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Abstract: In studies on the combustion process, thermodynamic analysis can be used to evaluate the
irreversibility of the combustion process and improve energy utilization efficiency. In this paper, the
combustion process of a laminar oxy-fuel diffusion flame was simulated, and the entropy generation
due to the irreversibilities of the radiation process, the heat conduction and heat convection process,
the mass diffusion process, and the chemical reaction process was calculated. The effect of the oxygen
concentration in the oxidizer on the entropy generation was analyzed. The results indicated that, as
the oxygen concentration in the oxidizer increases, the radiative entropy generation first increases and
then decreases, and the convective and conductive entropy generation, the mass diffusion entropy
generation, the chemical entropy generation, and the total entropy generation gradually increase.

Keywords: oxy-fuel combustion; entropy generation; thermodynamics irreversibility; hydrocarbon
diffusion flame

1. Introduction

To mitigate the greenhouse effect caused by the emission of carbon dioxide (CO,),
oxy-fuel combustion technology has been investigated and developed [1,2]. In an oxy-
combustion process, where a pure or highly enriched oxygen (O,) stream is mixed with
recycled flue gas (mainly CO,), the nitrogen (N3) is replaced by CO,, and the oxygen
concentration in the flue gas is about 30%, higher than that in air combustion. Due to the
significant difference in the chemical and physical properties between CO, and N, the
efficiency of oxy-fuel combustion and traditional air combustion is also different, especially
when oxygen concentration is enhanced. It is very useful and important to evaluate energy
conversion efficiency in terms of thermodynamics second-law analysis, in which entropy
generation is a crucial parameter [3]. Som et al. reviewed fundamental investigations
on thermodynamics irreversibilities and exergy analysis during combustion processes of
various kinds of fuels, and summarized that the local entropy generation in a combustion
process is mainly due to the irreversibility of internal heat and mass transfers and to
chemical reactions [4].

A series of numerically or experimentally fundamental analyses of entropy genera-
tion in lab-scale flames, pilot-scale combustors, and even large-scale furnaces has been
recently conducted. Yapici et al. calculated local entropy generation rates in laminar
methane-air (CHy-air) flames and compared the irreversibility of various processes [5].
Chen et al. numerically studied the effects of hydrogen addition on entropy generation
in ultra-lean counter-flow CHjy-air premixed flames [6]. Zhang et al. analyzed the effects
of different diluents (argon, Ny, CO,, and N, /CO,) on exergy losses from hydrogen pre-
mixed flames [7]. Besides that, considering the significant role of thermal radiation in high
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temperature systems, many researchers also analyzed entropy generation due to thermal
radiation in flames [8-12]. The research results from Liu et al. [8] on confined jet flames and
Makhanlall et al. [9] on diffusion combusting flows demonstrated that radiation entropy
generation is also a non-negligible component in thermodynamics second-law analysis in
combustion processes. Zhang and Lou et al. [10,11] presented a numerical analysis and
experimental investigation of radiation entropy generation in high-temperature systems
and large-scale boiler furnaces. Rajabi et al. [12] computationally investigated local and
global entropy generation features in gas turbine combustors. Shan et al. [13] calculated
and analyzed spectral radiative exergy distribution characteristics in one-dimensional
(1-D) furnace cases. Furthermore, the effects of non-gray characteristics of three-atom
gases (CO; and H,O), soot particles, and boundary walls on radiation entropy generation
were evaluated [14-16]. Consequently, the relationships between flame temperature, soot
formation, local entropy generation, and thermodynamic irreversibility in flames have been
quantitatively analyzed [17,18].

Based on the state of the art in the thermodynamics second-law analysis of combus-
tion processes or flames, it can be deduced that an increase in oxygen concentration will
change the temperature in flames and sequentially affect the thermodynamic irreversibil-
ity and efficiency of the combustion process. However, few researchers pay attention
to entropy generation and exergy loss caused by a changing oxygen concentration in
flames. Only Shan et al. [19] preliminarily analyzed the radiative exergy and the spectral
distribution characteristics of oxy-coal combustion in a 1-D tube furnace under O, /CO,
atmospheres with different oxygen ratios. It is worth mentioning that investigating laminar
diffusion flames based on Computational Fluid Dynamics (CFD) is fundamental in vari-
ous combustion processes and is necessary for better understanding the thermodynamics
irreversibilities of combustion processes.

