand-crafted features extracted from demo-
graphic profiles of early adopters [3,4] or social graphs composed of early adopters and
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their relationships [5]. The recent advances of deep learning lead to models that can auto-
matically learn useful features, encoded as a low-dimensional representation of available
evidence that can be intuitively interpreted as most related features [6,7]. In particular,
the application of graph neural networks (GNN) allows for capturing the features of nodes’
neighbourhoods and simulating information cascading over social networks [8].

In spite of the various diffusion patterns exploited, previous studies have not consid-
ered the spillover effect of a user’s exposed information on his/her behaviour of forwarding
certain types of messages and becoming part of their diffusion, which we call info-exposure
spillover effect for short. Spillover effects have become a commonly adopted theory in study-
ing the impact of certain information on the opinions and behaviour changes of information
consumers. For example, studies of political attitudes have found that exposure to scandals
about some candidates may have negative spillover effects on the public’s trust in other
politicians [9,10]. We say a user is exposed to a message if the user posts the message or
perceives it from his/her friends on social media. In this paper, we adopt the original
definition of a behaviour spillover effect which intuitively means “the observable and causal
effect that a change in one behaviour has on a different, subsequent behaviour” [11]. According to
this definition, the info-exposure spillover effect studied in this paper can be interpreted as
the impact of the information a user perceived from the social media on his/her behaviour
of forwarding a COVID-19 related post received from his/her friends.

We hypothesise the existence of this info-exposure spillover effect according to the
previous studies related to the COVID-19 pandemic. Park et al. [12] demonstrated that
information with a medically oriented thematic framework has a wider spillover effect
on COVID-19 issues in a Twitter context. Racist information is found to have spillover
effects on the mistrust of medical system [2] and thus harm public trust in the information
released by these systems.

In this paper, we focus on the diffusion of messages related to COVID-19 preventive
measures considering their importance in slowing down virus transmission and protecting
public health. After the outbreak of the pandemic, the topics of information to which
social media users are exposed have experienced subtle changes. Some of these changes
may subsequently lead to the changes of their intention to forward messages concerning
preventive measures. For example, tweets about unemployment or loneliness may make a
user who reads them perceive the severity of the pandemic and thus become more likely to
retweet tweets about staying at home.

Our contributions. We collected a dataset from Twitter which contains both users’
posted messages and their social relations with others. With this dataset, we successfully
validated the existence of the info-exposure spillover effect of users’ exposed messages on
their decisions to retweet messages related to preventive measures. Specifically, we take
into account all the messages exposed to users, regardless of whether they were related
to COVID-19 or not. We observed that, although all messages present certain a level
of spillover effects on retweeting preventive messages, those related to COVID-19 have
stronger impacts. This motivates us to extend existing state-of-the-art cascade prediction
models by taking into account info-exposure spillover effects. Through comprehensive
experimental evaluation on our dataset, we show that our extended models can increase the
cascade prediction performance up to 23.84% in COVID-19 messages related to preventive
measures. In order to attest whether info-exposure spillover effects also exist for other
messages, we also run the extended models to predict the size of cascades of general
messages concerning COVID-19 but not related to preventive measures. The results show
an obvious increase in accuracy due to the use of the info-exposure spillover effect.

2. Related Work

Cascade prediction. Cascade prediction becomes attractive after studies reveal that
some key properties of information cascades can be predicted [3,13]. In general, the cascade
prediction methods can be divided into two classes: macro-level prediction and micro-level
prediction. Micro-level prediction aims to predict users who will be activated during the



Entropy 2022, 24, 222 3 of 18

information diffusion, while macro-level cascade prediction directly calculates the final
size of targeted cascades.

The idea of most micro-level methods are based on the Independent Cascade model
(IC) [14], which calculates the probability of influence between every pair of users [15].
These methods rely on a number of assumptions that overly simplify the real situation
such as the complete observation of diffusion processes [16]. Although Deepinf [17] uses
an end-to-end deep learning method to overcome such assumptions, micro-level methods
generally do not perform well in predicting cascade future size as they require simulating
the entire diffusion process. In this paper, as our target is popularity prediction, we opt for
macro-level methods.

Macro-level prediction methods can be divided into three categories as a result of
technological evolution, i.e., statistical prediction model, machine learning-based methods
and deep learning-based methods. The development of macro-level prediction started
with statistical models such as SEISMIC [18] and Weibull [13]. Then, the advancements of
machine learning led to methods using manually designed features extracted from text
content, temporal and demographic information, and network structure [3,4,13]. Deep
learning-based methods overcome the deficiency of machine learning-based methods of
constructing manual features and capture effective features automatically. DeepCas [19]
and DeepHawkes [20] use Recurrent Neural Networks (RNNs) to capture cascading se-
quences in place of manually designed features. However, RNNs are limited in capturing
structural information. This limitation is addressed by graph neural networks (GNNs) [21].
Intuitively, GNNs update the representation of each node by recursively aggregating the
representations of its neighbours. In this way, the iterated node representation summarises
both structural and representation information in neighbourhoods. CasCN [22] utilises
a dynamic Graph Convolutional Network (GCN) to learn the structural information of
the cascade. CoupledGNN [8] (CGNN) effectively addresses cascade prediction with two
GNNs, capturing the cascading effect which indicates that the activation of one user will
successively trigger its neighbours.

Although deep learning-based methods have achieved relatively good results in
cascade prediction, little research has been conducted to incorporate textual content into
cascade prediction. Users’ textual posts, as an important part of social media, may contain
information that are related to users’ decision to participate in diffusion of certain messages.
Thus, we narrow the focus in this article to macro-level cascade prediction by extending
the existing models to leverage online textual content on social media.

Spillover effects. The spillover effect has been widely used to study the impact of
information on the information consumers’ opinion and behaviour [9,10,23,24]. Spillover
effects can be interpreted and explained in various ways. We identify two main typologies
in the literature, namely behavioural spillover effects and affective spillover effects.

