
Citation: Zhang, Z.; Zhou, J.; Wang,

X.; Yang, H.; Fan, Y. Initial Solution

Generation and Diversified Variable

Picking in Local Search for

(Weighted) Partial MaxSAT. Entropy

2022, 24, 1846. https://doi.org/

10.3390/e24121846

Academic Editors: Marcin Sosnowski,

Jaroslaw Krzywanski, Karolina

Grabowska, Dorian Skrobek, Ghulam

Moeen Uddin, Yunfei Gao, Anna

Zylka, Anna Kulakowska and Bachil

El Fil

Received: 9 November 2022

Accepted: 15 December 2022

Published: 18 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Initial Solution Generation and Diversified Variable Picking in
Local Search for (Weighted) Partial MaxSAT
Zaijun Zhang 1,2, Jincheng Zhou 2,3,* , Xiaoxia Wang 1,2, Heng Yang 1,2 and Yi Fan 1,2,4

1 School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun 558000, China
2 Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
3 School of Computer and Information, Qiannan Normal University for Nationalities, Duyun 558000, China
4 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,

Guilin 541004, China
* Correspondence: zjc81@sgmtu.edu.cn; Tel.: +86-138-0949-0127

Abstract: The (weighted) partial maximum satisfiability ((W)PMS) problem is an important general-
ization of the classic problem of propositional (Boolean) satisfiability with a wide range of real-world
applications. In this paper, we propose an initialization and a diversification strategy to improve local
search for the (W)PMS problem. Our initialization strategy is based on a novel definition of variables’
structural entropy, and it aims to generate a solution that is close to a high-quality feasible one. Then,
our diversification strategy picks a variable in two possible ways, depending on a parameter: contin-
uing to pick variables with the best benefits or focusing on a clause with the greatest penalty and then
selecting variables probabilistically. Based on these strategies, we developed a local search solver
dubbed ImSATLike, as well as a hybrid solver ImSATLike-TT, and experimental results on (weighted)
partial MaxSAT instances in recent MaxSAT Evaluations show that they outperform or have nearly
the same performances as state-of-the-art local search and hybrid competitors, respectively, in general.
Furthermore, we carried out experiments to confirm the individual impacts of each proposed strategy.

Keywords: maximum satisfiability; structural entropy; local search; heuristic search

1. Introduction

The maximum satisfiability (MaxSAT) problem is an optimization version of the
Boolean satisfiability (SAT) problem, which is a prototypical NP-complete problem. In the
context of the SAT and MaxSAT problems, a propositional formula F is usually expressed
in conjunctive normal form (CNF) [1], i.e., F =

∧
i
∨

j lij, where each lij is a literal, which
is either a Boolean variable or its negation. A CNF formula can be expressed as a set of
clauses, where a clause is a disjunction of literals, and each CNF formula is a conjunction
of clauses.

Given a formula in CNF, the MaxSAT problem is to seek an assignment that minimizes
the number of unsatisfied clauses in the formula. The partial maximum satisfiability (PMS)
problem generalizes the MaxSAT problem to involve both hard and soft clauses. It aims
to find a solution that minimizes the number of violated soft clauses while satisfying
all the hard ones. The weighted partial maximum satisfiability (WPMS) problem is a
generalization of the PMS problem, which further associates each soft clause with a positive
weight and tries to locate a solution that minimizes the total weight of violated soft clauses.
The MaxSAT, PMS, and WPMS problems are all NP-hard, and it is well known that optimum
solutions are hard to approximate [2]. Obviously, MaxSAT is a special case of PMS, where
the set of hard clauses is empty, and PMS is a special case of WPMS, where each soft clause
is associated with the same weight.

Like other combinatorial problems, real-world applications usually contain hard and
soft constraints [3], and soft ones often have different importance. Encoding such problems
into PMS and WPMS problems is natural and straightforward [4–7]. In fact, real-world
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problems such as computational protein design [8,9], set covering [10], coalition structure
generation [11], and large-scale road sensing through crowdsourced vehicles [12] can be
encoded and solved as PMS or WPMS problems.

There are two popular kinds of algorithms for solving MaxSAT and also its exten-
sions: complete and stochastic local search (SLS) algorithms. Complete algorithms are
able to confirm the optimality of the returned solution at the end, but they may fail to
return a high-quality one for large-scale instances within reasonable time [13]. These algo-
rithms can further be classified into two main subcategories: branch and bound MaxSAT
algorithms [14–17], which are based on David–Putnam–Loveland–Logemann (DPLL) pro-
cedures [18,19], and SAT-based ones [20–27], which call efficient conflict-driven clause
learning (CDCL) SAT solvers [28,29] to solve a sequence of SAT problems. Considering
recent MaxSAT Evaluations, we found that branch and bound algorithms are superior
on crafted benchmarks, while SAT-based ones perform better on application benchmarks
(https://maxsat-evaluations.github.io/2018/, accessed on 8 November 2022). Further-
more, SAT-based solvers, namely Open-WBO [30], LinSBPS, and TT-Open-WBO-inc [31],
performed extraordinarily in incomplete solver tracks of MaxSAT Evaluations 2018 and
2019 (https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?
sequence=1, https://helda.helsinki.fi/bitstream/handle/10138/306989/mse19proc.pdf?
sequence=1 accessed on 8 November 2022). On the other hand, SLS algorithms are often
able to find satisfactory solutions within a reasonable time frame [3,32], although they
do not guarantee the optimality of the solution they find. These algorithms are usually
variants or refinements of two prototype solvers, i.e., GSAT [33] and WalkSAT [34].

