
entropy

Article

Detection of Cause-Effect Relations Based on Information
Granulation and Transfer Entropy
Xiangxiang Zhang 1,2,3, Wenkai Hu 1,2,3,* and Fan Yang 4

����������
�������

Citation: Zhang, X.; Hu, W.; Yang, F.

Detection of Cause-Effect Relations

Based on Information Granulation

and Transfer Entropy. Entropy 2022,

24, 212. https://doi.org/10.3390/

e24020212

Academic Editor: Boris Ryabko

Received: 24 December 2021

Accepted: 27 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, China University of Geosciences, Wuhan 430074, China; zhangxiang2020@foxmail.com
2 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems,

Wuhan 430074, China
3 Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education,

Wuhan 430074, China
4 Beijing National Research Center for Information Science and Technology, Department of Automation,

Tsinghua University, Beijing 100084, China; yangfan@tsinghua.edu.cn
* Correspondence: wenkaihu@cug.edu.cn

Abstract: Causality inference is a process to infer Cause-Effect relations between variables in, typically,
complex systems, and it is commonly used for root cause analysis in large-scale process industries.
Transfer entropy (TE), as a non-parametric causality inference method, is an effective method to detect
Cause-Effect relations in both linear and nonlinear processes. However, a major drawback of transfer
entropy lies in the high computational complexity, which hinders its real application, especially in
systems that have high requirements for real-time estimation. Motivated by such a problem, this study
proposes an improved method for causality inference based on transfer entropy and information
granulation. The calculation of transfer entropy is improved with a new framework that integrates
the information granulation as a critical preceding step; moreover, a window-length determination
method is proposed based on delay estimation, so as to conduct appropriate data compression
using information granulation. The effectiveness of the proposed method is demonstrated by both
a numerical example and an industrial case, with a two-tank simulation model. As shown by the
results, the proposed method can reduce the computational complexity significantly while holding a
strong capability for accurate casuality detection.

Keywords: transfer entropy; information granulation; causality; root cause; oscillation

1. Introduction

In a complex large-scale process system, components and variables are interconnected
through material flows and information flows. Once a fault occurs, it may easily propagate
among units and cause negative impacts in broader areas, which may lead to serious
consequences and compromise process safety. Therefore, it is important to detect and
locate the root causes of faults as early as possible. Causality inference is a process to infer
Cause-Effect relations between variables, typically in complex systems, and it is commonly
used for root cause analysis in large-scale process industries. A variety of causality analysis
techniques have been developed and shown to be effective for root cause diagnosis [1].

Existing techniques for causality inference can be generally divided into two types,
namely, process knowledge-based methods and data-driven methods [1]. The former
obtains connectivity and causality from prior knowledge, such as process topology and
first-principle models, and convert the results into computer accessible formats, such as
the adjacency matrix [2] and signed directed graph [3]. The latter captures Cause-Effect
relations from sufficient process data; commonly used techniques include cross-correlation
analysis (CCA) [4], granger causality analysis (GCA) [5], transfer entropy (TE) [6], and
Bayesian networks (BN) [7,8]. References [9–11] compared the strengths and weaknesses
of these techniques and also proposed suitable situations for their applications. In any case,
to achieve better performance in root diagnosis, especially when abnormal situations are
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associated with unknown faults or multiple faults, integrated methods that combine process
data analysis with process knowledge extraction were proposed in [12] and demonstrated
to be quite effective.

Among the data-driven causality inference methods, transfer entropy (TE) provides
an information-theoretic method for causality measurement that is suitable for both linear
and nonlinear processes. TE was firstly proposed by Schreiber as a measure for information
transfer [6]. As for whether TE measures causal relationships, there exists controversy.
References, such as [13,14], discussed the distinctions between information transfer and
causal effects. According to [14], information flow is a primary tool to establish the
presence of causal relations, for where this is not possible, the complete transfer entropy is
an alternate inference technique. As TE can effectively distinguish driving and responding
elements and detect asymmetry in the interaction of subsystems, it has been widely studied
and used for causality inference.

Reference [15] utilized TE to infer causal relations for the identification of the propaga-
tion direction of disturbances. In [16], kernel principal component regression and transfer
entropy were combined to conduct root cause diagnosis. In addition, some variants or
improvements have been proposed to extend TE. For instance, in order to distinguish the di-
rect or indirect causal relations, partial transfer entropy [17] and direct transfer entropy [18]
were developed. Reference [19] proposed the transfer zero-entropy for causality analysis
based on the zero-entropy and zero-information without assuming a probability space.
Additionally, symbolic transfer entropy [20] and trend transfer entropy [21] extended the
TE to symbols or trends of time series instead of original continuous values. The multiple-
unit symbolic dynamics and transfer entropy were used to analyze the dynamic causal
relationships in longitudinal data [22]. A symbolic dynamic-based normalized transfer
entropy (SDNTE) was proposed for the root cause fault diagnosis of multivariate nonlinear
processes [23].