The former interprets spillover effects as implicit ideas people build up that two
things are connected, regardless of whether they are in the same context or across different
contexts [10]. For instance, Sikorski explained the damage of the public’s trust in politicians
following scandals of candidates as a behavioural spillover effect [9]. Other examples
include the impact of religious activities on political orientation [25], and imposition of
extra congestion charges on environmental behaviour changes in situations irrelevant to
traffic [23]. The latter studies how affective responses (e.g., emotions such as happiness
and anger) triggered by certain information affect human behaviour, usually based on
the ‘feelings-as-information’ model [24], Schwarz et al. found that anger triggered by
other information may have negative effects on people’s political attitudes [26]. Yegiyan
discovered that the emotional feelings caused by film clips shown before commercial
advertisements may affect audience’s product preference [27].

Based on these previous studies, we make our hypothesis that, during the COVID-19
pandemic, the information exposed to an individual may have spillover impacts on his/her
behaviour of retweeting messages. In our validation (see Section 5), we consider both
behavioural or affective spillover effects. To capture our info-exposure spillover effect,
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we do not explicitly distinguish these two typologies and profit from the power of deep
learning to automatically learn the features of exposed messages that have spillover effects.

3. Preliminaries
3.1. Problem Definition

In this section, we give the formal definition of the popularity prediction problem stud-
ied in this paper which takes into account both social relations and online textual contents.

We use graph G = (V , E) to denote the social network where V is the set of nodes
representing users and E ⊆ V × V is the set of edges indicating the relationships between
users. For each v ∈ V , given a time period, we useMv to denote the messages posted by
the user corresponding to v, andM to denote the set of all messages, i.e.,M = ∪v∈VMv.
In the rest of the paper, we will misuse the notions of users and nodes whenever it is clear
from the context.

When a message m is firstly posted by a user, it will be perceived by the user’s
followers who might adopt the message and relay the message. This cascading process will
continue on the social network until no further sharing occurs. We denote the observed
diffusion cascade of m at time t by Ct

m = {v1, v2, . . . , vnm
t
} (vi ∈ V for 1 ≤ i ≤ nm

t ), i.e., the
set of users who had adopted m before t. Note that nm

t is the number of the adopters of m
at t. Compared to the previous works, we take into account the online textual messages
posted by users in addition to the social network. This leads to the following definition.

Definition 1 (Online textual content-aware cascade prediction). Given the cascade of mes-
sage m at time t (i.e., Ct

m), social network G = (V , E) and the messages posted by users in V ,
i.e., ∀v∈VMv, the problem is to predict the final popularity of m at time ∞, i.e., nm

∞.

As mentioned previously, we focus on the diffusion of the messages related to COVID-
19 preventive measures, although we will also show the effectiveness of our extended
models in predicting the popularity of other general messages. To integrate the online
textual messages, i.e.,M, in solving the problem, we will make use of the info-exposure
spillover effects of messages exposed to users on their decision to relay preventive measure-
related messages.

3.2. General Framework of GNNs

The purpose of graph neural networks (GNN) is to learn node representations of a
graph. Compared to graph embedding works such as node2vec [28] and DeepWalk [29],
one advantage of GNN is that it allows for integrating node attributes into the learning
process. GNN is implemented with multiple layers. At each layer, a node’s representation
is updated by combining the representations of their neighbours calculated in the previous
layer. Intuitively, a k-layer GNN calculates a representation for each node by combining
the attributes of the nodes within k hops. We adopt the formal definition in [21] and give
the general definition of the `-th layer (` ≤ k) for a node v ∈ V as follows:

a`v = Aggregate({h`u : u ∈ N (v)})
h`+1

v = Combine(h`v, a`v)

where h`v is the representation vector of node v at the `-th layer andN (v) denotes the set of
neighbours of node v. Function Aggregate and Combine are instantiated according to the
application scenarios so as to capture the most useful features of nodes’ neighbourhoods.
This leads to the large number of GNN variants in the literature. With the representation
vector of every node at the k-th layer, the representation of the graph G can thus be
calculated by a function as follows: hG = Readout({hk

v : v ∈ V}). The Readout function can
be simply implemented as the mean of nodes’ vectors or other complex pooling functions
depending on the specific requirements of scenarios in practice.
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4. Data Collection and Pre-Processing

Twitter, one of the most prominent online social media platforms, has been used ex-
tensively during the COVID-19 pandemic. We select the Greater Region (GR) (The Greater
Region of Luxembourg is composed of the Grand Duchy of Luxembourg, Wallonia, Saar-
land, Lorraine, Rhineland-Palatinate and the German-speaking community of Belgium.), a
region with a population of high mobility, as the targeted area. This section presents how
we built the dataset, constructed the cascades and built the social graph for our analysis
and experiments.

4.1. Data Collection

In our dataset, we collected two types of data: (i) All the tweets posted or re-tweeted
by GR users; (ii) the social networks of GR users recording their following relationships.
In what follows, we elaborate the three steps we followed to gather these data.

• Step 1. Tweet collection. In this step, we collect a set of seed users in GR who
actively participated in COVID-19 discussions and the tweets they originally posted or
retweeted. Instead of searching by keywords, we refer to a publicly available dataset
which contains the IDs of COVID-19 related tweets [30]. We extracted the tweet IDs
posted between 22 January 2020 and 18 July 2020. This period covers the first wave
of the pandemic. Through these tweet IDs, we download their corresponding tweet.
Due to the ambiguity of locations of tweet posters, we use the geocoding APIs, Geopy
and ArcGis Geocoding to regularise locations associated with tweets. For example,
a user input location Moselle is transformed to a more precise and machine-parsable
location: Mosselle, Lorraine, France. Based on the regularised locations, we filter the
downloaded tweets and remove those posted by users out of GR. In total, we obtain
144,961 tweets from 8872 GR users.