Therefore, the present work analyzed the effect of oxygen concentration on entropy
generation in oxy-fuel flames using CFD codes. The numerical calculation results of laminar
coflow diffusion oxy-ethylene flames under different oxygen concentrations in an oxidizer
(varying from 30% to 50%) are presented, and a thermodynamics irreversibilities analysis
of these diffusion flames is conducted. Some key conclusions are discussed.

2. Numerical Methods
2.1. Numerical Computation of Coflow Flame

The coflow laminar diffusion flame is widely utilized in fundamental research of
numerical combustion computation. In this paper, a code named Coflame [20] combined
with a detailed chemical reaction mechanism, soot model, and non-gray radiation model
was used to complete the numerical computation. The conservation equations for mass,
momentum, energy, and species mass fraction as well as two transport equations of soot
particles in a two-dimensional axisymmetric cylindrical coordinate are solved in this code.
As with the models in [18], the DLR mechanism [21], the abstraction of H, the C (HACA)
soot model [22], the discrete-ordinates method (DOM), and the statistical narrow-band
correlated-k model (SNBCK) [23] were included in the Coflame code.

The burner, flame, and computational domain as well as the grid are shown in
Figure 1. Since the coflow laminar diffusion flame is axisymmetric, it can be reduced
to a two-dimensional model that contains the axial and radial. As shown in Figure 1, the
computational domain is 67 mm (height) x 22 mm (radius) and divided into 164 x 72
control volumes. The grid is non-uniform, and very fine grids (0.24 mm x 0.2 mm) are
placed in the main combustion area. The conditions of free-slip and zero-gradient are
enforced at the boundary of the coflow stream and exit boundary, respectively. The tip of
the burner is considered to be at a constant temperature of 300 K. The computation results
that are independent of the grid have been verified in [20].
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Figure 1. The burner, computation domain, and grid of the coflow laminar diffusion flame.

2.2. Calculation of Entropy Generation

According to previous work [3,8,9,18], entropy generation in a flame is mainly due
to four irreversible processes: thermal radiation, heat conduction and convection, mass
diffusion, and chemical reactions. The total local volumetric entropy generation rate can be
computed as follows:

s gen — s gen,r + 5" gen,cc + S5 gen,m + 8" gen,chs (1)

where §” genr, S” gencc) S” genm, and S gench are the local volumetric entropy genera-
tion rates due to thermal radiation, heat conduction and convection, mass diffusion, and
chemical reactions, respectively.

Considering the occurrence of three-atom gases (CO, and H,O) and soot particles in
the hydrocarbon diffusion flame, both of them contribute to the local volumetric entropy
generation rate due to thermal radiation and chemistry reactions. S gen r, S” gen,cc; S’ gen,m,
and 5" gen cn can be calculated by Equations (2)—(5), respectively [16,24]:

0 1 1
S//lgen/r = _/() AT[ (Ky],gas + K;/I,SOOt) |:Ih,;7(T) - 17] (S)j| |:T - ,1_,’7(8):| deT], (2)

/// k | (9T\?*  [oT\?
5 gen,cc:ﬂ[(w> + (az> ]/ (3)

K
- Di—mix [ 0¥k 0k | 9¥j IXk
5" genm = Rpk:1 X or or oz 0z |’ @)
13K
S" gas,ch — _T Z Z HkWi,n )

n=1k=1

where Ky ¢as is the absorption coefficient of the gas; «; soot is the absorption coefficient of the
soot particle; I is the spectral radiative intensity; Ty is the spectral radiative temperature;
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k is the conductivity coefficient of the medium; Dj_ iy is the mass diffusion coefficient
of the kth species; X; and Y are the mole fraction and mass fraction of the kth species,
respectively; K is the total number of chemical species, N1 = 723, and N; = 6 is the total
number of reactions in the DLR gas reaction mechanism and the HACA-based soot surface
growth oxidation model, wy is the production rate of the kth species, i is the chemical
potential of the kth species, and w is the net generating rate of the kth species.

3. Results

The parameters of the working condition calculated in this paper are shown in Table 1.
The subscript F represents the fuel, O represents the oxidizer; Q is the volume flow; Y is the
volume fraction, x is the mass fraction. From Case 1 to Case 5, the oxygen concentration in
the oxidizer gradually increased from 30% to 50%.

