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Abstract: Work is an important quantity in thermodynamics. In a closed quanutm system, the
two-point energy measurements can be applied to measure the work but cannot be utilized in an
open quantum system. With the two-point energy measurements, it has been shown that the work
fluctuation satisfies the Jarzynski equality. We propose a scheme to measure the work in an open
quantum system through the technique of reservoir engineering. Based on this scheme, we show
that the work fluctuation in open quantum system may violate the Jarzynski equality. We apply our
scheme to a two-level atom coupled to an engineered reservoir and numerically justify the general
results, especially demonstrating that the second law of thermodynamics can be violated.

Keywords: open quantum system; measurement of work; Jarzynski equality

1. Introduction

Quantum thermodynamics is developing very fast and covers the exploration from
few-body to many-body quantum physics and non-equilibrium statistical mechanics [1,2].
Being different from the traditional quantum statistics, where the concepts such as bo-
son/fermion statistics play important roles, in quantum thermodynamics, quantum co-
herence and quantum correlation are involved [3–5], which originate from quantum infor-
mation science [6–8]. In particular, quantum fluctuations can be observed in conventional
thermodynamic quantities, e.g., work and heat [9–13].

For a driven system, Alicki defines the work as the energy change of the system
induced by changing the Hamiltonian W =

∫
TrρdH, with ρ and H, respectively, being the

density matrix and the Hamiltonian of the system [14] and further generalized by Boukobza
and Tannor to the definitions of heat flux and power [15]. We note that these definitions
are only applied to the weak coupling between the system and the heat reservoir [16].
From the point of view of operation, to measure the work, the state of open quantum
system should be monitored continuously. However, once the system is measured, its state
is changed by the interaction between the system and the measurement pointer, and as
a result, the work defined above can not be measured. To overcome this problem, a two-
point energy measurement or generalized quantum measurement are invented [12,17],
i.e., in an isolated system the work is equal to the change of the internal energy, i.e.,
W = ∆U = Trρ f H f − Trρi Hi, with the superscript f and i representing the final and initial
times of the process, respectively. Although this method has been applied to demonstrate
many important conclusions in quantum thermodynamics, such as to study the fluctuation
relations of the work of quantum driven system [18], it can only be used in the case of a
closed system. These two kind definitions are consistent with each other on the level of the
ensemble but different on the level of the system. In addition, their different origins from
that of the two-point energy measurements will destroy the coherence of the system.

As the work has the characteristic of probability, its fluctuation theorem has attracted
much attention. In a classical non-equilibrium system, it has been shown that the Jarzynski
equality

〈
e−βw〉 = e−β∆F is satisfied by the work, from which the second law of thermo-

dynamics can be deduced [19]. Then, with the two-point energy measurements, it has
been shown that this equality can also be applied to closed quantum system [13], but with
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generalized measurement, the Jarzynski equality can be violated [20]. With the total system
being viewed as a closed system, the Jarzynski equality has been generalized to arbitrary
open quantum systems, and the free energy should be changed correspondingly [21]. Al-
ternatively, through a one-time measurement of the initial energy and the measurement
of heat, a modified quantum Jarzynski equality of the guessed quantum work can be
obtained [22]. We note that there are two problems in the Jarzynski equality of arbitrary
open quantum systems. The first is that the work of a open quantum system cannot be
measured through the two-point energy measurements or the scheme in [22], as the work
is not equal to the energy change of the system. The second is that the free energy of the
system is interaction-dependent, i.e., the free energy depends on the interaction between
the system and its heat reservoir. As a result, the free energy cannot be measured directly.
These two problems result in the Jarzynski equality of open quantum systems being unable
to be explored experimentally.

We note that both the above problems originate from the interaction with the heat
reservoir. As such, it may be possible to overcome these problems through reservoir
engineering. This technique has become an important technology in quantum science.
With the reservoir engineering, the exotic phases of quantum matter can be simulated
quantumly [23–25], thermal averages can be computed in a variety of fields, such as in
statistical mechanics [26,27] and machine learning [28], and the quantum non-Markovian
behavior can be measured [29]. It has been shown that the effect of the reservoir can also be
simulated with classical noise regardless of Markovian or non-Markovian dynamics [30,31],
which will be applied to overcome the problems encountered by the work measurement of
an open quantum system.