• Step 2. Social graph construction. We construct the social graph of a large number
of GR users at this step. We use an iterative approach to gradually enrich the social
network. For each seed user, we obtain his/her followers and only retain those who
have a mutual following relation with the seed user, because such users are more
likely to reside in GR. We then download new users’ locations from their profile data
and only add users from GR to the social graph. We also add edges if users in the
graph have the following relation with the newly added users. After the first round,
we continue going through the newly added users by adding their mutually followed
friends that do not exist in the current social graph. This process will continue until no
new users can be added. In our collection, it takes five iterations before termination.
We take the largest weakly connected component of the social graph. After this step,
we have a total of 12,256,152 users and 21,203,130 following relationships. Since the
majority of users in the graph are relatively inactive, we construct a subgraph by
removing all users who post or retweet less than three tweets. Note that we keep
some such inactive users when the remaining graph is no longer connected after the
removal of these users. In the end, we obtain a social graph with 14,756 users and
148,647 edges.

• Step 3. Timeline tweet crawling. In this step, we collect tweets originally posted
or re-tweeted during the research period by the users in the social graph. These
tweets will be used to verify the existence of info-spillover effect of users’ exposed
messages on their decision to retweet information related to preventive measures,
and to conduct cascade prediction experiments. Note that the tweets collected in this
step are not limited to tweets related to COVID-19. In detail, we collect tweets with the
newly released Twitter Academic API, which allows for downloading up to 500 tweets
per user per month. We collect 18,523,099 tweets from all the users in the social graph
between 22 January and 18 July 2020, covering the pandemic’s initial wave. We divide
the tweets into COVID-19 related and COVID-19 unrelated based on the keywords
provided by Chen et al. [30]. In our collected tweets, the COVID-19 related tweets
account for 26.19%.
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4.2. Cascade Construction and Experiment Data Selection

We construct cascades from our tweet dataset and the social graph built previously
based on the definition in Section 3.1. A total of 7,485,895 cascades are built and we remove
those cascades with fewer than three users, the same as the existing works [8,19]. Eventually,
89.14% of the cascades are kept and we end up with 6,672,926 cascades. The average size of
these cascades is 4.31. We use C to denote the set of all the selected cascades. From C, we
construct the set of cascades corresponding to messages related to preventive measures,
denoted by CPM, based on the keywords listed in Table 1.

Table 1. Keyword lists for filtering tweets related to preventive measures and selected topics.

Topic Abbre. Keywords

Preventive measure PM stayathome, mask, masque, maske, wash hand, social
distancing, socialdistancing, staysafe, lockdown

Unemployment U
job, jobsearch, unemployment, employment, career,
resume, recruitment, recession, economy, economic
emploi, stelle, employ, arbeitslos, chômeurs

Panic buying PB panicbuying, panicshopping, panicbuyers, toiletpaper,
handsanitizer, coronashopping

School closures SC schoolclos, closenypublicschool, closenycschools, suny,
cuny, homeschool, noschool, shutdownschools

Stop Asian hate SAH stopasianhate, stopaapihate, stopasianhatecrimes, asian,
aapi, asianlivesmatter, asiansareguman, antiasianhate

Black life matters BLM blacklifematters, blacklivesmatter, atlantaprotest, blm,
changethesystem, justiceforgeorgefloyd

Loneliness L lonely, loneliness, alone, solitaire, solitude, seul, einsam,
einsamkeit, allein

5. Spillover Effects in COVID-19 Preventive Measure Information Diffusion

In this section, we validate our hypothesis that the information exposed to a user
has spillover effects on his/her behaviour of retweeting a message related to COVID-19
preventive measures. We first briefly describe the measurement used for quantifying
the hypothesised info-exposure spillover effect. Then, we give the detailed experimental
analysis designed to validate its existence in the diffusion of COVID-19 preventive measure-
related messages.

5.1. Measuring Info-Exposure Spillover Effect

We design our validation based on the experimental investigation method commonly
used for spillover effect validation [9,31]. The idea is to investigate whether users exposed to
different information will behave differently in retweeting a message related to preventive
measures. In other words, we will check whether certain exposed information will change
the likelihood that users retweet messages related to preventive measures.

Info-exposure spillover effect validation framework We construct groups of users
according to the information they are exposed to. Each group is composed of users who
are exposed to a certain composition of information. One of these groups is set as the
control group. The selection of the control group depends on the purpose of the experiment.
The proportion of users in each group retweeting preventive measure messages is used
to measure the likelihood of adopting preventive measure messages, which we call the
adoption likelihood. By comparing the measurement of a group with that of the control group,
we can then quantitatively evaluate the magnitude of the info-exposure spillover effect
of the information exposed to this user group on adopting preventive measure messages,
which we call the info-exposure spillover elasticity.
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Formally, let D be a set of groups of nodes in G, i.e., D = {V1, . . . ,Vn} where
∀Vi∈DVi ⊂ V . Suppose Vc ∈ D is the selected control group. For each user group Vi ∈ D,
we identify the users who ever retweeted at least one preventive measure message inMPM,
and then construct the set of identified users VPM

i . The adoption likelihood for users in Vi is
calculated as

αVi =
| VPM

i |
| Vi |

.

With these notations, we can define the info-exposure spillover elasticity as follows:

Definition 2 (Info-exposure spillover elasticity). The elasticity of the info-exposure spillover
effect of a user group Vi in the user group set D is calculated as

εDVi
=

αVi − αVc

αVc

.

Positive elasticity indicates that the information commonly exposed to the users in
Vi increases the likelihood of retweeting a preventive measure message while negative
elasticity indicates the opposite.

5.2. Experimental Validation of Info-Exposure Spillover Effect

We verify through our collected data that being exposed to certain information may
affect users’ behaviour of retweeting messages related to preventive measures. It is not
tractable to analyse all the contents that are mentioned or discussed in tweets. Therefore,
inspired by previous research [32,33], we classify tweets from the level of topics and select
six frequently studied ones in the literature [32,33] as the representatives. Among these
topics, three are related to COVID-19, i.e., Unemployment, Panic buying and School closures,
while the other three studied in previous Twitter-based studies are general and not directly
related to the pandemic, namely, Stop Asian hate, Black life matters and Loneliness [34,35]. We
extract corresponding tweets in each topic with the keywords listed in Table 1. According
to our manual check, the keywords ensure a good coverage rate of the tweets in the selected
topics. In total, the messages covered by these topics take up 18.17% of our collected
tweets excluding those related to preventive measure.