Table 1. Description of 5 flame cases.

Case Qr,c,H, (mL/min) Yo,0, () X0,0, (%) Q0,0, (L/min) Qg o, (L/min)
1 194 0.238 30 85.2 198.8
2 194 0.281 35 99.4 184.6
3 194 0.327 40 113.6 170.4
4 194 0.373 45 127.8 156.2
5 194 0.421 50 142.0 142.0

3.1. Radiative Entropy Generation

Figure 2 shows the distribution of the local radiative entropy generation rate and the
total radiative entropy generation. It can be seen from Figure 2a that the local radiative
entropy generation rate is mainly concentrated on the flame surface. This is because more
soot is produced in this area, and the soot particle has an obvious influence on the radiative
heat transfer process in the flame. Meanwhile, as the oxygen concentration in the oxidizer
increases, the soot volume fraction in the flame gradually increases, the radiative heat
transfer process in the flame gradually enhances, and the local radiative entropy generation
rate of the flame also gradually increases. For instance, when the oxygen concentration
in the oxidizer increases from 30% to 50%, the peak value of the local radiative entropy
generation rate in the flame increases from 14,510 to 62,400 W /(m°K).

5" en e WHMK)) (b)) 0-06

gen, r
6x10*
0.05 |
4
5x10 _ooaf
2
4x10* % 0.03 |
.
2><104 0.02
0.01 |
1x10*
I 0.00
2 3 4 5

Case

Figure 2. (a) The local entropy generation rate and (b) the total entropy generation due to the
irreversibility of the radiation process.

Additionally, according to Figure 2b, it can be seen that, as the oxygen concentration
in the oxidizer increases, the radiative entropy generation in the flame presents a trend
that first increases and then slightly decreases. When the oxygen concentration in the
oxidizer is 40%, the radiative entropy generation of the flame reaches the maximum value
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(0.05161 W/K). When the oxygen concentration in the oxidizer continues to increase,
the volume of the flame gradually decreases, which causes the total radiative entropy
generation of the flame to gradually decrease.

3.2. Conductive and Convective Entropy Generation

Figure 3 shows the distributions of the local entropy generation rate as well as the total
entropy generation due to heat conduction and convection in the five cases. As shown in
Figure 3a, the local entropy generation rate due to heat conduction and convection is mainly
concentrated in the region inside and outside the flame surface. Meanwhile, since the
temperature gradient of the medium at the tip of the burner is high, the heat conduction and
convection process are more intense, and the thermodynamics irreversibilities enhances and
local entropy generation rates increase in the region. However, although the temperature of
the medium near the flame surface is high, the heat conduction and convection process is
weak due to the low temperature gradient of the medium, and the local entropy generation
rate due to conduction and convection is low in the region.

8" e (WA*K)) 0.10

gen, cc

4
Case 1.3 J Case 1.4 | Case 1.5 I 7x10

0.08 |-
6x10*
Q 0.06
4x10* g
5004
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0.00
I 0.0 1 2 3 4 5
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Figure 3. (a) The local entropy generation rate and (b) the total entropy generation due to the
irreversibility of the conductive and convective process.

Additionally, it can be seen in Figure 3b that, with the increase in the oxygen concen-
tration in the oxidizer, the entropy generation due to heat conduction and convection in
the flame increases. When the oxygen concentration in the oxidizer increases from 30% to
50%, the entropy generation due to heat conduction convection in the combustion process
increases from 0.081 to 0.088 W /K.

3.3. Entropy Generation Due to Mass Diffusion

Figure 4 shows the distributions of the local entropy generation rate as well as the
total entropy generation due to mass diffusion in the five cases. As shown in Figure 4a, the
local entropy generation rate due to mass diffusion in the flame is mainly concentrated
on the flame surface. The local entropy generation rate due to mass diffusion on the tip
of the burner significantly increases. The reason is that the concentration gradient of the
oxygen is high, and the mass diffusion in the region is intense. Meanwhile, as the oxygen
concentration in the oxidizer increases, the concentration gradient of the oxygen near
the fuel nozzle gradually increases, and the diffusion process toward the inside of the
flame is obviously intensified. The local entropy generation rate due to mass diffusion
also gradually increases. Additionally, Figure 4b shows that, with the increase in oxygen
concentration in the oxidizer, the total entropy generation due to mass diffusion in the
flame increases significantly. When the oxygen concentration in the oxidizer increases from
30% to 50%, the entropy generation due to mass diffusion during the combustion process
increases from 0.059 to 0.223 W /K.
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Figure 4. (a) The local entropy generation rate and (b) the total entropy generation due to the
irreversibility of mass transfer.