In this paper, we will propose a scheme to measure the work of an open quantum
system through reservoir engineering. Then, based on this scheme, we obtain a fluctuation
theorem of the work and show that it is different from the Jarzynski equality. At last, the
experimental feasibility based on a single trapped ion is provided and shows that the
second law of thermodynamics presented by W ≥ ∆F can be violated.

2. Work Measurement of an Open Quantum System

We consider that an open quantum system is driven by forcing and simultaneously
interacting with an engineered reservoir. The reservoir engineering has been implemented
in trapped ions, for example, the high-temperature amplitude reservoir can be achieved
by applying random electric fields along the axis of the trap, and the zero-temperature
reservoir can implemented by a cooling laser applied to the ions [32]. Being similar to the
high-temperature amplitude reservoir, we assume that the interaction between the system
and the reservoir can be described by a classical stochastic process. For simplicity, we
assume that there is only one noise, and our following results can easily be generalized to
the case containing multi-noise, which can generate the non-Markovian dynamics. With this
engineered reservoir, the state evolution of the system can be described by a stochastic
quantum Liouville equation [31]:

dρst(t)
dt

= −i[H(t), ρst(t)]− i
√

γ[η(t)A, ρst(t)], (1)

where ρst(t) = |φ(t)〉〈φ(t)| is the stochastic density matrix corresponding to one realization
of the Gaussian processes η(t), H(t) is the driven Hamiltonian by a work source, γ is
a positive real constant and depends on the coupling strength between the system and
the reservoir, and A is a Hermitian operator. Here, for simplicity, the classical stochastic
process η(t) is a white noise process satisfying 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′),
with 〈η(t)〉 representing averaging over noise realizations. The noise-averaged density
matrix ρ(t) = 〈ρst(t)〉 is obtained by averaging over different realizations |φ〉〈φ|, and cor-
respondingly, the master equation induced by the corresponding reservoir can be obtained,
i.e., dρ(t)

dt = −i[H(t), ρ(t)] + D[ρ(t)], where D[ρ(t)] is the dissipator due to the reservoir [31].
Although the direct measurement of the state will prevent the measurement of the work
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as mentioned above, it can be obtained as follows. We note that the state evolution of the
Equation (1) can also be described by its corresponding stochastic unitary operator:

U0→t[η(t)] = T exp[−i
∫ τ

0
Hst(t′)dt′] (2)

where T represents a time-ordering operator, and Hst(t′) = H(t′) + H I
st(t
′) is the stochastic

Hamiltonian, with H I
st(t
′) =

√
γη(t′)A being the interaction of the Hamiltonian with the

noise. In such an open system, the stochastic unitary operator U0→t[η(t)] can be viewed as
a functional of the noise η(t), see Appendix A. This result implies that the time evolved
state of the system can be obtained by continuously monitoring the noise, i.e., the state of
the open system at time t is |φ(t)〉 = U0→t[η(t)]|φ(0)〉.

Based on the obtained state, the quantum work in a quantum trajectory can be calcu-
lated as:

wk =
∫
〈φk(t)|dH|φk(t)〉, (3)

where the Hamiltonian is determined by the driving protocol, the state is |φk(t)〉 =
U0→t[η(t)]|φk(0)〉, and the initial state |φk(0)〉 is chosen from the initial ensemble ρ(0) =
∑ pk|φk(0)〉〈φk(0)|, with pk being the corresponding probability of the state |φk(0)〉. The av-
eraged work fluctuation

〈〈
e−βw[η(t)]

〉〉
can be obtained through the twice average, i.e., the

average
〈

e−βwk [η(t)]
〉
=
∫

p[η(t)]e−βwk [η(t)]dη(t) with respect to the noise η(t) with p[η(t)]

being probability density of the noise η(t), and the initial ensemble average
〈

e−βw[η(t)]
〉
=

∑ pke−βwk [η(t)] with respect to the initial state ρ(0). When the noise is small, the func-
tional U0→t[η(t)] can be obtained through functional Taylor series U0→t[η(t)] = U0→t[0] +

∑ 1
n!