In the field of alarm root cause analysis, TE was adpated to analyze Cause-Effect
relations among binary-valued alarm variables [24]; moreover, a Bayesian network based
on active dynamic transfer entropy (ADTE) was proposed to establish an accurate alarm
propagation network during an alarm flood [25]. For oscillation diagnosis, a workflow
using TE was proposed to provide a robust procedure for accurately identifying the
oscillation propagation path [26]. In addition, TE and Granger causality were tested on
an industrial case study of a plant-wide oscillation, and how to choose between the two
methods in actual industrial applications was explained [11].

As shown by the extensive studies above, transfer entropy has become a prevalent
and effective way of capturing Cause-Effect relations in complex systems. However,
a major problem with TE lies in its high computational complexity, which prevents it
from applications in many real systems, especially for real-time tasks such as online
root cause diagnosis. According to [15,18,27], the computational complexity of TE is
mainly restricted by the estimation of probability density functions and the calculation
of the transfer entropy in a high dimensional embedding space. Motivated by the above
problem, this paper proposes an improved method for causality inference based on transfer
entropy and information granulation. The calculation of transfer entropy is improved
with a new framework that integrates the information granulation as a critical preceding
step; moreover, a window-length determination method is proposed based on delay
estimation, so as to conduct appropriate data compression using information granulation.
The effectiveness of the proposed method is demonstrated by both a numerical example
and an industrial case with a two-tank simulation model. As shown by the results, the
proposed method can reduce the computational complexity significantly while holding a
strong capability for accurate casuality detection.

The advantages of the proposed method lie in two aspects: (1) Compared to Cross-
Correlation [4] and Granger Causality [5], which work only for linear causal relations, the
proposed method inherits the advantage of TE in capturing non-linear causal relations and,
thus, can be applied to broader fields. (2) Compared to traditional TE methods [14–18], the
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proposed method has much higher computational efficiency on account of the discretization
and information granulation as preprocessing steps, and thus, it can be used for real-time
tasks (e.g., online root cause diagnosis) that are sensitive to calculation time.

The rest of this paper is organized as follows. Section 2 presents the preliminaries of
TE and analyzes the computational complexity problem. Section 3 proposes the improved
calculation of TE. Section 4 provides case studies to demonstrate the effectiveness of the
proposed method, followed by concluding remarks in Section 5.

2. Preliminaries on Transfer Entropy

Measures for quantifying dependency for bivariate or multivariate time series include
the correlation coefficient, cross-correlation, and mutual information [28]. Mutual informa-
tion quantifies the dependency from the joint probability density function of two random
variables. It measures the reduction of uncertainty of a random variable based on the
knowledge of a second variable, but cannot measure its directionality or causality. The
information theory measure of transfer entropy proposed in [6] takes the concept of mutual
information a step further. Transfer entropy is an asymmetric measurement method based
on information theory. By calculating the conditional probability function and designing
a reasonable directionality measure, the causal topology is constructed to facilitate root
cause diagnosis and propagation path identification.

Based on the concept of information theory, the measure of transfer entropy pro-
posed by Schreiber [6] extracts the amount of information transferred from variable x to y
as follows:

Tx→y = ∑ p
(

yi+h, y(k)
i , x(l)i

)
· log

p
(

yi+h | y(k)
i , x(l)i

)
p
(

yi+h | y(k)
i

) , (1)

where p() indicates the joint or conditional probability density function (PDF); k, l are
the orders of variables y, x; h is the prediction horizon; x(l)i = [xi, xi−τ , . . . , xi−(l−1)τ ] and

y(k)
i = [yi, yi−τ , . . . , yi−(k−1)τ ]; τ are the sampling periods.

In order to remove the indirect causality caused by the intermediate variables or the
false causality caused by the common variables, the direct transfer entropy (DTE) proposed
in [18] can be calculated, i.e.,

Dx→y|z = ∑ p
(

yi+h, y(k)
i , z(m)

i , x(l)i

)
· log

p
(

yi+h | y(k)
i , z(m)

i , x(l)i

)
p
(

yi+h | y(k)
i , z(m)

i

) , (2)

where z represents the intermediate variable, m denotes the order of the intermediate
variable z, and z(m)

i = [zi, zi−τ , . . . , zi−(m−1)τ ].
Transfer entropy is effective in measuring the causality for both linear and nonlinear

processes. A major problem hindering the application of TE lies in its high computational
complexity, which is mainly contributed to by the estimation of probability density func-
tions (PDFs) and the calculation of TE in a high-dimensional embedding space. In this
study, the required data type is continuous valued time series, and thus, PDF estima-
tion is a mandatory step. There are many methods for PDF estimation, such as plug-in
estimators, kernel density estimators, and nearest-neighbor-based estimators. The run
time of estimating TE may vary depending on the estimator chosen. The improvement of
PDF estimators is not investigated here; as presented in many related studies [15,29], the
commonly used kernel density estimator is exploited for PDF estimation. The focus of this
paper is to investigate the calculation of TE in a high-dimensional embedding space, and
to put forward a corresponding solution to reduce the computational complexity.

