
Citation: Selianinau, M.; Povstenko,

Y. An Efficient CRT-Base

Power-of-Two Scaling in Minimally

Redundant Residue Number System.

Entropy 2022, 24, 1824. https://

doi.org/10.3390/e24121824

Academic Editors: Jun Chen and

Sadaf Salehkalaibar

Received: 23 November 2022

Accepted: 10 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Efficient CRT-Base Power-of-Two Scaling in Minimally
Redundant Residue Number System
Mikhail Selianinau and Yuriy Povstenko *

Department of Mathematics and Computer Sciences, Faculty of Science and Technology, Jan Dlugosz University
in Czestochowa, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
* Correspondence: j.povstenko@ujd.edu.pl; Tel.: +48-343-612-269

Abstract: In this paper, we consider one of the key problems in modular arithmetic. It is known
that scaling in the residue number system (RNS) is a rather complicated non-modular procedure,
which requires expensive and complex operations at each iteration. Hence, it is time consuming and
needs too much hardware for implementation. We propose a novel approach to power-of-two scaling
based on the Chinese Remainder Theorem (CRT) and rank form of the number representation in RNS.
By using minimal redundancy of residue code, we optimize and speed up the rank calculation and
parity determination of divisible integers in each iteration. The proposed enhancements make the
power-of-two scaling simpler and faster than the currently known methods. After calculating the
rank of the initial number, each iteration of modular scaling by two is performed in one modular
clock cycle. The computational complexity of the proposed method of scaling by a constant Sl = 2l

associated with both required modular addition operations and lookup tables is estimeted as k and
2k + 1, respectively, where k equals the number of primary non-redundant RNS moduli. The time
complexity is dlog2ke+ l modular clock cycles.

Keywords: residue number system; Chinese Remainder Theorem; modular arithmetic; rank of a
number; power-of-two scaling

1. Introduction

Nowadays, high-performance computing is progressing extremely rapidly. This makes
qualitatively new demands to designed number-theoretic methods and computational
algorithms. That is why creating fundamentally new and efficient computing tools for
fast and reliable parallel data processing is especially important. Modular computational
structures occupy a special place among them. Modular arithmetic, i.e., the arithmetic of
RNS, creates their mathematical basis.

The inherent parallelism and carry-free properties of RNS provide a high potential for
accelerating arithmetic operation compared with conventional weighted number systems
(WNS). The main advantage of RNS consists of its unique ability to decompose large
integer numbers into a set of small residues and to process them in parallel in independent
modular channels.

A steadily growing interest in RNS arithmetic as a unique means of carrying out
high-speed calculations stimulates developments focused on providing a fundamentally
new performance level when carrying out large volumes of time-consuming calculations.
The modular arithmetic has attracted the considerable attention of researchers and devel-
opers in number-theoretic methods [1–3], computer technology [4,5], digital signal and
image processing [3,5–8], cryptography [5,8–10], computer networks and communication
systems [3,5], and other areas [9].

In this regard, one of the most promising ways in the specified area is the development
of high-speed parallel modular computational structures as well as the enhancement of
their functionality and optimization. In this case, the main optimization criteria are the

Entropy 2022, 24, 1824. https://doi.org/10.3390/e24121824 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121824
https://doi.org/10.3390/e24121824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5669-701X
https://orcid.org/ 0000-0002-7492-5394
https://doi.org/10.3390/e24121824
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121824?type=check_update&version=1

Entropy 2022, 24, 1824 2 of 22

minimum redundancy of data coding, the execution time minimization of implemented
computational procedures, and the throughput maximization of the corresponding compu-
tational structures.

As is known, compared with WNS, the residue code of a number does not explicitly
contain information about its integer value. Therefore, in RNS arithmetic, the implemen-
tation of operations, which require the estimating of the integer value of a number by its
residue code, i.e., the evaluation of number position in the operating range, encounters
specific difficulties. Such operations, in contrast to modular ones, are called non-modular.

The positional characteristics of the residue code such as core function, the rank of
a number, interval index, and others, and the associated forms of number representation
are of great importance for designing algorithms of non-modular operations [1,5,7,8]. The
computational complexity of calculating the used positional characteristics ultimately
determines the efficiency of the corresponding configuration of RNS arithmetic.

Division is one of the most complex arithmetic operations. Even in computers oper-
ating in a positional system, this operation stands apart, and its execution requires much
more time than most elementary operations. In RNS arithmetic, the hardships with division
operations are related to the non-modular character of this operation. This means that
the residue of the quotient concerning primary RNS modulus is determined not only by
the dividend and divisor residues, and it is necessary to get the additional information,
in one form or another, about the integer values of the dividend and divisor [1,7]. It is no
coincidence that many publications are devoted to the problem of modular division, for
example [11–19].