∫
· · ·
∫ δnU0→t [η(t)]

δη(t1)···δη(tn)
η(t1) · · · η(tn)dt1 · · · dtn, where the zeroth order is U0→t[0] =

T exp[−i
∫ t

0 H(t′)dt′], and the term δnU0→t [η(t)]
δη(t1)···δη(tn)

is the nth functional derivative [33]. In our
following numerical simulation, we cut off the functional Taylor series up to the second
order, and their expressions are provided in Appendix A. Using this functional Taylor se-
ries, we can also expand the work wk[η(t)] = wk[0] + δwk[η(t)] + δ2wk[η(t)] as a functional
Taylor series with δnwk[η(t)] representing the nth order variation, and its form is shown in
Appendix A. The work at the zeroth order wk[0] is equal to the work of the corresponding
closed system (corresponding to the case of zero noise η(t) ≡ 0), i.e.,

wk[0] = Eτ
k − E0

k , (4)

where the internal energy is Et
k = 〈Ek(t)|H(t)|Ek(t)〉 with the state

∣∣Et
k
〉
= U0→t[0]|φk(t)〉,

and this is the first law of thermodynamics in closed system. This result shows that the
coherence between the eigen-states of the Hamiltonian induce the difference between the
work defined Equation (3) and that through the two-point energy measurements. With the
properties of the white noise 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′) and up to the second
order, we find that only the following two fluctuations have contributions to the fluctuation
theorem, i.e.,

〈
δ2wk[η(t)]

〉
and 1

2 〈δwk[η(t)]δwk[η(t)]〉, please see Appendix A.

3. Work Fluctuation Theorem of Open Quantum System

Firstly, we demonstrate a work fluctuation theorem in the corresponding closed system.
Here and following, the initial state is chosen to be the Gibbs state ρ(0) = 1

Z0
e−βH(0),

with β = 1/T being the inverse temperature, the Boltzmann’s constant being set as kB = 1,
and Z0 = Tr[e−βH(0)] being the partition function. In a closed system and through two-point
energy measurements, it has been shown that the work fluctuation satisfy the following
theorem proposed by Jarzynski,

〈
e−βw[0]

〉
= e−∆F, with F = −T ln Z being the free energy

and Z = Tre−βH(t) being the partition function. Being different from this result, it can be
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shown that, through the definition in Equation (3), the fluctuation theorem of the work in a
closed system is: 〈

e−βw[0]
〉
= e−β∆ f , (5)

where the quantity f (t) = −T ln ∑k e−βEk(t) (here and following we call it quasi-free energy,
which has been defined as free energy in [22]) can be viewed as free energy when the
state |φk(t)〉 is the eigen-state of the Hamiltonian H(t). In other words, Equation (5) is
equivalent to the Jarzyski equality in a quasistatic process, but generally, they are different.
There is a special case where the state |φk(t)〉 can always be the eigen-state of the Hamil-
tonian H(t), if the Hamiltonian is a conserved quantity or, equivalently, the following
commutator is satisfied: [H(t), H(t′)] = 0. Correspondingly, the quasi-free energy is equal
to the free energy in this case. The Equation (5) can be demonstrated as follows. Using
the first law of thermodynamics in a closed system, i.e., with Equation (4), the fluctua-
tion of work in this closed system can be reduced to

〈
e−βw[0]

〉
= ∑k pke−β[Ek(τ)−Ek(0)] =

∑k e−βEk(τ)/ ∑k e−βEk(0) = e−β∆ f , with pk = e−βEk(0)/ ∑k e−βEk(0) being the probability of
the initial energy Ek(0), which completes the demonstration. When the noise is small, this
fluctuation theorem can be viewed as the zeroth approximation of the open system.