The total computational complexities for TE and DTE are O(N2(k + l)2) and O(N2(k +
l + m)2), respectively [18], where N is the sample size. Obviously, the computation com-
plexity is mainly decided by two factors, namely, the sample size and the order. In view
of this, improving the efficiency of TE needs to address two problems: (1) How to reduce
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the sample size processed by TE, and (2) how to reduce the orders of the cause and effect
variables. The key is that it should guarantee the accuracy in causality inference while
addressing the two problems of TE. Hereby, this work improves the transfer entropy with
a new framework that integrates the information granulation as a critical preceding step,
which conducts data compression and, thus, uses information granules in TE calculation.
The details of the proposed method are presented in the next section.

3. The Proposed Method

This section presents the improved TE based on information granulation. Specifically,
this section provides the framework of the proposed method, the data abstraction via
information granulation, the calculation of information granulation-based TE, and the
determination of the granulation window size.

3.1. The Framework

Given a pair of time series x and y, the objective is to infer their causal relation using
TE. As discussed in Section 2, to improve the efficiency of TE, the effective solution is
to reduce the sample size processed by TE and to reduce the orders of cause-and-effect
variables in the calculation of TE. Accordingly, this work proposes the following framework,
which integrates TE and information granulation for causality inference. A diagram is
shown in Figure 1 to present the framework of the proposed method.

Figure 1. The framework diagram of the proposed method.
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First, to reduce the sample size, it should compress the time series and extract a shorter
sequence consisting of representative values in consecutive time windows. However, it
is also noteworthy that the length of the window size is a critical parameter influencing
the final analysis result. If the time series is compressed too much with a large window
size, the computation is reduced, and the price is that useful information might be lost and,
thus, lead to erroneous conclusions in causality inferences.

Second, to reduce the orders of the cause-and-effect variables, it only needs to use
the first-order TE, where the orders of both cause and effect variables are ones. However,
applying the first-order TE requires that the delay between two variables should be 1;
otherwise, it might give wrong causal relations. Therefore, properly compressing the data
in the previous step is critical.

The information granule obtained after granulation reduces the scale of the original
data, and the amplitude also changes to a certain extent. It has been learned from previous
work that this may lead to a biased conclusion. For example, Ref. [30–32] discussed the
influence of sampling rate and time scale on causal inference through the test of data such
as EEG signals, and explained that this might change the causal relations. In addition,
the impact of data filtering and amplitude changes on causal analysis was investigated
in [29,33–35]. An unreasonable sampling rate and a changed series will lead to false
causality. Motivated by the investigation in these previous studies, a systematic method
of information granulation with delay estimation is proposed for data processing. The
comparison in the case study in Section 4 demonstrates the rationality of the method, i.e.,
given a proper estimated window size, the proposed method will ensure the correctness of
the detected causality.

3.2. Data Abstraction via Information Granulation

The information granulation of time series is the basis for compressing the scale
of time series data and using the compressed data for subsequent time series analysis,
interpretation, and modeling. The information granulation of time series specifically
includes two main steps (shown in Figure 2):

• Discretization: Given a time series x = [x1, x2, . . . , xN ], K non-overlapping subse-
quences x1, x2, . . . , xK are obtained by discretization. The data in each subsequence
can be accurately described by a simple model;

• Information granulation for each subsequence: The information granulation operation
is performed on subsequence xk = [x1, x2, . . . , xw] (where k = 1, 2, · · · , K, and w
indicate the window length), so as to form a time-related information granule X̃k that
represents the data characteristics of this subsequence.

After the above two steps, the original time series is converted into the corresponding
granular time series X̃ = [X̃1, X̃2, . . . , X̃K], where X̃k = [X̃1

k , X̃2
k , X̃3

k ] is the kth informa-
tion granule.

(a) (b) (c)

Figure 2. The schematic of the information granulation process. (a) Original time series; (b) Dis-
cretization; (c) Information granulation for each subsequence.

In the past, various IG methods were proposed, such as the fuzzy set-based IG [36,37],
clustering-based IG [36] and intelligent optimization-based IG [38,39]. Among them,
the amount of data contained in clustering-based IG is limited, and information loss is
large [36]; the intelligent optimization-based IG is computationally time-consuming, which
conflicts with the goal of reducing computational complexity in this study. Therefore, the
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fuzzy set-based IG is adopted since it makes use of more effective data [36] and has a fast
calculation speed.