For the purpose of being comprehensive, we conduct our experimental validation
from two perspectives. We first evaluate the spillover effect of messages of a single topic
on the behaviour of retweeting a preventive measure message. Second, we investigate the
spillover effect of messages in various compositions of topics.

Spillover effects of information of single topics We build six sets of user groups
each of which corresponds to a selected topic, i.e., DU, DPB, DSC, DSAH, DBLM, DL. Each
set has only two groups. One consists of users that have been exposed to messages of
the corresponding topic while the other group is composed of users who have not been
exposed. We will take the one unexposed to the topic as the control group. In Table 2,
we show the number of users exposed and unexposed in each group set, the adoption
likelihood and the final info-exposure spillover effect elasticity.

We have three main observations. First, the exposure to each topic of messages will
increase the likelihood of users to retweet a preventive measure message. On average,
the adoption likelihood of exposed groups equals 0.58, while the unexposed group only
has an activation likelihood of 0.28. The average elasticity is 1.19, which indicates that
the activation likelihood doubles for the users exposed to the topics on average. Second,
the increase of adoption likelihood for exposed users differs among the topics of exposed
information. For instance, the exposure to information related to Panic buying and Black life
matters just increases the elasticity by 0.25 and 0.16, respectively, which are much smaller
than the other topics. We manually examine messages in the topic Black life matters and
Stop Asian hate to understand the difference. We notice that users exposed to the messages
about racists have more diverse attitudes towards prevention measures. This is consistent
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with previous studies [36]. For example, some users argue that the protest breaks the
social distancing policy and exacerbates the virus transmission, while some others hold
the view that the impact of COVID-19 is overstated and the lockdown policy worsens
racial discrimination. The above two observations apply in both COVID related topics
and COVID unrelated topics. Third, exposure to messages unrelated to COVID imposes a
weaker spillover effect than those related to COVID. On average, the average elasticity of
the COVID-19 unrelated topics is 14.76% smaller than that of the COVID-19 related topics.

Table 2. Validation of info-exposure spillover effect of single topics.

Topic Type Topic
Exposed Unexposed

Elasticity ε
#User α #User α

COVID Related

Unemployment (U) 4238 0.67 17,101 0.25 1.69

Panic buying (PB) 6119 0.39 15,220 0.31 0.25

School closures (SC) 6460 0.61 14,879 0.21 1.87

COVID unrelated

Stop Asian hate (SAH) 6740 0.72 14,599 0.28 1.53

Black life matters (BLM) 9041 0.48 122,98 0.41 0.16

Loneliness (L) 5343 0.79 15,996 0.30 1.63

From the above analysis, we can conclude that (i) exposure to certain topics of infor-
mation, regardless of whether they are related to COVID-19, will impose positive spillover
effects on users’ likelihood to retweet preventive measure messages; and (ii) the scale of
spillover effect differs according to the topics of exposed messages.

Spillover effects of information of compositions of topics. In the previous analysis,
we focus on the spillover effect of single topics and ignore the changes when multiple
topics of information are exposed to users simultaneously. We construct a user group set
Dcomp of 22 groups, of which 15 groups correspond to the users who are only exposed
to messages of every pair of the six topics, and six are composed of users only exposed
to tweets of one of the selected topics. The last group contains the users exposed to no
messages in all the topics and is chosen as the control group. Note that we do not consider
the compositions of more than two topics in Dcomp because we observe in our analysis that
exposure to messages of any three topics leads to an adoption likelihood of at least 0.79.
This indicates the improvement of an info-spillover effect will be marginal when users are
exposed to messages of more topics.

Figure 1 shows the adoption likelihood of user groups exposed to the topic compo-
sitions in Dcomp except for the control group. We can see that exposure to more selected
topics increases the likelihood of retweeting a preventive measure message. Exposure to
an additional topic significantly increases the adoption likelihood. The most significant
increase occurs to the topic of Panic buying. The addition of any other topic except for the
topic BLM increases the adoption likelihood by at least two times. When exposed to none
of the topics, the activation likelihood for the users drops below 5%.

Discussion From the above analysis, we empirically validated the existence of the
info-exposure spillover effects. Specifically, certain information exposed to users indeed
increases the likelihood of users to retweet preventive measure messages. In addition,
we also illustrated that the magnitudes of this spillover effect depend on the content of
tweets exposed. In the following, we will leverage deep learning to automatically capture
the contents of tweets exposed to users that impose strong info-exposure spillover effects,
and thus improve the accuracy of cascade prediction.
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61.09% 74.17% 86.37% 90.91% 64.22% 82.91%

74.17% 18.09% 67.88% 65.29% 23.82% 57.88%

86.37% 67.88% 56.52% 86.51% 54.14% 76.30%

90.91% 65.29% 86.51% 68.97% 72.03% 83.74%

64.22% 23.82% 54.14% 72.03% 15.85% 56.24%

82.91% 57.88% 76.30% 83.74% 56.24% 50.85%
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Figure 1. Activation likelihood when exposed to compositions of topics.

6. Predicting Popularity of COVID-19 Preventive Measure Messages with
Spillover Effects

We use the framework of Graph Neural Networks (GNN) to learn the magnitudes of
the info-exposure spillover effect of a user’s exposed information on his/her behaviour
of retweeting preventive measure messages. Recall that the information exposed to a
user comes from two sources: the messages posted by their friends and his/her own
posts. We need to combine these two sources in a specific manner and calculate an overall
representation for each user that can be used in the following cascade prediction. This
explains our selection of GNN. When a user’s past posts are encoded as a vector and
attached to the corresponding node as node attributes, the message passing scheme of
GNN will conduct the combination. The combination may even involve the messages
from users that are not incident but within a certain number of hops. In this section, we
describe how we calculate nodes’ attributes with the encoding of users’ past posts, and then
detail how we extend various GNN-based models to integrate the identified info-exposure
spillover effect into cascade prediction.