1.1. Local Search for MaxSAT

Recently, significant breakthroughs have been achieved by SLS algorithms for solving
PMS and WPMS problems, resulting in state-of-the-art SLS algorithms, namely Dist [3]
together with its improvement DistUP [35], CCEHC [36], and SATLike together with one
of its variants SATLike 3.0 [37]. The Dist algorithm shows great success in solving PMS
and won several categories in the incomplete solver track of the MaxSAT Evaluation
2014. Furthermore, it competes well with state-of-the-art complete algorithms on some
classes of PMS application instances, such as advanced encryption standard and protein [3].
Furthermore, Dist can also be adapted to solve WPMS and is still one of the current
best SLS algorithms for solving WPMS. The DistUP algorithm, an improvement of Dist,
which incorporates unit propagation in its initialization procedure, shows improvement
over Dist on industrial instances. However, CCLS, Dist, and DistUP are not dedicated
to solving WPMS, and their performance for solving WPMS could be further improved.
This motivates the design of a solver dubbed CCEHC [36], which is the state-of-the-art on
WPMS instances. The CCEHC algorithm extends the framework of CCLS with an extra
heuristic, which emphasizes hard clauses (EHCs). With a strong focus on hard clauses,
the EHC heuristic has three components: a variable selection mechanism, which focuses
on a forbidding mechanism called configuration checking based only on hard clauses, a
weighting scheme for hard clauses, as well as an approach of a biased random walk. Later,
SATLike and its variant SATLike 3.0 outperformed previous solvers in solving PMS and
WPMS problems. Moreover, they are thought to be the first SLS solvers that compete well
with SAT-based ones.

Despite the significant breakthroughs above, there is still a gap between the perfor-
mances of SLS solvers and those of SAT-based ones. To make matters worse, the algorithms
for the former ones are more complicated than those for the latter ones. We believe that
these drawbacks may be due to certain structures of PMS and WPMS problems. For exam-
ple, there are two kinds of clauses, hard and soft ones. Furthermore, these drawbacks could
also be caused by improper selections of initial solutions (starting points of local search)
or diversifying variables. In this sense, the detailed analysis of the structures of PMS and
WPMS problems, as well as suitable initial solutions and diversifying variables may lead to
significant improvements.

https://maxsat-evaluations.github.io/2018/
https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/306989/mse19proc.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/306989/mse19proc.pdf?sequence=1
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1.2. Our Contributions

In this work, we develop an SLS solver named ImSATLike together with a hybrid one
dubbed ImSATLike-TT based on two novel strategies, i.e., generating a high-quality starting
point for local search and selecting a promising variable for diversification. Firstly, our
initial solution generation is based on a notion called variable entropy. The resulting solution
is closer to high-quality feasible solutions compared to those generated in the most common
and traditional approach, i.e., pure random assignments. Experiments showed that this
strategy is able to improve the efficiency of locating a satisfactory solution. Secondly, when
the search is trapped in local optima, it will focus more on three types of variables: (1) those
in the whole formula, which has the greatest benefit; (2) those lying in a clause with the
greatest penalty; (3) those causing the least clauses to become unsatisfied. Thirdly, we also
develop a hybrid solver ImSATLike-TT, which combines ImSATLike with a state-of-the-art
SAT-based solver TT-Open-WBO-inc [31], and this solver presents satisfactory performances
on (weighted) partial MaxSAT instances in recent MaxSAT Evaluations.

The rest of this paper is organized as follows. Some necessary concepts and basic
notations are introduced in Section 2. The strategy of generating an initial solution based
on variables’ structural entropy is introduced in Section 3. In Section 4, we introduce the
diversifying variable selection strategy based on clause penalties. Our algorithm and the
experimental evaluations are presented in Sections 5 and 6, respectively. In Section 7, we
give some conclusions and the future work.

2. Preliminaries

Throughout this paper, we talk about propositional logic. Given a set of n Boolean
variables (also called propositional atoms) V = {x1, · · ·, xn}, a literal l is either xk or
¬xk, where k = 1, 2, · · ·, n. A clause C = l1 ∨ · · · ∨ ls is a disjunction of literals, where
s is called the (clause) length of C. Then, we use V(C) as the set of variables in C. In
addition, if l = xk (respectively l = ¬xk) is a literal in C, then we say that xk occurs
positively (respectively negatively) in C, and we can also say that C contains xk’s positive
(respectively negative) occurrence.

A formula F in conjunctive normal form (CNF) is a conjunction of clauses, i.e.,
F = C1 ∧ · · · ∧ Ct, where t is called the number of clauses in F. Given a CNF formula
F, we abuse V(F) to denote the set of variables in F, i.e., V(F) =

⋃
1≤j≤t V(Cj). Further-

more, we use C(F) to denote the set of clauses in F, i.e., C(F) = {C1, · · ·, Ct}. In the MaxSAT
problem, as well as its variants, clauses are usually partitioned into hard and soft ones, so
we use Ch(F) and Cs(F) to denote the set of hard and soft clauses in F, respectively.