Now we show how to obtain the work fluctuation theorem in an open quantum
system. Rewriting the work as wk[η(t)] = Ek(τ)− Ek(0) + ∆wk[η(t)], with ∆w[η(t)] being
the finite correction of work due to the increase in the heat reservoir, we can formally write
the fluctuation theorem of the open system as the Jarzyski-like equality:〈〈

e−βw[η(t)]
〉〉

= e−β∆ f ′ , (6)

where f ′(t) = −T ∑k e−β[Ek(t)+∆Ek(t)], with the energy correction ∆Ek = −T ln
〈

e−β∆wk [η(t)]
〉

being noise averaged. This result means that the second law of the thermodynamics repre-
sented by the Jarzyski equality can be invalid. We note that the quantity f ′(t) is different
from the quasi-free energy, as it is noise-dependent. Now we consider the case that the
noise is weak. In such case, we can approximate e−βwk [η(t)] = e−βwk [0][1− βδwk[η(t)]−
βδ2wk[η(t)] + 1

2 (βδwk[η(t)])2], and then Equation (6) can also be approximated as:〈〈
e−βw[η(t)]

〉〉
= e−β∆ f (1− ∆ζ). (7)

where the correction is ∆ζ = ∑k p′k(β
〈
δ2wk[η(t)]

〉
− 1

2 β2〈δwk[η(t)]δwk[η(t)]〉), with p′k =

e−βEk(τ)/ ∑k e−βEk(τ) being the probability of the energy Ek(τ) at final time τ, as shown in
Appendix A. For white noise, this correction is independent on the noise η(t). This result
shows more obviously that the second law of thermodynamics can be violated in the case
of that the Hamiltonian is a conserved quantity, and the correction ∆ζ is larger than zero. In
the following, we will demonstrate this result numerically. For our following comparison,
we denote ζ1 =

〈〈
e−βw[η(t)]

〉〉
, ζ2 = e−β∆ f (1− ∆ζ) and ζ3 = e−∆F, correspondingly.

To solve the violation of the second law, we note from the Equation (7) that the free
energy should be redefined. For this purpose, we add the noise to our system to compose
an adiabatic system. In this composite system, the total energy is Etot

k (τ) = Ek(τ) + Er(τ),
where we introduce the phenomenologically Er(τ) as the noise energy, from which the
work can be obtained:

wk[η(t)] = Etot
k (τ)− Etot

k (0), (8)

which is the law of energy conservation. Based on this result, it can be shown that the
following Jarzynski equality can be obtained:〈〈

e−βw[η(t)]
〉〉

= e−β∆ f p
, (9)
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where we redefine the free energy as f p(τ) =
〈

∑k e−β[Ek(τ)+Er(τ)]
〉

. As a result, the Jarzyn-
ski equality (or the second law expressed with this equality) is reserved by this redefined
free energy. We note that this definition of the free energy is very similar as that defined
for the open quantum system at strong coupling with reservoir, where the reservoir is
viewed as a quantum system [21]. We also note that Equation (9) is a theoretical result
and cannot be demonstrated experimentally now, as the phenomenological noise energy
Er(τ) cannot be measured with the current technology. This problem also arises in the
quantum thermodynamics at strong coupling [21].

4. Experimental Feasibility

Based on the above results, in the following we propose how to observe the fluctu-
ation theorem of work in a single ultracold 40Ca+ ion stably confined in a Paul trap [34],
and our proposal can also be applied to other systems. In this system, the engineered
reservoirs have been explored experimentally [35]. As in [36], the system is a Zeeman
qubit encoded in two electronic levels of the 40Ca+ ion, i.e., |↓〉 =

∣∣42S1/2, mJ = −1/2
〉

and
|↑〉 =

∣∣42S1/2, mJ = +1/2
〉

(with the transition frequency ω(t)). Usually, this transition
frequency ω(t) is determined by a static magnetic field, but here we can introduce a time-
dependent magnetic field through which the transition frequency ω(t) = ω0 + kt can be
controlled to vary with time. The Hamiltonian of the driven qubit is:

H(t) =
1
2

ω(t)σz. (10)

In this protocol, we have [H(t′), H(t)] = 0, which, as mentioned above, will result in the
quasi-free energy being equal to the free energy (or equivalently, ζ3 = e−β∆ f ), and the
violation of the second law can be demonstrated directly through Equation (7). The heat
reservoir is a fluctuating field B = B0η(t) (which can be generated by an RF noise generator
being similar to that demonstrated in Ref [32]), with B0 here being the amplitude of the
fluctuating field. The interaction between the system and the fluctuating field can be
described as:

H I
st(t) =

√
γη(t)σx, (11)

where γ is determined by the amplitude of the fluctuating field and can be obtained through
Rabi oscillation in the experiment.

Our proposal is very similar to those used to demonstrate the Jarzynski equality in
closed systems, i.e., including four steps. The first step is preparing the state of the ion
in a thermal state exp[−βH(0)]/Z0 with the inverse temperature being defined as β =

− 1
ω0

ln
pi
↑

pi
↓
, with pi

↓ and pi
↑ being the initial populations of the state |↓〉 and |↑〉, respectively.

This initial thermal state can be obtained by preparing the qubit to the state |↓〉, then to a

superposition state
√

pi
↓|↓〉+

√
pi
↑|↑〉 through the carrier-transition and waiting a desired

time (the dephasing time of the qubit). In the second step, the ion is measured to project to
an energy eigen-state |↓〉 or |↑〉. Through this step, the initial free energy can be obtained
through the relation pi

↑ =
1

Z0
e−

1
2 βω0 and pi

↓ =
1

Z0
e

1
2 βω0 . In the third step, the driving force

and the fluctuating field are applied, and simultaneously, the fluctuating field is monitored
continuously. Then, the work can be obtained by the driving protocol and the monitored
fluctuating field, and the correction ∆ζ included in the term ζ2 can be calculated by the
driving protocol as shown in Appendix A. At the last step, another projective measurement
of the Hamiltonian H(T) is made to obtain the final free energy, which can be achieved by
another projective measurement to the energy eigen-state |↓〉 and |↑〉.

In the following, we simulate numerically this driving protocol. The stochastic Hamil-
tonian is Hst(t) = 1

2 ω(t)σz +
√

γη(t)σx. In Figure 1a, we show the case of a weak fluctuat-
ing field. Obviously, when the temperature is high, the right hand side of the Equation (7)
is well coincided with the left side, and the violation of the second law can be observed,
which is implied by the ζ1 being larger than ζ3, but this violation will disappear when
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the temperature is increased. In Figure 1b, we show the relations between ζ ′s and the
coupling strength at medium temperature. It shows that the approximation in Equation (7)
is satisfactory when the coupling between the system and its heat reservoir is weak and that
the violation of the second law is more obvious when the coupling become stronger. These
results imply that the usual definition of the free energy is unsuitable for the description of
quantum thermodynamics process.
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Figure 1. (a) The quantities ζ1, ζ2, and ζ3 vs. the temperature T, where ζ1, ζ2, and ζ3 are represented
by the blue solid, green dashed, and red dotted curves, respectively. In our simulation, the parameters
are chosen as ω0 = 20× 2π MHz, k = 0.2× 2π MHz/µs, γ = 0.02× 2π MHz, and τ = 5 µs. (b)
The corresponding quantities in (a) vs. the coupling strength γ. The temperature is chosen to be
T = 5 µK, and the other parameters are the same as those in (a).