6.1. Calculating Initial Node Attributes

Given a cascade of m at time t, i.e., Ct
m, we calculate the initial attribute of a node

v ∈ V , denoted by h0
v, by concatenating the following three components:

1. the representation vector of the messages posted by the user before t, denoted by δv;
2. the activation status of the user according to the given cascade Ct

m, denoted by sv;
3. the node embedding of the user’s corresponding node in the network, denoted by ev.

Formally, we have h0
v = sv‖δv‖ev, where ·‖· is the concatenation operator.

Past message encoding δv For each user v, we collect her/his past messages posted
or retweeted before t. We have learnt in Section 5 that exposure to COVID related messages
may impose stronger spillover effects than those unrelated to COVID. We distinguish these
two types of information to capture the difference. For each type, we collect the last λ
textual messages before t inMv, and thus construct two lists of messages ordered by their
posting time, i.e., (mrel

1 , mrel
2 , . . . , mrel

λ ) and (munrel
1 , munrel

2 , . . . , munrel
λ ) for the COVID related

and unrelated, respectively. Note that λ is a pre-defined hyper-parameter that should
be tuned manually. RoBERTa [37] is a language pre-trained transformer to encode short
texts in multiple languages into a vector of real numbers with a pre-defined length. In this
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paper, we use a widely used multilingual pre-trained RoBERTa variant: XLM-RoBERTa [38].
For each message, we calculate its embedding with the default XLM-RoBERTa model and
obtain the corresponding lists of message representation vectors. The resulted lists are
represented as (zrel

1 , zrel
2 , . . . , zrel

λ ) and (zunrel
1 , zunrel

2 , . . . , zunrel
λ ).

Many methods exist to combine these embeddings and obtain δv while considering
their relative temporal importance, e.g., Hawkes process and Gated Recurrent Unit (GRU).
In this paper, according to our experimental evaluation (see Section 7.4), we adopt the
content-aware temporal encoding (TE) which assigns fixed importance to messages based
on their temporal order. Formally,

φrel
v = ∑i≤λ ai · zrel

i ,
φunrel

v = ∑i≤λ ai · zunrel
i .

Note that the messages related to COVID and those unrelated share the same temporal
importance settings. According to our manual probe, using two different importance
settings does not give notable improvement, and increases the model complexity.

In order to capture the different contributions of messages related to COVID and those
unrelated, we introduce a weight parameter ρ (0 ≤ ρ ≤ 1) and compute the integrated past
message embedding δv as follows:

δv = φrel
v · ρ + φunrel

v · (1− ρ).

Activation status sv & Node embedding ev The user activation status sv is set to 1 if
v ∈ Ct

m and 0, otherwise. The node embedding captures the structural properties of the
user’s neighbourhoods in the graph. Following existing studies [8,19], we use DeepWalk
without further fine-tuning to learn the structural embedding for each user.

6.2. Instantiating GNNs with the Info-Exposure Spillover Effect

We implement three variants of GNNs to integrate the info-exposure spillover effect
we identified in the previous section, i.e., Graph Convolutional Networks (GCN) [39],
Graph Attention Network [40] and CoupledGNN [8]. GCN is a semi-supervised learning
algorithm for graph representation and GAT is a variant of GCN which introduces the
attention mechanism to distinguish the significance of neighbours. These two variants
are not designed specifically for cascade prediction. The calculated node representations
are usually used for the downstream tasks such as link prediction and node classification.
CoupledGNN [8] is a model developed for cascade prediction, and can stand for the
state-of-the-art. It has overwhelming performance over existing models by simulating the
cascading effect of information diffusion on social network, the phenomenon in which
users are activated due to the influence from their activated neighbours. By extending
these models, our purpose is to illustrate the effectiveness of info-exposure spillover effects
in improving the accuracy of the predicted popularity of COVID-19 preventive measure
messages. In addition, our extended models can provide useful references for future
cascade prediction models to integrate info-exposure spillover effects.

The definitions of the function Aggregate(∗) and Combine(∗) of GCN, GAT and Cou-
pledGNN are briefly given in Table 3. GAT and GCN share the same combination function.
For GCN, we use the mean of the representation vectors of both the nodes and their one-hop
neighbours as the aggregated value at each layer while GAT uses the weighted average.
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Table 3. Brief description of selected GNN variants.

Model Aggregate(*) Combine(*)

GCN a`
v =

∑u∈N (v)∪{v} h`−1
u

|N (v)∪{v} h`
v = LeakyReLu

(
W `a`

v
)

GAT

a`
v = ∑u∈N (v)∪{v} β`

uvh`−1
u

β`
uv =

exp
(

LeakyRelu(γT [Wh`−1
u ‖Wh`−1

v ])
)

∑u′∈N (v)∪{v} exp
(

LeakyRelu(γT [Wh`−1
u′
‖Wh`−1

v ])
) h`

v = LeakyReLu
(
W `a`

v
)

CoupledGNN
a`

v = ∑u∈N (v) InfluGate
(

r`−1
u , r`−1

v

)
s`−1

u + pv

influGate
(
r`u, r`v

)
= β`

[
W`r`u‖W`r`v

] s`+1
v =

{
1 v ∈ CT

m

σ(µ`
s s`v + µ`

aa`
v) v 6∈ CT

m

We describe CoupledGNN in more detail due to its relatively large difference from
the conventional GNN framework and explain how to simulate the cascading effect in
information diffusion. For the full description, we refer the readers to the original paper [8].
It deploys two GNNs. One GNN captures the activation statuses of users during the
information diffusion at each layer, e.g., the activation status of user v at the `-th layer
s`v. The other GNN aims to simulate how the influence of users changes along with the
activation status and the influences of their neighbours, i.e., r`u. A neighbour u’s influence
to activate user v in the next layer `+ 1 is calculated by the function influGate(r`u, r`v). Then,
the aggregation function is the weighted average of all the neighbours’ activation statuses
with the default activation probability pv added. The combination function is based on
the weighted average of its status on the previous layer and the aggregated representation.
With the activation status output by the last layer (e.g., k), the popularity of the message
diffused in Cm

t is calculated as ñm
∞ = ∑v∈V sv. In the following, we will describe how we

extend each selected model to capture the info-exposure spillover effect.
SE-GCN & SE-GAT. We can interpret the output of the k-th layer of a k-layered