Two different variables, namely x and y, are said to be neighbors if there exists at least
one clause C in C(F) s.t. both x and y occurring in C. We use N(x, F) to denote the set of x’s
neighboring variables in F, i.e., N(x, F) = {y|x, y both occur in C, C ∈ C(F)}. Given a CNF
formula F with a weighting function WF : C(F) 7→ Z+, we say that 〈F,WF〉 is a MaxSAT
formula (or we call it a MaxSAT instance). Without loss of generality for any unweighted
soft clause Cs ∈ C(F), we let WF(Cs) = 1. We use WF with subscripts here in order to
distinguish between this weight notation and those below in graph theory.

Usually, SLS algorithms will first make a random guess to obtain a candidate solution,
then they will change this solution by trial and error, so we introduce some related notions
here. A complete assignment is a map α : V(F) 7→ {0, 1}, which assigns a Boolean value
(either 0 or 1) to each variable in the formula F, so for any variable x in F, either α(x) = 0 or
α(x) = 1. In the context of SLS algorithms for MaxSAT, as well as its variants, a (candidate)
solution is a complete assignment. In this sense, we say that x is flipped if we change the
Boolean value of x from 0 to 1 or vice versa. More formally, this manipulation leads to
another assignment α′ = α\{〈x, α(x)〉} ∪ {〈x, 1− α(x)〉}. In what follows, we will use the
notions of assignment and solution interchangeably.

Given a CNF formula F and a complete assignment α that maps V(F) to {0, 1}, each
clause in F under the assignment α has two possible states: satisfied and unsatisfied; a
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clause C in F is satisfied if at least one literal in C takes the value 1 (true) under α; otherwise,
C is unsatisfied.

Clauses in a (weighted) partial MaxSAT formula 〈F,WF〉 are partitioned into hard and
soft ones, and each soft clause in the weighted case is further associated with a positive
integer. Given 〈F,WF〉, the (weighted) partial maximum satisfiability ((W)PMS)) problem
is to find a complete assignment that satisfies all hard clauses in F and minimizes the total
weight/number of all unsatisfied soft clauses in F.

Given a (weighted) partial MaxSAT formula 〈F,WF〉, a complete assignment is feasible
if it satisfies all hard clauses in F. The quality of a complete assignment α over 〈F,WF〉,
denoted as quality(α, F,WF), is the total weight/number of all satisfied soft clauses in
〈F,WF〉 under α. An optimum assignment is a feasible assignment, namely α∗, s.t., for
any feasible assignment α over 〈F,WF〉, quality(α∗, F,WF) ≥ quality(α, F,WF), that is
an optimum assignment over 〈F,WF〉 is an feasible assignment with the minimum cost.
In what follows, we usually suppress F and WF in quality(α, F,WF) if understood from
the context.

2.1. Variable Graph

The research community for complex networks has developed techniques of analysis
and algorithms to study real-world graphs, and such approaches can be adopted by the SAT
community. Inspired by the results on complex networks, Ref. [21] studied the community
structure, or modularity, of industrial SAT instances, and they proposed a notion named
the variable graph, which describes the interactions between Boolean variables in a SAT
formula. Here, we extend the notion of the variable graph so that it works seamlessly in PMS
and WPMS problems.

The variable graph of a (weighted) partial MaxSAT formula 〈F,WF〉, denoted by
G(F,WF), is defined as (VF, EF,W〈F,WF〉), which describes the interactions between any
pair of distinct Boolean variables in F. First, VF is a vertex set s.t. each vertex vi ∈ VF
representing a Boolean variable xi ∈ V(F), i.e., there is a bijection φ : V(F) 7→ VF for graph
construction. In this sense, the inverse function φ−1 exists, and it maps vertices, namely
vi, back to their corresponding Boolean variables, namely xi. Second, they defined EF as
{{u, v}|x = φ−1(u), y = φ−1(v) and y = N(x, F)}, i.e., two vertices in a variable graph
G(F,WF) are connected if and only if their corresponding Boolean variables are neighbors
in F. Third, the edge weight componentW〈F,WF〉, is defined as below.

W〈F,WF〉({u, v}) = ∑
x,y∈C

1

(|C|2 )
,

where x = φ−1(u), y = φ−1(v). In this formula, |C| is the cardinality of C and (|C|2 ) means a
combination of |C| elements taken two elements at a time. The motivation is to give the
same relevance to all clauses, so they pondered the contribution of a clause to an edge by
1/(|C|2 ). This way, the sum of the weights of the edges generated by a clause is always 1.
In this paper, we propose an extension to this weighting scheme that is tailored for PMS
and WPMS.

2.2. Local Search for MaxSAT

The basic framework of SLS algorithms for solving (W)PMS can be described as
follows. Initially, an SLS algorithm randomly generates an assignment of Boolean val-
ues to all variables; then, it repeatedly selects and flips a Boolean variable until the cut-
off arrives; finally, it returns the best feasible assignment that has been found. During
the search, most SLS algorithms alternate between two modes: greedy (intensification)
mode and random (diversification) mode. In greedy modes, SLS algorithms prefer those
flips that lead to a decreasing number of unsatisfied hard clauses and a decreasing total
weight/number of unsatisfied soft clauses. In random modes, they tend to diversify the
search by randomized strategies.
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2.3. Clause Penalties in SATLike 3.0

Although greedy search helps find better solutions nearby, it can often be trapped in
local optima, so various diversification strategies have been proposed to tackle this problem
including dynamic local search. Usually, in the context of SAT/MaxSAT, SLS algorithms
associate each clause in a CNF formula F with a penalty, in order to help focus more on
those clauses that are rarely satisfied [38]. To be specific, if a clause, namely C, is often
unsatisfied, they will increase C’s penalty often. As a result, any solution that violates C
will tend to have a great penalty. Alternatively, the search will have high priority to satisfy
C. In this sense, each clause will have opportunities to be satisfied.