Zadeh [40] gave a general definition of fuzzy information granules. It is represented,
using fuzzy sets, as:

g , (x is G) is $, (3)

where x is a variable in the universe U; G is a convex fuzzy set of U, described by a member-
ship function µG; $ is the probability. The core issue of the information granulation method
based on fuzzy sets is to determine a membership function A = µG. The representation of
information granules produced by the fuzzy set-based method is closely related to xi. The
triangular membership function is given as:

A(x) =



0, x < a,
x−a
c−a , a ≤ x ≤ c,
b−x
b−c , c < x ≤ b,

0, x > b,

(4)

where a, c, and b are the parameters of the triangular membership function.
The information granulation method based on fuzzy sets developed in [41] is em-

ployed. A good granulation process should satisfy two requirements: (i) the raw data are
fully expressed by information granules; (ii) information granules should become specific
enough. To meet these requirements, a function QA(x) with respect to the membership
function A(x) is constructed to describe the performance of the granulation process, i.e.,

QA =
MA
NA

, (5)

where MA = ∑w
k=1 A(xk), and maximizing MA can meet the requirement (i); NA =

measure(support(A)), and minimizing NA can meet the requirement (ii). Apparently,
in light of the aforementioned requirements, QA has to be maximized.

Then, the fuzzy information granules can be expressed as X̃ = [X̃1, X̃2, X̃3], where X̃1

and X̃3 are the supports, and X̃2 is the core. By calculating the three parameters a, c, and
b of the triangle membership function in Equation (4), the corresponding X̃1, X̃2, X̃3 are
obtained. The core of the information granule is calculated by:

X̃2
i = med

(
xi

1, xi
2, · · · , xi

w

)
, (6)

which is the median of subsequence. According to [41], taking into account the triangular
membership function, when QA is maximum, X̃1 and X̃3 can be directly calculated by:

X̃1
i = 2

[w/2] ∑
[w/2]
j=1 xi

j − X̃2
i ,

X̃3
i = 2

w−[w/2]−d+1 ∑w
j=[w/2]+d xi

j − X̃2
i ,

(7)

where [w/2] denotes the largest integer not exceeding w/2(w ≥ 2); xi
j represents the j-th

sample in the i-th subsequence [xi
1, xi

2, · · · , xi
w]. In addition, when w is an even number,

d = 1; otherwise, d = 2. Through the above calculation, the granular time series is obtained
for subsequent analysis.

Remark 1. Using granulation to process the original data, the granule with greatly reduced data
length is obtained. The advantage of the granulation as a preprocessing step is that it cannot only
reduce the size of data, but also suppress noises effectively. However, the granulation may reduce the
amplitude resolution, alter the value of the TE estimates, and even change the direction of detected
causal relation. This may happen when the granular time series does not hold the dynamics and
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the variational trend of the original data. The key lies in the selection of a proper window length in
discretization. If only the window length in discretization is set properly, the granular time series
can retain the dynamic characteristics of the original data and keep the main variational trend. If
the window length is too small, the dynamics are retained but the data compression is not effective.
By contrast, if the window length is too large, the granular data may lose the dynamics and lead to
erroneous conclusions in causality inference. To achieve maximum data compression and also retain
the dynamics, this work proposes taking the delay between two time series as the window size. After
compressing the data via granulation, the dynamics and the variational trend are retained in the
one-sample history. The casual relation reflected by such one-sample history can be measured by the
first-order TE. Thus, such a preprocessing approach will not influence the TE estimates too much,
and can guarantee that detected causal relation is consistent with the one detected from original
data while making a much faster calculation. The discussion on the window length determination is
presented in Section 3.4. The validity of the approach is verified by extensive simulations. Further,
in case studies, the proposed method was compared with the traditional TE, and the causal relations
were found to be consistent.

3.3. Calculation of the Information Granulation-Based Transfer Entropy

Given the granular time series X̃ = [X̃1, X̃2, . . . , X̃K] and Ỹ = [Ỹ1, Ỹ2, . . . , ỸK], X̃i =
[X̃1

i , X̃2
i , X̃3

i ] is the ith information granule. To avert the problem caused by information
loss through information graduation, the calculation of TE exploits all the three items in
the information granule and takes the average as the final TE result, which is supposed to
ensure the reliability of the result.