GCN or GAT as the summary of the information exposed to every user. Then, we use an
activation function to capture the info-exposure spillover effect. Specifically, the function
takes as input the output of the GCN or GAT and the representation of the message diffused
in the given cascade, and outputs the predicted final activation statuses of the nodes. Let
m be the message being diffused and zm be the embedding vector of m calculated by the
RoBERTa model. Let s̃∞

v be the predicted activation status of node v. Our activation function
is defined as:

s̃∞
v =

{
activate

(
Whhk

v‖Wzzm
)

v 6∈ Ct
m

1 v ∈ Ct
m

where function activate is implemented as a 3-layer neural network in this paper and Wh
and Wz are two matrices to be learned. We add this function as a downstream component
after the last layer of the GCN and GAT.

SE-CGNN. Recall that CoupledGNN uses the function InfluGate to simulate the pro-
cess of a user to be activated by their neighbours. The influence vector, e.g., ru of user u,
contains user u’s posted messages and the messages from u’s neighbourhood. Therefore,
it can be considered as a summary of the information perceived by a user v from u if v
follows u in Twitter. Based on this intuition, we extend CoupledGNN by reformulating the
function InfluGate(∗) to capture the the info-exposure spillover effect:

influGate
(

r`u, r`v
)
= β`

[
W`r`u‖W`r`v‖Wzzm

]
.
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6.3. Objective Function

We use the same objective function as [8] which is the mean relative square error
(MRSE). LetMC be the set of diffused messages corresponding to the cascades in C whose
final sizes are to be predicted. Then, MRSE can be defined as follows:

LMRSE = 1
|MC| ∑m∈MC

(
ñm

∞−nm
∞

nm
∞

)2

This loss function is regularised to avoid over-fitting and accelerate the convergence
speed, i.e., L = LMRSE + LReg, where LReg = θ ∑p∈P ‖p‖2 + λLuser. Note that P denotes the
set of parameters and Luser is the cross-entropy

1
|MC | ∑m∈MC

1
|V| ∑v∈V

(
s∞

v,m log s̃∞
v,m +

(
1− s∞

v,m
)

log
(
1− s̃∞

v,m
))

where s∞
v,m is the final activation status of v in the cascade of message m and s̃∞

v,m is v’s
status predicted by the model under evaluation.

6.4. Computational Complexity

In general, all our extended models inherit the complexity of the original models.
According to a recent survey, the theoretical computation complexity of the message
passing schemes such as GCN [39] and GAT [40] is O(|E |) [41], where |E | is the number
of edges of the graph G. This is because, in these methods, the computation of each node
v’s representation involves messages that come from its adjacent nodes. The models that
are based on GCN and GAT, proposed previously, i.e., SE-GCN and SE-GAT, also work
in the same way, and thus have the complexity of O(|E |). Similarly, SE-CGNN has the
same computational complexity as CGNN, i.e., O(p|V|+ q|E |) [8], where p and q are the
constants determined by the batch sizes, and |V| is the number of nodes in G.

7. Experimental Evaluation
7.1. Evaluation Measurements

We adopt the measurements in [8] to evaluate and compare the prediction performance
of our extended models and the bench-markings models in our experiments. Specifically,
in addition to the mean relative square error (MRSE) introduced in the previous section, we
also use mean absolute percentage error (MAPE) and wrong percentage error (WroPerc).
MAPE measures the average deviation between the predicted popularity and the true
values, while WroPerc measures the percentage of cascades that are incorrectly predicted
with a given error tolerance ε. Formally, they can be defined as follows:

MAPE = 1
|MC | ∑m∈MC

|ñm
∞−nm

∞ |
nm

∞
,

WroPerc = 1
|MC | ∑m∈MC

I
[
|ñm

∞−nm
∞ |

nm
∞
≥ ε
]
.

Note that I(∗) is an indication function which outputs 1 when the input proposition is
true or 0 otherwise, and the threshold ε is set as 0.5 in our experiments. For all the three
measurements, smaller values indicate better performance.

7.2. Baseline Methods

In addition to CoupledGNN, we use the following models as baselines.

• Feature-based method. This is a linear regression model with L2 regularisation
with features. For better comparison, we adopt the same features used in the past
studies [8,19].

• SEISMIC [18]. SEISMIC uses the Hawkes self-activation point process to estimate or
approximate the impact of cascading effect with their average number of followers.

• DeepCas [19]. DeepCas is an end-to-end deep learning method for information
cascades’ prediction. It utilises the structure of the cascade graphs for prediction.
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An attention mechanism is designed to assemble a cascade graph representation from
a set of random walk paths.

• DeepHawkes [20]. DeepHawkes is also an end-to-end deep learning method for
information cascades prediction. It combines user embedding vectors and cascades
encoding by RNNs, and then uses the Hawkes process to model and predict informa-
tion cascade.

• CasCN [22]. CasCN for cascade modelling and prediction is achieved by splitting the
cascade graph into a series of sequential sub-cascades and then employing GCN to
learn the structural information of the cascades.

• GCN and GAT. We construct these two models from our SE-GCN and SE-GAT models
by removing the representation vectors of messages. In other words, these two models
only rely on network structure to predict the sizes of final cascades.