Below, we introduce the penalty management scheme in SATLike 3.0 [37], which is
also adopted for our algorithms. It distinguishes between hard and soft clauses with three
parameters: the change δh for hard clause penalties, the change δs for soft clause penalties,
as well as Λ, which limits soft clause penalties. SATLike 3.0 uses Λ to prevent the penalties
of soft clauses from being too large, in case they receive too much attention. Furthermore,
δh is usually greater than δs because hard clauses should have greater impacts on the search,
compared to soft ones:

1. Initially:

(a) penalty(Ch)← 1 for each hard clause Ch;
(b) penalty(Cs)←WF(Cs) for each soft clause Cs.

2. At each local optimum:

(a) with probability p:

i. penalty(Ch)← penalty(Ch) + δh for each violated hard clause Ch;
ii. penalty(Cs) ← penalty(Cs) + δs for each violated soft clause Cs s.t.

penalty(Cs) < Λ.

(b) with probability 1− p:

i. penalty(Ch) ← penalty(Ch) − δh for each satisfied hard clause Ch s.t.
penalty(Ch) > δh;

ii. penalty(Cs) ← w(Cs) − δs for each satisfied hard clause Cs s.t.
penalty(Cs) > δs.

Like most SLS algorithms, SATLike 3.0 uses the traditional notion of a score to select
variables to flip, in order to decrease the total penalties. Before introducing this notion,
we first introduce the cost of an assignment over a MaxSAT formula, which sums up the
penalties of all hard and soft clauses. Given an assignment α, the cost of α over 〈F,WF〉,
denoted by cost(α, F,WF), is defined as the total penalties of all unsatisfied clauses. In this
sense, the score of x under α over 〈F,WF〉, denoted by score(x, α, F,WF), is defined as the
benefits of flipping x in F. More specifically,

score(x, α, F,WF) = cost(α, F,WF)− cost(α′, F,WF),

where α′ is the same as α with x being flipped. Therefore, the scoring function measures
that decrease of penalties that is caused by flipping x. SATLike, as well as its variants mainly
rely on this scoring function and guide local search to seek a better solution. Last, we use
age(x) to denote the number of flips since the last time x was flipped.

2.4. SATLike 3.0

Below, we introduce a state-of-the-art solver, SATLike 3.0 (See Algorithm 1) [37], which
performed well in recent MaxSAT Evaluations. It is named after SAT because it works
somewhat like a SAT solver. The experimental results showed that it outperforms some
SAT-based solvers in some industrial benchmarks.
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Algorithm 1: SATLike 3.0.
input :A (W)PMS formula 〈F,WF〉 and the cutoff
output :A best solution found α∗ or “NO SOLUTION FOUND”

1 Initiate penalties as mentioned in Section 2.3;
2 α← init(F); // employ unit propagation for initialization
3 α∗ ← α;
4 quality∗ ← 0;
5 while elapsed time < cutoff do
6 if α is feasible and quality(α) > quality∗ then
7 α∗ ← α;
8 quality∗ ← quality(α);

9 if α∗ satisfies F then return α∗;
10 G ← {x ∈ V(F)|score(x, α, F,WF) > 0};
11 if G 6= ∅ then
12 v← x ∈ G with the greatest score, breaking ties in favor of the oldest one;

13 else
14 adjust penalties as mentioned in Section 2.3;
15 C ← a random unsatisfied clause;
16 v← x in C with the greatest score, breaking ties in favor of the oldest one;

17 α← α with v being flipped;

18 if α∗ is feasible then return α∗;
19 else return “NO SOLUTION FOUND”;

3. Initiating a Solution Based on Variables’ Structural Entropy

In local search, an initial solution (starting point), which lies near a high-quality one,
may cost significantly less steps (flips) to achieve that satisfactory solution. In our previous
works [39,40], we confirmed that a variable’s structural entropy significantly influences the
probability that it will be flipped later in local search. Based on this result, we developed
strategies for initiating solutions and such strategies greatly improve two state-of-the-
art solvers, Sparrow and CCASat. However, most SLS PMS and WPMS solvers initiate a
solution in a purely random way, which possibly generates a bad starting point. Hence,
in this work, we extend our initiating strategy for SAT to (W)PMS problems, in order to
improve efficiency. In this section, we introduce (1) a novel weighting scheme for the
variable graph of a MaxSAT formula, (2) our definition of structural entropy, and finally,
(3) our algorithm for constructing a good starting point.

3.1. A Novel Weighting Scheme Tailored for (W)PMS

We adopted the notion of the variable graph from [21], but assigned each edge a
positive weight in a novel approach. Before introducing this approach, we first define the
relevance of any pair of distinct variables in a MaxSAT formula.

Definition 1. Given a (weighted) partial MaxSAT formula 〈F,WF〉, a clause C ∈ C(F), and a
pair of variables x, y, we define the relevance between x and y in C over 〈F,WF〉, denoted by
t〈F,WF ,C〉(x, y), as below, where W is the total weight of all soft clauses.

t〈F,WF ,C〉(x, y) =



1

(|C|2 )
if x, y ∈ C and C ∈ Ch(F);

WF(C)
W

· 1

(|C|2 )
if x, y ∈ C and C ∈ Cs(F);

0 otherwise.
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Now, we discuss some special cases of this formula to present some intuition:

1. If either x or y is absent from C, we think that there is no connection between them in
C, so the relevance between them in C is defined to be 0.