Through proper information granulation, it can offset the effect of delay and reduce
the delay between two variables to only 1 sample. Therefore, only the first-order situation
needs to be considered when calculating TE here. That is, k = l = 1 and h = τ = 1.
It should be noticed that delay embedding is usually used in causality inference so as
to include the relevant past of the time series in the estimate of TE. References [42,43]
provided systematic methods for finding appropriate embedding lengths. This is helpful
for getting more accurate estimates of TE for causal relations reflected by more than one
sample history. However, in this study, the information granulation needs to ensure that
the data are compressed as much as possible, while the dynamics are still retained in the
granular time series. Accordingly, the multi-sample history is compressed to a one-sample
history, such that the delay between the granular time series is 1. Thus, the calculation of
TE only needs to consider the first order, rather than high orders. Therefore, the formula
for information granulation-based TE, from x to y, is given by:

T̃ j
x→y = ∑ p

(
Ỹ j

i+1, Ỹ j
i , X̃ j

i

)
· log

p
(

Ỹ j
i+1 | Ỹ

j
i , X̃ j

i

)
p
(

Ỹ j
i+1 | Ỹ

j
i

) , (8)

where Ỹ j
i or X̃ j

i (j = 1, 2, 3) represent the ith sample in the jth dimension of the information
granule, which is obtained by information granulation for y or x. The kernel density
estimator is applied in this paper to estimate the PDFs. The three dimensions are used
to calculate TE using Equation (8), and the average of the three results is taken as the
final result.

In order to remove the indirect causality caused by the intermediate variables or the
false causality caused by the common variables, the DTE can be calculated. From the causal
network detected by TE, some causal relations could be indirect through the influence
of intermediate or confounding variables. For instance, given a pair of variables x and
y holding a causal relation, if there is a third variable z making a triangle network (i.e.,
z is the intermediate or confounding variable holding causal rations with both x and y),
it is necessary to detect whether the causal relation between x and y is direct, or indirect
through a pathway from z. As a result, the calculation of DTE can simplify the causal
network and obtain more accurate results.
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The granular time series of an intermediate variable z is obtained and denoted by
Z̃ = [Z̃1, Z̃2, . . . , Z̃K]. Analogous to DTE [18], the information granulation-based DTE is
defined as:

D̃j
x→y|z = ∑ p

(
Ỹ j

i+1, Ỹ j
i , Z̃j

i , X̃ j
i

)
· log

p
(

Ỹ j
i+1 | Ỹ

j
i , Z̃j

i , X̃ j
i

)
p
(

Ỹ j
i+1 | Ỹ

j
i , Z̃j

i

) , (9)

where Z̃j
i represents the ith sample in the jth dimension of the information granule of z.

The three dimensions are used to calculate DTE using Equation (9), and the average of the
three results is taken as the final result.

To determine whether a causal relation holds, it needs to compare the obtained TE
with a threshold. An effective method to determine the threshold is the Monte Carlo
method based on surrogate data. IG-based TEs are calculated using surrogate data that
are generated randomly [44], and then their mean and standard deviations are obtained to
acquire the threshold Sx→y [15,45]. By comparing T̃x→y with the threshold Sx→y, the causal
relation between x and y is determined. If T̃x→y ≥ Sx→y, it indicates that there is a causal
relation from x to y; otherwise, it suggests no causality from x to y. Analogously, IG-based
DTEs are calculated using surrogate data, and then their mean and standard deviations
are obtained to acquire the threshold Sd

x→y|z. If D̃x→y|z ≥ Sd
x→y|z, there is a direct causal

relationship from x to y based on z; otherwise, there is no direct causality from x to y.
Here, the computational complexities of TE and IG-based TE are compared. According

to Section 2, for traditional TE, the computational complexity is O(N2(k + l)2). As for the
IG-based TE, the computational complexity is O((N/w)2(1 + 1)2) = O(4(N/w)2), and w
denotes the window length. Thus, it can be seen that the proposed method can greatly
reduce the computational complexity for the TE calculation.

3.4. Determination of the Window Length by Delay Estimation

When performing information granulation on original data, there is a key parameter
that needs to be discussed, namely, the window length w during discretization. If the
window length w is too large or too small, the TE calculation result will be affected. Specif-
ically, a large window length in information granulation can reduce the computational
complexity, but may also lead to information loss and, thus, compromise the accuracy of
causality detection. Therefore, a reasonable choice of window length is essential for correct
causality analysis.

As discussed in Section 3.3, the first-order TE is used. Thus, the window length should
be set to offset the delay between two time series in the original data, such that the delay
between two compressed time series after information granulation is 1. Accordingly, this
paper proposes determining the window length through delay estimation. It should be
noticed that determining the window length by the delay between two time series x and y
is based on an assumption that the history of the target time series y should be no more
than the delay between x and y. Otherwise, if the assumption is violated, the relevant
history of y might not be fully included in the estimate of the first-order TE and, thus, it
may falsely estimate the TE, as indicated in [46,47].