5. Conclusions

Work is an important quantity in thermodynamics, but it could not be measured
directly in a open quantum system before. In this paper, we provided a scheme to overcome
this problem. In a closed quantum system, we showed that the free energy should be
replaced by the quasi-free energy, and with this quasi-free energy, the Jarzynski equality is
satisfied. However, in an open quantum system, we showed that the Jarzynski equality
can be violated. At last, an experimental scheme was provided, and it was demonstrated
numerically that the second law of thermodynamics can be violated.
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Appendix A

Appendix A.1. Review of Functional

First, we review the definition of the functional, its derivative, and Taylor series. We
assume that there is a space of square integrable functions with complete orthonormal
basis {yi(x)}, with which any function q(x) of the space can be expanded as q(x) =

∑ qiyi(x) with qi =
∫

yi(x)q(x)dx. A mapping of this space on a set of real or complex
numbers can be viewed as a functional, such as R [q(x)] =

∫
yi(x)q(x)dx, and the operator

of the time evolution of the stochastic Hamiltonian U0→t[η(t)] = exp[−i
∫ τ

0 Hst(t′)dt′],
which can be viewed as a mapping from the function space defined by noise to the set of
complex numbers.

If the argument function of the functional has a change δη(t1), then we denote the
change of the functional as δR = R[η(t1) + δη(t1)]− R[η(t1)]. Up to first order in δη(t1),
δR will be some linear functional of δη(t1), i.e., δR =

∫
δR

δη(t1)
dt1. Here, being similar to
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differential calculus, δR
δη(t1)

is the corresponding functional derivative. The definition of the
functional derivative can be defined more conveniently as:

δR[η(t)]
δη(t1)

= lim
δv→0

R[η(t′) + δVδ(t′ − t1)]− R[η(t′)]
δV

. (A1)

With this result, the higher order can be defined in the same way. Through these functional
derivatives, the functional R[η(t)] can be expanded as a functional Taylor series:

R[η(t) + δη(t)] = R[η(t)] + ∑
1
n!

∫
· · ·

∫
δnR[η(t)]

δη(t1) · · · δη(tn)
δη(t1) · · · δη(tn)dt1 · · · dtn.

(A2)

Appendix A.2. Application of the Functional Methods to the Work

Using the above definition, we can obtain the functional derivative of the evolution
operator:

δU0→t [η(t′)]
δη(t1)

= limδv→0
U0→t [η(t′)+δVδ(t′−t1)]−U0→t [η(t′)]

δV

= −iUt1→t[η(t′)]AU0→t1 [η(t
′)],

(A3)

where Ut1→t[η(t′)] = exp[−i
t∫

t1

{H(t′) + A[η(t′)}dt′] is the time evolution operator in the

time interval [t1, t]. In turn, we can obtain its second functional derivative as:

δ2U0→t[η(t′)]
δη(t1)δη(t2)

= −Ut2→t[η(t′)]AUt1→t2 [η(t
′)]AU0→t1 [η(t

′)]−Ut1→t[η(t′)]AUt2→t1 [η(t
′)]AU0→t2 [η(t

′)]. (A4)

With the functional Taylor series, the evolution operator can be approximated to the second
order:

U0→t[η(t′)] = U0→t[0] +
∫ δU0→t [η(t)]

δη(t1)

∣∣∣
η(t)=0

η(t1)dt1

+ 1
2

∫∫ δ2R[η(t)]
δη(t1)δη(t2)

∣∣∣
η(t)=0

η(t1)η(t2)dt1dt2

(A5)

Substituting this approximation to the definition of work w[η(t′)] =
∫ τ

0 〈φ0|U†
0→t[η(t

′)]Ḣ(t)
U0→t[η(t′)]|φ0〉dt, we obtain:

w[η(t′)] = w[0] + δw[η(t′)] + δ2w[η(t′)], (A6)

where we have dropped the order higher than second, the first order is δw[η(t′)] =
−i
∫ τ

0 〈φ0|U†
0→t[η(t

′)]Ḣ(t)Ut1→t[η(t′)]AU0→t1 [η(t
′)]|φ0〉η(t1)dt1dt + i

∫ τ
0 〈φ0|U†

0→t2
[η(t′)]