We implement several variants of our extended models, i.e., SE-GCN, SE-GAT and
SE-CGNN according to the methods used to integrate users’ past messages with their
temporal significance considered. We consider three other methods in addition to the TE
methods adopted in our model, namely, Mean, Hawkes and GRU. Note that, regarding
Hawkes and GRU, we use their basic versions. The method Mean calculates the average
embedding vectors of the past messages for both φrel

v and φunrel
v . In order to distinguish

these variants, we append the corresponding methods at the end of the model names.
For instance, SE-CGNN-TE corresponds to the implementation of the model presented
in Section 6, and SE-CGNN-Hawkes replaces the TE method in SE-CGNN-TE with the
Hawkes process.

7.3. Implementation Details

As the output of the RoBERTa for a sentence is a high-dimensional and sparse vector,
we apply linear transformation to map its output to a relatively low-dimensional space.
The dimension of the final text embedding used is set as 128. For all models including the
bench-marking models, we tune their hyper-parameters to guarantee their performance on
validation sets. The L2-coefficients are chosen from 0.5, 0.1, 0.05, . . . , 10−8. For all neural
network models, the learning rate is chosen from 0.1, 0.05, . . . , 10−5. The coefficient in the
loss function is set to be 0.5, and the mini-batch size is chosen from 15, 10, 5. The number of
GNN layers k is selected from 5, 4, 3, 2. As for DeepCas, the number of walk sequences and
the walk length are set as 100 and 8, respectively. For SEISMIC, we follow the parameters
from the original study. Moreover, we randomly select 80%, 10%, 10% of the set of cascade
instances for training, validation and testing, respectively.

Considering the diffusion time of the messages in our collected data, we set the
observation time window as three hours and construct the set of observed cascades, i.e.,
C, by removing users in our cascades that were activated after the first three hours. The
number of past messages λ is critical in enforcing the quality of prediction. As a result, we
undertake an empirical investigation to identify the impact of λ on the final performance.
We present the MRSE with different values of λ when the SE-CGNN-TE is used in Figure 2.
We observe that λ does have an important impact on prediction results. We set λ as 3 with
which our model achieves the best performance.

As we repeatedly emphasised, our original goal is to predict the popularity of mes-
sages on social media which are related to COVID preventive measures. In order to
comprehensively evaluate the effectiveness of the info-exposure spillover effect, in addition
to the cascades of preventive measure messages CPM, we also apply all the models on
another two sets of cascades. One is the set of all cascades C. The other is the set of cascades
that are not related to preventive measures, i.e., CPM = C/CPM, the complement of CPM
in C.
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Figure 2. Parameter tuning for λ.

7.4. Experimental Results

We show the performance of all the above-mentioned models in Table 4 in the form
of the three selected measurements. In general, we can observe three obvious differences
when the info-exposure spillover effect is introduced in cascade prediction.

Table 4. Cascade prediction performance of our extended models and baselines.

Models
C CPM CPM

MRSE MAPE WroPerc MRSE MAPE WroPerc MRSE MAPE WroPerc

Feature-based 0.3611 0.4018 41.31% 0.4403 0.4049 46.08% 0.3704 0.4151 41.56%

SEISMIC 0.5580 0.5104 56.35% 0.5899 0.5265 55.88% 0.5419 0.5083 56.14%

DeepCas 0.2837 0.3959 37.71% 0.2847 0.3724 38.67% 0.2872 0.4010 37.31%

DeepHawkes 0.3278 0.4089 37.10% 0.3297 0.4092 37.94% 0.3213 0.3948 36.78%

CasCN 0.3097 0.4300 37.12% 0.3017 0.4166 40.39% 0.3098 0.4106 37.58%

GCN 0.3144 0.4217 38.88% 0.3179 0.4238 41.76% 0.3110 0.4200 38.69%

SE-GCN-Mean 0.2826 0.4056 36.76% 0.2757 0.3990 35.86% 0.2899 0.4178 36.82%

SE-GCN-Hawkes 0.2826 0.4056 36.76% 0.2708 0.3961 35.44% 0.2887 0.4126 36.89%

SE-GCN-GRU 0.2875 0.4085 36.87% 0.2712 0.3974 35.43% 0.2871 0.4124 36.92%

SE-GCN-TE 0.2802 0.4050 36.15% 0.2702 0.3932 35.20% 0.2819 0.4109 36.15%

GAT 0.3072 0.4211 39.19% 0.3014 0.4268 40.01% 0.3101 0.438 39.85%

SE-GAT-Mean 0.2862 0.4124 37.58% 0.2721 0.4001 35.31% 0.2903 0.4175 38.64%

SE-GAT-Hawkes 0.2790 0.4078 37.45% 0.2654 0.3986 35.30% 0.29353 0.4154 37.83%

SE-GAT-GRU 0.2762 0.4055 37.05% 0.2680 0.3964 35.58% 0.2961 0.4153 37.47%

SE-GAT-TE 0.2744 0.4014 37.56% 0.2673 0.3990 35.16% 0.2896 0.4177 38.06%

CoupledGNN 0.2678 0.3861 35.19% 0.2769 0.3920 34.44% 0.2601 0.3812 34.70%

SE-CGNN-Mean 0.2414 0.3610 34.17% 0.2587 0.3801 30.13% 0.2561 0.3608 33.22%

SE-CGNN-Hawkes 0.2240 0.3432 31.10% 0.2085 0.3171 27.44% 0.2271 0.3478 31.35%

SE-CGNN-GRU 0.2283 0.3469 32.28% 0.2174 0.3164 28.65% 0.2411 0.3625 33.04%

SE-CGNN-TE 0.2131 0.3358 30.63% 0.2031 0.3073 27.78% 0.2262 0.3437 31.56%

First, compared to the original models, our extended models significantly improve
their performance not only for the preventive measure messages, but also for all three
types of messages. The most significant improvement occurs to SE-CGNN-TE and reaches
23% in the WroPerc measurement for the preventive measure messages and over 10% for
the messages unrelated to preventive measures. This is due to the fact that CoupledGNN
simulates the cascading effects iteratively, and this allows for applying the info-exposure
spillover effect on activating individual users in a finer granularity. From the above analysis,
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we can conclude that the use of the info-exposure spillover effect can effectively improve
the performance of existing cascade prediction models. It should be integrated into future
models by design.