Here, the system identification toolbox in MATLAB is used to estimate the delay
between data [11]. The main procedures are as follows:

1. The original data of two variables x and y are normalized by z-sorce, i.e., x∗ = x−µ
σ ,

where x∗ denotes the normalized sample of x; µ and σ denote the mean and standard
deviation, respectively;

2. Given the normalized data, the estimation is conducted based on a comparison
of ARX models with a range of time delays, i.e., y(t) + a1y(t − 1) + a2y(t − 2) =
b1x(t−γ)+ b2x(t− 1−γ)+ e(t), where γ denotes delay between x and y; a1, a2, b1, b2
are the coefficients of the model; e(t) is white noise.

Through the above process, the delay between the two variables is obtained. Then,
the window length in information granulation is assigned with the value of time delay
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so as to make the delay between granular time series be 1, such that the first-order TE in
Section 3.3 is applicable. Next, an example is presented to illustrate the determination of
window length through delay estimation.

Example 1. Given the relation between two nonlinearly correlated continuous random variables
x and y as yk+2 = 1 + 2

∣∣10−
(
0.5xk + 0.2

√
yk
)∣∣ + vk, where xk = 100sin(0.63t) + v, the

sampling time t is 0.01, v ∼ N(0, 0.5), vk ∼ N(0, 0.05), and y(0) = 0.2. The simulation data of
3000 samples under stationary period are collected.

Using the above method, the time lag between x and y was obtained as 2, which was consistent
with the actual value. Then, the data were abstracted through information granulation by taking the
time lag as the window length. The IG-based TEs were calculated with the data in three dimensions
of granular time series.

To test how the window size of information granulation influences the TE calculation, a series
of simulations were conducted by changing the value of the window size. Figure 3 presents the
trends of IG-based TEs changing with the window length. It can be seen that the maximum TEs
for three dimensions of the granular time series can be found at the point where the window length
is equal to the delay, as indicated by the highlighted solid circles. Thus, it verifies the idea that
determining the window length of information granulation can be based on the time delay between
variables.

Figure 3. IG-based TE changes with the window length (from x to y). (a) shows the result calculated
using X̃1; (b) shows the result calculated using X̃2; (c) shows the result calculated using X̃3.

According to the result shown in Figure 3, the proposed IG-based TE correctly detected the
causal relation when the window length was set to be the time delay. By contrast, the causal strength
changed and erroneous conclusions were obtained if an inappropriate window length was used, as
demonstrated by the very small calculated values of TE for other window lengths in Figure 3. Thus,
the validity of the proposed approach was verified. The correct causal relations can be obtained as
long as a proper window length is used in discretization. After compressing the data via granulation
that takes the time delay as the discritzation window length, the casual relation is reflected by
one sample history and can be measured by the first-order TE rather than a higher order TE. To
demonstrate this, the values of TE with different orders were calculated for the same granular time
series. The results are shown in Table 1. It can be seen that the value of TE stays high and does not
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change too much with the increasing of the orders. Thus, the first-order TE is enough to measure
the causal relation given the properly compressed data.

Table 1. The value of TE versus the orders.

IG-Based TE (x → y)

k = l = 1 2.10
k = l = 2 1.92
k = l = 3 1.99
k = l = 4 2.01
k = l = 5 1.97

4. Case Studies

This section provides both a numerical example and an industrial case study to
demonstrate the effectiveness of the proposed method.

4.1. Numerical Example

Assume three nonlinearly correlated continuous random variables x, y, and z, satisfying:{
zk+3 = 1 + 2

∣∣10−
(
0.5xk + 0.2

√
zk
)∣∣+ vk,

yk+2 = 2(zk + 2)2 + 10
√

xk + ṽk,
(10)

where xk = 100sin(0.63t) + v, and the sampling time t is 0.01, v ∼ N(0, 0.5), and vk, ṽk ∼
N(0, 0.05). The simulation data of 3000 samples under stationary periods are collected.

Through delay estimation, the time lag between x and y was obtained as 2, that
between x and z was 3, and that between z and y was 2. It can be seen from the formula
that the obtained time lags are the same as the actual values. Then, the data were abstracted
through information granulation by taking the time lags as the window lengths. The
IG-based TEs were calculated with the data in three dimensions of granular time series.

The information granulation based-transfer entropies and the corresponding thresh-
olds between each pair of x, z, and y are shown in Table 2. By comparing the TEs and
the thresholds, it can be concluded that x causes y, z causes y, and x causes z, which is
consistent with the relations in Equation (10). The information flow pathways for this
numerical example are shown in Figure 4.

Figure 4. The information flow pathways for the numerical example.