2. If C is long, we believe that the connection between x and y is weak, so (|C|2 ) will be
big and the relevance tends to be small. Cases are analogous if C is short.

3. If C is soft, we guess that their connection is weak, so the coefficient WF(C)
W helps

decrease the relevance value.
4. If C is a soft clause with a great weight, we feel that the connection between x and y is

relatively big, then WF(C)
W will be relatively big as well and so will be the relevance.

Then, we define the total relevance between x and y in a clause set S over 〈F,WF〉 as the
sum of relevance over all clauses in S, as is shown below.

t〈F,WF ,S〉(x, y) = ∑
C∈S

t〈F,WF ,C〉(x, y)

Here, we abuse the notation in Definition 1 and write t〈F,WF ,S〉(x, y) to discuss cases about
clause sets. Therefore, the total relevance between x and y in the clause set of F, i.e., C(F), is
t〈F,WF ,C(F)〉(x, y), which measures how closely related the two variables are in the involved
MaxSAT formula.

Finally, we are ready to define edge weights in G(F,WF), i.e., W〈F,WF〉(u, v) =

t〈F,WF ,C(F)〉(x, y), where x = φ−1(u) and y = φ−1(v). In this sense, the weight of an
edge in our variable graph G(F,WF) represents the relevance between their corresponding
Boolean variables in the MaxSAT formula 〈F,WF〉.

3.2. Properties of Our Weighting Scheme

Now, we discuss the impacts of hard and soft clauses on the relevance between Boolean
variables. First, we have a proposition below that shows that the contribution of a single
hard binary clause to the relevance is no smaller than that made by all soft clauses.

Proposition 1. Given a MaxSAT formula 〈F,WF〉, if there exists a binary hard clause Ch that
contains variables x and y, then

t〈F,WF ,Cs(F)〉(x, y) ≤ t〈F,WF ,Ch〉(x, y);

the equality relation holds if and only if all soft clauses are of length 2.

Proof. First, we amplify the left-hand side as below.

t〈F,WF ,Cs(F)〉(x, y)

= ∑
C∈Cs(F)

t〈F,WF ,C〉(x, y)

= ∑
C∈Cs(F),|C|≥2

WF(C)
W

· 1

(|C|2 )

≤ ∑
C∈Cs(F),|C|≥2

WF(C)
W

· 1

(|C
h |

2 )
(1)

=
1

(|C
h |

2 )
· ∑

C∈Cs(F),|C|≥2

WF(C)
W

≤ 1

(|C
h |

2 )
= t〈F,WF ,Ch〉(x, y). (2)

1. As to (1), if there exists any soft clause whose length is greater than 2, then the equation
there does not hold.



Entropy 2022, 24, 1846 8 of 16

2. As to (2), if there exists any soft clause whose length is smaller than 2, then the
equation there does not hold.

3. Obviously, if all soft clauses are of length 2, the equality relation in the proposition
above holds.

According to the statements above, we have proven this proposition.

Based on this proof, we have a corollary below.

Corollary 1. Given a MaxSAT formula 〈F,WF〉 and an integer k s.t. k ≥ 2, if:

1. there exists a hard clause Ch of length k that contains variables x and y;
2. all soft clauses are at least of length k.

then
t〈F,WF ,Cs(F)〉(x, y) ≤ t〈F,WF ,Ch〉(x, y);

the equality relation holds if and only if all soft clauses are of length k.

3.3. Variables’ Structural Entropies

Given an edge-weighted graph G = (V, E, wG), we use N(u, G) to denote the set of
u’s neighbor in G and use d(u, G) to denote the cardinality of N(u, G), i.e., d(u, G) =
|N(u, G)|. Moreover, we use ω(u, G) to denote u’s weighted degree, i.e., ω(u, G) =

∑v∈N(u,G) wG({u, v}), suppressing G if understood from the context. Given U ⊆ V, we
define the volume of U, denoted by vol(U), as ∑u∈U ω(u), and we abuse this notation to
define vol(G) as vol(V).

Definition 2. Given a (weighted) partial MaxSAT formula 〈F,WF〉 and its variable graph
G(F,WF) = (VF, EF,W〈F,WF〉), where VF = {v1, · · ·, vn}, we define vi’s structural entropy as

H(vi) = −pi log2 pi = −
ω(vi)

vol(G)
log2

ω(vi)

vol(G)
,

then the structural entropy of the variable graph G is defined as

H(G) =
n

∑
i=1
H(vi).

As is stated in [41], the structural information H(G) of a weighted and connected
graph G measures the information required to determine the code of the vertices that are
accessible from a random walk in G with its stationary distribution (p1, · · ·, pn). On the
other hand, as to a single vertex, namely vi,H(vi) represents the uncertainty information
of a random walk with a stationary distribution to visiting vi from its neighbors.

Then, given a MaxSAT formula 〈F,WF〉 and a variable, namely x, we abuse the
notation above to define x’s structural entropy in 〈F,WF〉 as the structural entropy of its
corresponding vertex in G(F,WF).