Second, we observe that the extended models can more accurately predict the popu-
larity of COVID-19 preventive measure messages than the other messages, which is the
opposite for the baseline models. For the baseline models, their performance on C and CPM
are almost the same but becomes worse on CPM. The feature-based model has the worst
performance which decreases by over 11% compared to that in predicting the sizes of the
other two sets of cascades. However, when the identified info-exposure effect is used in
our extended models, the popularity of preventive measure messages can be predicted
with better accuracy. SE-CGNN-TE can improve the performance by about 13.8% for
preventive measurement messages compared to those unrelated to preventive measures.
This observation validated empirically that the exposure to information generated during
the COVID-19 pandemic has strong spillover effects on retweeting messages about how to
prevent the transmission of the COVID virus.

Third, the consideration of the temporal importance of past tweets does bring about
further improvement, and our selected TE method overwhelms the other widely used ones.
The method Mean which ignores the temporal significance of past messages produces the
worst predictions. Hawkes and GRU have similar performances. Compared to them, our
TE method leads to an improvement of about 0.02 in all three types of cascades.

7.5. Compare SE-CGNN-TE with Its Variants

Recall that we distinguish the messages related to COVID-19 and those unrelated in
integrating the embedding vectors of users’ past messages into the initial node attributes
(see Section 6.1). We use a parameter ρ to learn the relative importance of the message
related to COVID-19. We conduct additional experiments to justify our selection. Specif-
ically, we implement another three variants of our SE-CGNN-TE model. The first one,
named SE-CGNN-TE-REL, only takes the last λ messages that are related to COVID-19 as
a user’s past messages. Similarly, the second variant, named by SE-CGNN-TE-UNREL,
only consider those unrelated to COVID-19. The last SE-CGNN-TE-ALL variant ignores
the difference and straightforwardly consider the last λ messages regardless of their types.
The same as our previous experiments, we train these three variants and run them on the
three sets of testing cascades, i.e., C, CPM, and CPM. The results are shown in Table 5. We
also include the results of SE-CGNN-TE for comparison.

In general, we have two main observations. First, we observe that, among the three
variants, the one with only messages related to COVID generates the best performance
while the one only utilising those unrelated to COVID performs the worst. This also
confirms our findings in Section 5.2 that COVID related messages tend to impose stronger
spillover effects on retweeting preventive measure messages. This performance difference
also indicates that this finding may also apply to other messages which are not relevant to
preventive measures. Second, the integration method used in SE-CGNN-TE can effectively
improve the performance. This improvement may come from two sources. On one hand,
our selected method actually uses 2λ past messages. This implies that more information
can help increase the prediction accuracy. On the other hand, a balance between these two
types of information can be reached during the model training.

Table 5. The performance comparison of methods of past message integration.

Models
C CPM CPM

MRSE MAPE WroPerc MRSE MAPE WroPerc MRSE MAPE WroPerc

SE-CGNN-TE-REL 0.2171 0.3367 32.23% 0.2210 0.3294 28.46% 0.2312 0.3526 32.96%

SE-CGNN-TE-UNREL 0.2357 0.3572 33.83% 0.2442 0.3690 30.74% 0.2484 0.3567 33.01%

SE-CGNN-TE-ALL 0.2208 0.3406 32.53% 0.2318 0.3172 28.96% 0.2470 0.3534 32.80%

SE-CGNN-TE 0.2146 0.3351 30.45% 0.2024 0.3062 27.41% 0.2268 0.3421 31.20%
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8. Discussion and Conclusions

In this paper, we concentrated on the problem of cascade prediction for COVID-19
information about preventive measures on online social media platforms. Compared to
previous works, we took into account the phenomenon that the exposure to different
information will influence social media users’ behaviour of participating in information
diffusion during the pandemic, which we call info-exposure spillover effect. With a dataset we
collected from Twitter, we successfully validated its existence. In particular, both COVID-19
related and unrelated messages may have spillover effects on the spread of COVID-19
messages promoting preventive measures. Meanwhile, the COVID related messages tend
to impose stronger spillover effects. We then applied the identified spillover effects in
predicting the popularity of preventive measure messages. Specifically, we built three new
models by making use of the recent advances of graph representation techniques, i.e., graph
neural networks (GNN). In addition, we utilised a temporal encoding method to capture
the important variance caused by message posting time. With extensive experiments,
we showed that our new models outperform baselines not only for preventive measure
messages but for all messages. This illustrates that the use of info-exposure spillover
effect can effectively improve the performance of cascade prediction, and it should be
recommended to be considered in designing future cascade prediction models. Specifically,
we through this paper showcased a general method that can be referred to, in order to
validate the existence of spillover effects of other types of information on the changes of
information consumers’ behaviours which are not restricted to retweeting. Moreover, other
applications can also benefit from our work. For instance, social media posts have been
used to extract effective indicators, e.g., numbers of daily posts and their sentiments [42],
in predicting the price of cryptocurrencies such as Bitcoin. Our extended models can help
accurately forecast the popularity of Bitcoin influencers’ social media posts, e.g., Elon
Musk [43], which can be integrated into existing models to further improve the accuracy of
predicted prices. As our future work, we will consider other types of information in addition
to users’ textual posts and propose new methods to integrate them in cascade prediction.

We identified three main limitations that have not been well addressed in our current
research. First, our empirical validation of the info-exposure spillover effect only focused
on messages on Twitter related to preventive measures and conducted from the level
of selected topics. Although in our experiment the overwhelming performance of our
extended models on other general messages could partially validate its existence, finer-
grained and more comprehensive analysis will be desired and we will take this as our
future work. Second, our cascade prediction models are extended from existing GNN
models. It will be interesting to design a new end-to-end GNN model which is specifically
adapted to the identified spillover effects of users’ adopted information. Finally, we only
distinguished the significant difference between messages related and unrelated to COVID
while ignoring the other linguistic features of individual messages.
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