Figure 5 presents the IG-based TEs in three dimensions of the granular time series
under different window lengths ranging from 0 to 50. It can be seen that the maximum
values of the TEs can be found at where the window length is equal or nearly equal to the
given time delay. This also verifies the feasibility of the proposed method. In addition,
calculating the TEs in three dimensions can make the result more reliable and convincing.
This is because, in some cases, when calculating TEs using different dimensions of the
granular time series, the largest values of TEs might not always locate exactly at the
window length equal to the time delay. Therefore, it is more reasonable to make use of
the three dimensions and obtain an integrated value of TEs. The result in this example
proves that the causal relations obtained using the proposed method are consistent with
the actual case.
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Table 2. IG-based TEs and thresholds (in the brackets).

X Y Z

X 0.72 (0.34) 0.99 (0.30)
Y 0 0.22 (0.41)
Z 0 2.56 (0.51)

Figure 5. The trends of IG-based TEs under three different dimensions of the granular time series
versus the window length. Subplots (a), (b), and (c) correspond to the results based on the lower
support X̃1, the core X̃2, and the upper support X̃3, respectively.

In order to compare the causality results obtained, the traditional TE method was also
applied. The calculated TEs are in Table 3. By comparing Tables 2 and 3, it can be observed
that the detected causal relations are consistent using the proposed IG-based TE and the
traditional TE. Thus, the proposed method ensures the accuracy of the detection of causal
relations in this numerical case study.

Table 3. TEs and thresholds (in the brackets).

X Y Z

X 1.57 (0.31) 1.44 (0.15)
Y 0.07 (0.20) 0.05 (0.16)
Z 0.12 (0.25) 2.60 (0.36)

Next, the calculation time of the proposed method was compared with the traditional
TE. The TEs between the three variables were calculated. The total calculation time of
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each method is given in Table 4. Compared with the traditional TE, the calculation time is
improved by 88.2% using the proposed method. Thus, the improvement of computational
efficiency is significant.

Table 4. Calculation time using the traditional TE and the IG-based TE.

Traditional TE IG-Based TE

Calculation time 3.4 s 0.4 s

4.2. Industrial Case Study

The proposed method was applied to an industrial case for the root cause detection of
plant oscillations. The fundamental model of the system was constructed in Simulink [11].
It has been used as a benchmark to test the process monitoring and causality inference
methods [26,48,49]. Figure 6 shows a diagram of the process. There are two tanks in
series with heat exchangers. Tank levels are controlled by the flow rates of cold water
into the tanks, and tank temperatures are controlled by the steam flow rates through the
heating coils.

Figure 6. Diagram of the two-tank process.
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An oscillation was introduced in the cold water input temperature T1,in. This oscil-
lation would propagate through the process from T1,in by firstly affecting the first tank’s
temperature T1. The temperature controller would then change the steam flow rate F3 to
compensate. The controller was unable to fully reject the input disturbance and the second
tank’s temperature T2 would also be affected; the second tank’s temperature controller
would then change the steam flow rate F4 to compensate. By running the simulation,
process signals were collected, and random noises were added to the signals. The original
time series of the variables are shown in Figure 7.

Figure 7. The time series of the original variables.

First, calculate the time lag through delay estimation. Then, determine the window
length based on the delay and perform the information granulation operation. Here, the
delay between T1,in and T1 is 23. Thus, the window length is set to 23. After performing
the information granulation operation, the time series of information granulation of T1,in is
shown in Figure 8.

Figure 8. An example of information granulation for T1.

Then, the data of information granule X̃i are used to calculate TE. Using the proposed
method, it can obtain the causal relations between variables according to Table 5. Figure 9
presents the causal map for the variables of the two-tank system.
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Table 5. IG-based TEs and thresholds (in the brackets).

F1,in T1 T2 F3 F4

F1,in 1.80 (0.24) 0.82 (0.20) 1.95 (0.21) 1.47 (0.24)
T1 0.03 (0.16) 1.10 (0.21) 1.16 (0.26) 1.82 (0.25)
T2 0.11 (0.21) 0 0.53 (0.15) 0.61 (0.20)
F3 0 0.08 (0.24) 0.85 (0.15) 1.93 (0.20)
F4 0 0.04 (0.21) 0.14 (0.26) 1.04 (0.16)

Figure 9. The information flow pathways for the two-tank system.

In order to compare the causality results obtained, the traditional TE method was also
applied. The calculated TEs are in Table 6. By comparing Tables 5 and 6, it can be observed
that the detected causal relations are consistent using the proposed IG-based TE and the
traditional TE. Thus, the proposed method ensures the accuracy of the detection of causal
relations in this industrial case study.

Table 6. TEs and thresholds (in the brackets).