Now, we present some properties of our definition of structural entropy to help
understand its insights intuitively.

Proposition 2. Let f (x) = −x log2 x with x ∈ (0, 1); we have:

1. f (x) > 0 for any x ∈ (0, 1);
2. f (x) is strictly monotonically increasing (respectively decreasing) in (0, 1/e) (respectively

(1/e, 0)), where e is Euler’s constant and e ≈ 2.71828 · · · .

Therefore, given a vertex, namely vi, with H(vi) = −pi log2 pi, if H(vi) is relatively
small, then pi is relatively close to 0 or 1. Similarly, ifH(vi) is relatively large, then the value
of pi is near 1/e. In our algorithm, we first assign Boolean variables whose corresponding
vertex has relatively small structural entropy. Now, we explain the motivation as follows.
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Vertices with relatively small structural entropy correspond to Boolean variables that are
of much or little influence on other variables in the CNF formula. Below, we discuss these
cases in details:

1. Assigning highly influential variables tend to satisfy relatively many clauses or help
satisfy clauses with great weights.

2. Variables of little influence often occur in few clauses or in clauses of small weights,
so we simply assign them to satisfy such clauses.

3.4. Initiating Solutions

In this subsection, given a CNF formula F, we use C(F, x) to denote the set of clauses
in F (including both hard and soft ones) that contain x as one of its literals. Similarly, we
define the notation of C(F,¬x). Then, our procedure for initiating a solution is described in
Algorithm 2, which is named variables’ structural entropy-based initialization (VSEI). The
motivation of VSEI is as follows. The smaller a variable’s structural entropy is, the more
stable its truth value is, hence the smaller the probability that it will be flipped later [40].
That is, a variable with smaller structural entropy should probably be assigned earlier,
compared to those variables with greater ones.

The main idea of Algorithm 2 is as follows. When initiating a solution, we repeated
the following operations: picking a variable that is unassigned with the smallest structural
entropy and, then, mapping it to 0 or 1, depending on the number of its positive and
negative occurrences in clauses that have not been satisfied yet. To be specific, suppose we
have picked a variable x and x’s positive occurrences is more than its negative ones, then
we assign 1 to x; otherwise, we assign 0 to x. In a nutshell, we assign values to variables
greedily in order to satisfy as many clauses as possible at the end of initialization.

Algorithm 2: VSEI.
input :A (W)PMS formula 〈F,WF〉
output :An initial solution

1 NonAssignedSet← V(F); // the set of unassigned variables
2 NonSatClSet← C(F); // the set of clauses not satisfied yet
3 while NonAssignedSet 6= ∅ do
4 x ← a variable in NonAssignedSet with the smallest structural entropy,

breaking ties randomly;
5 if |NonSatClSet∩ C(F, x)| > |NonSatClSet∩ C(F,¬x)| then
6 α(x)← 1;
7 NonSATClSet← NonSATClSet\C(F, x);

8 else
9 α(x)← 0;

10 NonSATClSet← NonSATClSet\C(F,¬x);

11 NonAssignedSet← NonAssignedSet\{x};
12 return α;

4. Diversifying Variable Selection Based on Clause Penalties

Each time the search encounters a local optimum, i.e., there are no variables whose
flip leads to a penalty decrease, we will call Algorithm 3 to pick a variable and flip it. More
specifically, this algorithm first adjusts penalties like SATLike 3.0 (Line 1), then it picks
a variable in two possible ways depending on a parameter p: (1) continuing to choose
one with the best score and the best age (Line 3); (2) focusing on an unsatisfied clause
with the greatest penalty (Line 5) and performing probabilistic selections on it (Line 6).
Considering its most distinguishing features, we name it probabilistic selection for great
penalties (PSGP).
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Algorithm 3: PSGP.
input : score(x) and age(x) for all x’s in F, the current unsatisfied clause set U
output :A variable to be flipped

1 adjust penalties as mentioned in Section 2.3;
2 begin with probability p,
3 v← a variable in F with the greatest score, breaking ties in favor of the oldest

one;
4 begin with probability 1− p,
5 C ← a clause in U with the greatest penalty, breaking ties randomly;
6 v← a variable x in C with a probability proportional to δ−break(x,α);

7 return v;

In Line 3, we insist on picking the globally best variables, and this may bring some
benefits. The reason is that Line 1 just changes the penalties of some clauses, which, in turn,
affects the score of some variables involved.

In Line 6, each variable namely x in C is picked with a probability proportional to
δ−break(x,α), where break(x, α) is the number of clauses (including both hard and soft ones)
that will become unsatisfied if x is flipped, given the current assignment α. Hence, this
probability distribution always prefers small-break variables. Here, the parameter δ controls
how concentrated this distribution is at small-break variables. Obviously, the greater δ is,
the greater the probability difference between small-break and big-break variables. This
distribution is inherited from ProbSAT [42], which was a simple and elegant local search
SAT solver with a probabilistic selection as its single strategy.

5. ImSATLike

In this section, we introduce our novel Algorithm 4 as a whole, which works on
(W)PMS instances. In the initialization procedure, it adopts variables’ structural entropy
to generate a good starting point of local search. Then, during local search, each time it
meets a local optimum, it will still pick the globally best variables or it will focus on an
unsatisfied clause with the greatest penalty and choose variables by probabilistic selection.
Since our algorithm is based on SATLike 3.0, we call it ImSATLike.