Along with the general division, modular scaling, i.e., the division of the RNS number
by a constant, is a commonly used operation [3,5,8,10]. This operation plays a fundamental
role in constructing residue arithmetic algorithms and is of great practical importance. The
need for scaling is due to several tasks, for example, to round the floating point numbers
with the residue representation of the mantissa and to reduce the dynamic range in digital
signal processing and long-word-length cryptography. In addition, scaling by a power of
two is often one of the integral steps of more complex non-modular operations, for example,
in the method of general modular division [19,20].

Thus, developing novel approaches and methods for fast scaling is highly important
in high-performance computing based on parallel algorithmic structures of RNS, espe-
cially for high-speed implementing digital signal processing applications and public-key
cryptosystems. That should make it possible to widely use modular arithmetic in various
priority areas of science and technology.

In the paper, we present a new approach to the power-of-two scaling based on using
minimal redundancy of residue code, the rank form of a number, and fast calculation
of the rank characteristic at each iteration of the scaling procedure. Compared with the
conventional non-redundant RNS, the proposed method makes it possible to optimize and
speed up the non-modular scaling operation and concurrently reduces its computational
complexity to a large extent.

The paper is structured as follows. Section 2 discusses the basic theoretical concepts of
the research. Section 3 presents the known approaches to rank calculation. Sections 4 and 5
describe the RNS scaling algorithms, and the mathematical basis of the rank calculation in
the bisection scaling method. Section 6 presents a novel power-of-two scaling algorithm
and a numerical example. Section 7 provides discussion and Section 8 concludes the paper.

2. The Basic Concepts of RNS Arithmetic

Abstract algebra and number theory [21,22] constitute the theoretical foundation of
RNS arithmetic.Traditionally, the apparatus of congruences is used for the mathematical
formalization of an RNS with integer ranges. At the same time, Euclid’s Division Lemma
plays a fundamental role in building an RNS of the concerned type. For the ring Z of
integers, it is formulated as follows.

Entropy 2022, 24, 1824 3 of 22

Lemma 1 (Euclid’s Division Lemma). For any X ∈ Z and a positive integer m, there exists a
unique pair of integers Q, R such that

X = Qm + R, (1)

where R ∈ Zm = {0, 1, . . . , m− 1}.

On the set Z of integers, a non-redundant RNS is defined using pairwise prime moduli
m1, m2, . . . , mk (k > 1) by the mapping Z→ Zm1 × Zm2 × · · · × Zmk , which assigns to each
X ∈ Z the k-tuple (χ1, χ2, . . . , χk) of least nonnegative residues χi = |X|mi

of dividing X
by mi (i = 1, 2, . . . , k). At the same time, the notation X = (χ1, χ2, . . . , χk) is used.

The residue code (χ1, χ2, . . . , χk) corresponds to the set of all integers X satisfying the
system of simultaneous linear congruences

X ≡ χ1 (mod m1),
X ≡ χ2 (mod m2),

. . .
X ≡ χk (mod mk)

(2)

The following statement is true [9,23,24].

Theorem 1 (Chinese Remainder Theorem). Let the moduli m1, m2, . . . , mk be pairwise prime,
and let Mk = ∏k

i=1 mi, Mi,k = Mk/mi, µi,k =
∣∣∣M−1

i,k

∣∣∣
mi

(i = 1, 2, . . . , k). Then the system of

congruences (2) has a unique solution, the class of residues modulo Mk, defined by the congruence

X ≡
k

∑
i=1

Mi,kµi,kχi (mod Mk). (3)

The practical application of the RNS assumes that each residue code (χ1, χ2, . . . , χk)
must correspond only to one integer number. Therefore, certain sets of representatives
of residue classes are used as the number range to ensure required single-valued cor-
respondence. Since in the given RNS it is possible to represent Mk integers, the set
ZMk = {0, 1, . . . , Mk − 1} is usually used in computer applications as an RNS operat-
ing range.

Because of the above, we define modular coding as a mapping ΦRNS : ZMk →
Z1 × Z2 × · · · × Zmk , which assigns a residue code (χ1, χ2, . . . , χk) to each X ∈ ZMk .

The decoding mapping Φ−1
RNS : Z1 × Z2 × · · · × Zmk → ZMk based on the CRT (3)

executes according to the rule

X =

∣∣∣∣∣ k

∑
i=1

Mi,kµi,kχi

∣∣∣∣∣
Mk

. (4)

Applying Euclid’s Division Lemma (1), we can write

µi,kχi =
∣∣µi,kχi

∣∣
mi

+

⌊
µi,kχi

mi

⌋
mi = χi,k +

⌊
µi,kχi

mi

⌋
mi, (5)

where χi,k is a normalized residue modulo mi:

χi,k =
∣∣µi,kχi

∣∣
mi

(i = 1, 2, . . . , k), (6)

bxc denotes the largest integer less than or equal to x.

Entropy 2022, 24, 1824 4 of 22

Substituting (5) into (4), and taking into consideration (6), we have

X =

∣∣∣∣∣ k

∑
i=1

Mi,kχi,k + Mk

k

∑
i=1

⌊
µi,kχi

mi

⌋∣∣∣∣∣
Mk

that is equivalent to

X =

∣∣∣∣∣ k

∑
i=1

Mi,kχi,k

∣∣∣∣∣
Mk

. (7)

Since the summands in (7) have narrower change bounds, the use of (4), which is a
normalized analog of (1), is preferable for constructing RNS arithmetic.