3.4. Entropy Generation Due to Chemical Reactions

Figure 3 shows the distributions of the local entropy generation rate as well as the total
entropy generation due to chemical reactions in the five cases. As shown in Figure 5a, the
local entropy generation rate due to chemical reactions is concentrated in the region near
the nozzle and the region under the flame surface. It is mainly due to the pyrolysis process
of the fuel near the flame nozzle and the intense oxidation reaction on the flame surface.
Meanwhile, with the increase in oxygen concentration in the oxidizer in the flame, the
entropy generation due to chemical reactions in the flame slightly, gradually increases. This
indicates that, as the oxygen concentration in the oxidizer increases, the chemical reactions
in the flame gradually strengthen. When the oxygen concentration in the oxidizer increases
from 30% to 50%, entropy generation due to chemical reactions in the combustion process
increases from 0.161 to 0.178 W /K.
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Figure 5. (a) The local entropy generation rate and (b) the total entropy generation due to the
irreversibility of chemical reactions.

Figure 6 shows the chemical entropy generation by each chemical reaction S, 5,
K

(Schn = — fV % Y. 1wy ,dV). It can be seen that the reaction R148 has a significant impact
k=1

on the thermodynamics irreversibilities of the chemical reaction, and the chemical entropy
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(a)

Entropy generation (W/K)

generation due to the reaction exceeds 50% of the total chemical entropy generation. Ad-
ditionally, there are five other reactions that also have a high impact on chemical entropy
generation, and the detailed chemical formula is shown in Formula (6).

R83:C+CHy; =CH+H

R145 : 2H,OH +M = CH, O+ H+M

R146 : 2HCCO = C;H, + H

R148: OH+ H; = H,O+H

R628 : AIC;H+ AICG;H= A4 +H

R700 : BAPYR 4+ OH = CH,CO + C1gHy4

(6)

0.08

0.04 4 Case 1
0.00
0.08
0.04 4 Case 2
~ 0.00
Eé 0.08
%/: 0.04 4 Case 3
<= 0.00
w008
0.04 4 Case 4
0.00
0.08
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0.00 . : : : : : ;
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Figure 6. Entropy generation due to the irreversibility of various chemical reactions.

3.5. Total Entropy Generation

Figure 7 shows the total entropy generation in the combustion process and the propor-
tion of entropy generation due to the irreversibility of various processes. The total entropy
generation increases as the oxygen concentration in the oxidizer increases. Meanwhile, as
the oxygen concentration in the oxidizer gradually increases, the proportion of entropy
generation due to chemical reactions and heat transfer processes gradually decreases. How-
ever, the proportion of entropy generation due to the mass diffusion process gradually
increases with the increase in the oxygen concentration in the oxidizer.

0.6 b)1i0o
e S -1 ®
0.5 --S;Eﬂ.m -S_Ean._r _ L{:
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.g I:I“ch
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02k 3 .
g
2 20}
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Figure 7. (a) Total entropy generation in the combustion process and (b) the proportion of entropy
generation due to the irreversibility of various processes.
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4. Conclusions

In this paper, the entropy generation in the oxy-flame is numerically calculated, and
the influence of the oxygen concentration in the oxidizer on the entropy generation in the
combustion process is analyzed. The main conclusions are given as follows. Firstly, the
local radiative entropy generation rate, the local mass diffusion entropy generation rate,
and the local chemical entropy generation rate are mainly concentrated near the flame
surface, while the conductive and convective entropy generation is concentrated in the
regions inside and outside the flame surface. Secondly, the chemical entropy generation
during the combustion process is mainly due to the reaction OH + H, = H,O + H, and
the entropy generation due to this reaction reaches more than 50% of the total entropy
generation. Finally, as the oxygen concentration in the oxidizer increases, the radiative
entropy generation first increases and then slightly decreases. The heat conductive and
convective entropy generation, the mass diffusion entropy generation, the chemical entropy
generation, and the total entropy generation increase.
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