There are two main differences between our algorithm and SATLike 3.0: (1) SATLike
3.0 employs unit propagation to generate an initial solution, while our solver initiates
starting points by variables’ structural entropy; (2) in diversification, SATLike 3.0 picks a
random unsatisfied clause and performs greedy selection, while our solver still possibly
continues our greedy strategy or focuses on a clause with the greatest penalty and exploits
probabilistic selection.



Entropy 2022, 24, 1846 11 of 16

Algorithm 4: ImSATLike.
input :A (W)PMS formula 〈F,WF〉 and the cutoff
output :A best solution found α∗ or “NO SOLUTION FOUND”

1 Initiate penalties as mentioned in Section 2.3
2 α← an assignment generated by VSEI (Algorithm 2);
3 α∗ ← α;
4 quality∗ ← 0;
5 while elapsed time < cutoff do
6 if α is feasible and quality(α) > quality(α∗) then
7 α∗ ← α;
8 quality∗ ← quality(α);

9 if α∗ satisfies F then return α∗;
10 G ← {x|score(x, α, F,WF) > 0};
11 if G 6= ∅ then
12 v← x ∈ G with the greatest score, breaking ties in favor of the oldest one;

13 else
14 v← a variable returned by PSGP (Algorithm 3);

15 α← α with v being flipped;

16 if α∗ is feasible then return α∗;
17 else return “NO SOLUTION FOUND”;

6. Experimental Evaluations

To evaluate the performance of our algorithm, we compared it to SATLike and its
improvement SATLike 3.0 on (W)PMS instances, which was used in MaxSAT Evaluations
2018 and 2019. To be specific, these instances came from four benchmarks, namely ms18_wt,
ms19_wt, ms18_unwt, and ms19_unwt, among which the former (respectively latter) two
contain all weighted (respectively unweighted) partial MaxSAT instances used in 2018 and
2019, respectively. For each instance, namely I , among I ’s feasible solutions, there is a
quality that is known to be the best, and we call it I ’s best-known (solution) quality. Given
a solver A and an instance I , we say that A successfully solves I in a particular run if A
locates a solution of that best-known quality in that run.

SATLike 3.0 not only outperforms CCEHC and Dist, but also beats their respective
improvements, DeciDist and DeciCCEHC, which alternates between decimation and local
search [43]. Hence, it is the current best local search solver for (W)PMS problems. In
addition, we also compared our solver to two SAT-based ones, Open-WBO-inc [30] and
LinSBPS (https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.
pdf?sequence=1, accessed on 8 November 2022), which were the top two solvers in MaxSAT
Evaluation 2018.

SATLike 3.0 was downloaded from the web pages of MaxSAT Evaluation 2018
(https://maxsat-evaluations.github.io/2018/, accessed on 8 November 2022), and we
adopted its default parameter settings in the following experiments. Based on this version,
we developed ImSATLike with two extra parameters: p and δ in Algorithm 3, which were
set to 0.3 and 2.06, respectively.

In the following tables, we use ins_class to denote instance sets, #win to denote the
number of instances that were successfully solved, #ins to denote the number of instances
in each instance set, and time to denote the average running time to locate a solution. The
best #win and time values are shown in bold font.

6.1. Comparing ImSATLike to Other SLS Solvers

We compared ImSATLike with SATLike, as well as its 3.0 version on a computer
equipped with an Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz 2.11 GHz with 8 GB

https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf?sequence=1
https://maxsat-evaluations.github.io/2018/
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RAM, running the Windows 10 OS. First, we conducted experiments with 60 s as a cutoff,
then we repeated such experiments with 300 s as a second cutoff (see Table 1).

Table 1. Comparative results of ImSATLike and SATLike with its 3.0 version.

ins_class #ins
SATLike SATLike 3.0 ImSATLike

#win #time #win #time #win #time

60 s

ms18_wt 172 101 23.2335 99 13.8662 103 17.4195

ms19_wt 282 154 23.4689 152 24.5351 159 19.5359

ms18_unwt 153 77 52.1586 73 50.2791 77 49.0867

ms19_unwt 288 158 14.0828 149 15.9554 163 16.2713

300 s

ms18_wt 172 110 103.554 102 99.4858 106 76.8005

ms19_wt 282 162 119.761 160 91.7588 162 79.0564

ms18_unwt 153 77 88.226 73 115.1743 86 137.7936

ms19_unwt 288 166 68.926 152 77.1327 168 71.8434

From Table 1, we found the following. Within 60 s:

1. ImSATLike outperformed both SATLike and its 3.0 version in terms of #win on each
of the four benchmark categories, with the exception of ms18_unwt, where ImSATLike
and SATLike came to a draw;

2. In this benchmark category, ImSATLike generally located its solutions within a shorter
time, compared to that spent by SATLike.

Within 300 s:

1. ImSATLike showed best performances in terms of #win in 3 categories, while SATLike
did that in 2;

2. In ms19_wt, where both ImSATLike and SATLike achieved 162 in terms of #win, ImSATLike
generally located its solutions within a much shorter time, compared to that spent
by SATLike.

6.2. Individual Impacts of Our Strategies

To evaluate the individual impacts, we modified SATLike 3.0 and developed
two independent variants. Then, we reperformed the experiments above with 60 s as
the cutoff and compared these variants in terms of #win.

1. First, we replaced the initialization procedure in SATLike 3.0 with our VESI strategy
and developed a solver named SATLike_a1.