F1,in T1 T2 F3 F4

F1,in 1.05 (0.24) 0.88 (0.36) 1.08 (0.18) 0.90 (0.25)
T1 0.03 (0.16) 0.80 (0.43) 1.04 (0.39) 0.72 (0.30)
T2 0.09 (0.20) 0 0.98 (0.48) 0.78 (0.29)
F3 0 0.08 (0.16) 0.88 (0.35) 0.94 (0.24)
F4 0 0.04 (0.18) 0.14 (0.26) 1.05 (0.40)

To distinguish the direct causal relations from the indirect ones, the IG-based DTEs
were calculated. From the causal network in Figure 9, the intermediate or confounding
variables can be identified from the triangle connection paths. Then, the IG-based DTE
should be calculated to determine whether the causal relation is direct or through such
indirect paths via intermediate or confounding variables. For instance, there were two
pathways from T1 to F4, i.e., direct or indirect through T2. Then, the DTE from T1 to F4 based
on T2 was calculated and found to be smaller than the threshold; thus, the causal relation
from T1 to F4 was determined to be indirect and the direct pathway from T1 to F4 was
removed. It should be noticed that it was manually decided for which pairs of variables the
IG-based DTE should be calculated. This is where the limitation of the proposed method
lies. If the studied system is large and consists of many nodes or processes, making this
decision is not easy. Thus, a way to automatically identify such triangle connection paths
and, thus, determine intermediate conditioning variables is needed. A potential effective
solution can refer to the algorithm in [50], which provides a practical way in large networks.

Table 7 provides the IG-based DTEs and the corresponding thresholds for different
pairs of variables. As a result, the causal map containing only direct causal relations is
obtained and shown in Figure 10. According to the obtained causal map, it can clearly see
that F1,in is the the root cause variable of oscillation. The conclusion is consistent with the
actual situation.
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Table 7. IG-based DTEs and thresholds.

From x to y Intermediate Variables IG-Based DTE Thresholds

T1,in → T2 T1 0.08 0.20
T1,in → F3 T1 0.11 0.21
T1,in → F4 T1 0.05 0.24
T1,in → F4 T2 0.05 0.24
T1 → F4 T2 0.13 0.25
T2 → F3 T1 0.06 0.15
F3 → T2 T1 0.05 0.15
F3 → F4 T1,in 0.04 0.20
F4 → F3 T1,in 0

Figure 10. The direct information flow pathways for the two-tank system.

Next, the calculation time of the proposed method was compared with the traditional
TE. The TEs between the five variables were calculated. The total calculation time of
each method is shown in Table 8. It can be seen that the calculation time of the proposed
IG-based TE method was reduced by 97.3% compared to the traditional TE. Thus, using
the proposed method, it can quickly detect the causal relations between the candidate
variables and ultimately find out the root cause of the fault. Compared with the traditional
TE, the proposed method greatly improves the calculation efficiency and provides a basis
for quickly locating the root cause of the fault.

Table 8. Calculation time using the traditional TE and the IG-based TE.

Traditional TE IG-Based TE

Calculation time 76.8 s 2.1 s

The time calculated by the IG-based TE, including the time required for delay esti-
mation and information granulation, is shown in detail in Table 9. It can be seen from the
table that the delay estimation and information granulation before calculating TE takes
little time. Compared with traditional TE, the calculation time is greatly reduced.

Table 9. Detailed calculation time using the IG-based TE.

Delay Estimation Calculation of IG Calculation of TE

Calculation time 1.1 s 0.2 s 0.8 s

5. Conclusions

This proposes an improved method for causality inference based on transfer entropy
and information granulation. Motivated by the problems accounting for the high computa-
tional complexity, a new framework is designed to integrate the information granulation as
a critical preceding step to compress data, such that the abstracted representative features
are obtained and used in TE calculation. The accuracy of the result is mainly affected by the
length of the window size in information granulations. Thus, a window-length determina-
tion method is proposed based on delay estimation. Both a numerical case and an industrial
case are presented to demonstrate the efficacy of the proposed method. According to the
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results, the proposed method is capable of detecting the causal relations correctly and
promptly. In the numerical and industrial case studies, the proposed method uses only
11.8% and 2.7% of the calculation time of the traditional TE, respectively. Compared to
the original TE, the proposed method shows significantly better computational efficiency,
making it more appropriate in real-time applications for root cause analysis.

It should also be noticed that properly compressing the time series via granulation
is critical to the correct estimate of the first-order TE, and this relies on the determination
of the window length, which is set as the time delay between two time series. This paper
assumes that the history of the target time series y should be no more than the delay
between x and y, such that the data can be properly compressed and both the histories of x
and y can be fully included in the estimate of the first-order TE. However, it is possible that
the relevant history of the target time series y is much larger than the delay in real cases.
According to the literature [46], failing to include the relevant history of the target time
series can lead to a spurious overestimation of the TE. This is a problem worthy of deep
investigation and which can be considered in future work to for a better solution to obtain
a more accurate estimate of transfer entropy.
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