A†U†
t2→t[η(t

′)]Ḣ(t)U0→t[η(t′)]|φ0〉η(t2)dt2dt, and the second order is δ2w[η(t′)] =
∫ τ

0 〈φ0|
U†

0→t1
[η(t′)]A†U†

t1→t[η(t
′)]Ḣ(t)Ut2→t[η(t′)]AU0→t2 [η(t

′)]|φ0〉η(t1)η(t2)dt1dt2dt − 1
2

∫ τ
0

〈φ0|(U†
0→t1

[η(t′)]A†U†
t1→t2

[η(t′)]A†U†
t2→t[η(t

′)] + U†
0→t2

[η(t′)]A†U†
t2→t1

[η(t′)]A†U†
t1→t

[η(t′)])Ḣ(t)U0→t[η(t′)] × |φ0〉η(t1)η(t2)dt1dt2dt − 1
2

∫ τ
0 〈φ0|U†

0→t[η(t
′)]Ḣ(t)(Ut2→t[η(t′)]

AUt1→t2 [η(t
′)]AU0→t1 [η(t

′)] + Ut1→t[η(t′)]AUt2→t1 [η(t
′)]AU0→t2 [η(t

′)])|φ0〉η(t1)η(t2)
dt1dt2dt. To demonstrate Equation (7) in the main text, we expand the exponential function
of the work to the second order:

e−βwk [η(t)] = e−βwk [0][1− βδw[η(t′)]− βδ2w[η(t′)] +
1
2
(βδwk[η(t)])2]. (A7)

Using the property of the white noise processes 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′), we
obtain the average exponential function of the work over the noise:〈

e−βwk [η(t)]
〉
= e−βwk [0][1− β

〈
δ2w[η(t′)]

〉
+

1
2

β2〈δwk[η(t)]δwk[η(t)]〉], (A8)
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where
〈
δ2wk[η(t′)]

〉
= γ

∫ τ
0 〈φ0|U†

0→t1
[0]A†U†

t1→t[0]Ḣ(t)Ut1→t[0]AU0→t1 [0]|φ0〉dt1dt−γ
∫ τ

0
〈φ0|U†

0→t1
[0]A†2U†

t1→t[0]Ḣ(t)U0→t[0]|φ0〉dt1dt− γ
∫ τ

0 〈φ0|U†
0→t[0]Ḣ(t)Ut1→t[0]A2U0→t1 [0]

|φ0〉dt1dt. 〈δwk[η(t)]δwk[η(t)]〉 = −γ
∫ τ

0 〈φ0|U†
0→t[0]Ḣ(t)Ut1→t[0]AU0→t1 [0]|φ0〉〈φ0|U†

0→t′

[0]Ḣ(t′)Ut1→t′ [0]AU0→t1 [0]|φ0〉dt1dt′dt −
∫ τ

0 〈φ0|U†
0→t2

[0]A†U†
t2→t[0]Ḣ(t)U0→t[0]|φ0〉〈φ0|

U†
0→t1

[0]A†U†
t1→t′ [0]Ḣ(t′)U0→t′ [0]|φ0〉dt1dt′dt+

∫ τ
0 〈φ0|U†

0→t[0]Ḣ(t)Ut1→t[0]AU0→t1 [0]|φ0〉
〈φ0|U†

0→t1
[0]A†U†

t1→t′ [0]Ḣ(t′)U0→t′ [0]|φ0〉dt1dt′dt. Then, making an average over the ini-

tial ensemble with the initial probability pk = e−βEk(0)/ ∑k e−βEk(0), we obtain:〈〈
e−βw[η(t)]

〉〉
= ∑k pke−βwk [0][1− β

〈
δ2w[η(t′)]

〉
+ 1

2 β2〈δwk[η(t)]δwk[η(t)]〉]

= e−β∆ f [1−∑k p′k(
1
2 β2〈δwk[η(t)]δwk[η(t)]〉 − β

〈
δ2w[η(t′)]

〉
)].

(A9)

where the first law of the closed system wk[0] = Ek(τ)− Ek(0) and the quasi-free energy
f (t) = −T ln ∑k e−βEk(t) are used, and p′k = e−βEk(τ)/ ∑k e−βEk(τ) is the probability of the
energy Ek(τ) at the final time.
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