2. Second, we replaced SATLike 3.0’s diversification mode with our PSGP strategy and
developed a second solver named SATLike_a2.

From Table 2, we found the following:

1. In none of the benchmark categories, SATLike 3.0 outperformed either SATLike_a1 or
SATLike_a2 in terms of #win, which illustrates the robustness of our strategies.

2. In all of these categories, SATLike_a2 significantly outperformed SATLike 3.0, which
showed the power of our PSGP strategy.

3. In half of these categories, SATLike_a1 was superior to SATLike 3.0, which presented
the positive impacts of our VESI strategy.
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Table 2. Individual impacts of the VSEI and PSGP strategies.

ins_class #ins
SATLike_a1 SATLike 3.0 SATLike_a2

#win #time #win #time #win #time

ms18_wt 172 99 14.603 99 13.8662 103 15.9523

ms19_wt 282 155 16.345 152 24.5351 158 26.3373

ms18_unwt 153 73 52.888 73 50.2791 77 52.7514

ms19_unwt 288 150 16.107 149 15.9554 155 16.3538

6.3. Comparing ImSATLike to SAT-Based Solvers

We compared ImSATLike with two SAT-based solvers, Open-WBO-Inc and LinSBPS,
on a computer equipped with an Intel Core i5-10210U CPU @ 1.60 GHz × 8 with 8 GB
RAM, running Ubuntu 18.04.5 LTS. These two competitors were the top two solvers in
the incomplete track in MaxSAT Evaluation 2018, where the time limit was 60 s, and their
codes were downloaded from the web pages of MaxSAT Evaluation (https://maxsat-
evaluations.github.io/2018/, accessed on 8 November 2022). To be consistent with MaxSAT
Evaluation 2018, we also set the cutoff here to be 60 s. From Table 3, we found that our
solver performed somewhat close to the top SAT-based solvers on weighted partial MaxSAT
instances, although it fell behind in general.

Table 3. Comparative results of our algorithm and two SAT-based solvers.

ins_class #ins ImSATLike LinSBPS Open-WBO-Inc

ms18_wt 172 130 164 164

ms19_wt 282 185 269 266

ms18_unwt 153 78 135 134

ms19_unwt 288 174 270 260

6.4. Evaluations of a Hybrid Solver Incorporating ImSATLike

Combining solvers in different frameworks has proven to be a promising approach,
which has been confirmed in recent MaxSAT Evaluations. Therefore, we combined our
solver ImSATLike with a state-of-the-art SAT-based solver, TT-Open-WBO-inc [31], which
was the champion in the incomplete track of MaxSAT Evaluation 2019. We call this hybrid
solver ImSATLike-TT, and its work flow based on a MaxSAT formula is as follows:

1. A SAT solver B is called to find a feasible solution αinit.
2. B passes αinit to ImSATLike as its starting point.
3. ImSATLike bypasses its VSEI strategy and performs local search for k steps, where k

was set to be 107.
4. ImSATLike passes its best-found solution to TT-Open-WBO-inc.
5. TT-Open-WBO-inc is run for the remaining time.

In most cases, ImSATLike was able to find high-quality solutions, but the time for it
to find even better solutions will increase exponentially, so in this situation, ImSATLike-TT
will turn to TT-Open-WBO-inc for better solutions.

For better comparisons, we also included TT-Open-WBO-inc and SATLike-ck as com-
petitors. Note that SATLike-ck is the same as ImSATLike-TT, but employs SATLike as its
embedded local search component. The experiments were conducted on a computer
equipped with an Intel Core i5-10210U CPU @ 1.60 GHz × 8 with 8 GB RAM running
Ubuntu 18.04.5 LTS, and the cutoff was set to 60 s. The experimental outcome can be found
in Table 4, which shows the number of successfully solved instances for each SAT-based
solver and each portfolio in each benchmark category.

https://maxsat-evaluations.github.io/2018/
https://maxsat-evaluations.github.io/2018/
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Table 4. Comparative results of SAT-based solvers and two portfolios.

ins_class #ins ImSATLike LinSBPS Open-wbo TT-Open-WBO-inc SATLike-ck ImSATLike-TT

ms18_wt 172 130 164 164 161 158 158

ms19_wt 282 185 269 266 265 261 263

ms18_unwt 153 78 135 134 135 144 144

ms19_unwt 288 174 270 260 263 277 277

In Table 4, we find the following:

1. On partial MaxSAT instances, ImSATLike-TT performed the same as SATLike-ck, and
they were the top two solvers, which showed the superiority of portfolios over SAT-
based solvers.

2. On weighted partial MaxSAT instances, ImSATLike-TT performed as well as SATLike-
ck in ms18_wt, but outperformed it in ms19_wt, which showed the positive effects of
our strategies.

7. Conclusions and the Future Work

In this paper, we presented a local search MaxSAT solver named ImSATLike, as well
as a hybrid solver named ImSATLike-TT, which performed better than or the same as
state-of-the-art competitors SATLike 3.0 and SATLike-ck, respectively, on (weighted) partial
MaxSAT instances in recent MaxSAT Evaluations.

The main contributions include: (1) an initialization strategy to help generate a solution
that is closer to high-quality feasible ones; (2) a diversification strategy to guide local search
to a more promising area.

As for future works, it will be interesting to apply these strategies to solve other
combinatorial problems such as the vertex cover and dominating set problems.
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