Equation (7) is called the CRT-form of representing the integer X = (χ1, χ2, . . . , χk)
from the RNS number range ZMk .

The mapping ΦRNS is an isomorphism concerning the basic arithmetic operations.
The operation ◦ ∈ {+,−,×} on arbitrary elements A and B given by their residue codes
A = (α1, α2, . . . , αk) and B = (β1, β2, . . . , βk) is carried out by the rule

A ◦ B = (α1, α2, . . . , αk) ◦ (β1, β2, . . . , βk) =

=
(
|α1 ◦ β1|m1

, |α2 ◦ β2|m2
, . . . , |αk ◦ βk|mk

)
, (8)

where αi = |A|mi
, βi = |B|mi

, i = 1, 2, . . . , k.
In the RNS, according to (8), the modular addition, subtraction, and multiplication are

performed independently for each modulus mi (i = 1, 2, . . . , k). It must be noted that (8)
is correct only if the result A ◦ B of the arithmetic operation does not go beyond the RNS
number range, i.e., if A ◦ B ∈ ZMk .

The RNS inherent code parallelism illustrated by (8), which consists of the decompo-
sition of arithmetic operations on integers A and B into independent small word length
operations on the like digits αi and βi of residue code, is the main advantage of modular
arithmetic compared with the arithmetic of weighted number systems (WNS). Realizing
this advantage to the fullest extent is a key strategic goal of all computer applications in
the RNS.

As is known, in contrast to the positional code, the residue code (χ1, χ2, . . . , χk) of
the number X does not explicitly contain information about its value. Therefore, the
implementation in the RNS arithmetic operations that require calculating the so-called
positional characteristics which give information about the numbers location in the RNS
range ZMk encounters specific difficulties. Such procedures, in contrast to modular ones,
are called non-modular.

The efficiency factor of RNS arithmetic, to a decisive extent, is determined by the
optimality of the applied non-modular procedures. At the same time, the main factor that
has the most impact on the quality indicators of algorithms for non-modular operations is
the computational complexity of calculating the positional characteristics of the residue
code and related integer representation forms.

As for Equation (7), its direct application as the general form of integers for building
non-modular procedures is practically impossible due to the complexity of straightforward
implementation, especially in the case of large Mk. At the same time, the use of the specific
positional characteristics enables us to obtain from (7) the relevant forms of integer repre-
sentation, which have good implementation properties and make it possible to overcome
the problem of time-consuming addition operations modulo Mk.

As follows from (7), the difference

k

∑
i=1

Mi,kχi,k − X

Entropy 2022, 24, 1824 5 of 22

is a multiple of Mk. Hence, the following equality holds

X =
k

∑
i=1

Mi,kχi,k − ρk(X)Mk. (9)

The positional characteristic ρk(X) is called a rank of the number X. In essence, the
rank ρk(X) is a CRT reconstruction coefficient that indicates how many times the upper
bound Mk of the number range is exceeded when the integer value of the number X is
calculated by its residue code (χ1, χ2, . . . , χk).

Equation (9) is called a rank form of the integer X.
From (9), it also follows that the rank ρk(X) is a quotient of the integer division of Xk

by Mk.
Hence, we obtain

ρk(X) =

⌊
1

Mk

k

∑
i=1

Mi,kχi,k

⌋
=

⌊
k

∑
i=1

χi,k

mi

⌋
. (10)

Therefore, since χi,k ∈ Zmi (i = 1, 2, . . . , k), the inequality 0 ≤ ρk(X) ≤ k− 1 holds.
Compared with (7), Equation (9) does not contain time-consuming reduction modulo

Mk. Therefore, designing non-modular procedures in RNS arithmetic on the basis of the
rank form has a substantial lead over the canonical CRT implementation.

3. The Approaches Currently Used to Calculate the Rank of a Number

First, the rank of a number as a main RNS integral characteristic has been studied
in [1], and later in [2]. The rank evaluation algorithm consists of a slow k-step iterative
procedure of sequential additions large modulo of specific constants defined by the chosen
RNS moduli-set {m1, m2, . . . , mk}. Moreover, the upper bound of the rank r(X) depends
on the values of the weights µ1,k, µ2,k, . . . , µk,k (see (4)), and can be sufficiently large for
most moduli-sets suitable for practical use. If we assume that the processing of such long
L-bit word-length numbers L = (dlog2 Mke) is comparable in time with k operations on
the small residues, then the complexity of this method is equal to O

(
k2). Because of that,

the given approach to the rank calculation is time-consuming and practically unacceptable
for high-performance computing due to its computational complexity, especially when
using huge Mk.

The so-called “extra modulus method” for rank calculation has been proposed in [25].
It rearranges the canonical CRT implementation to an exact integer equation, i.e., the same
form as (9). To be able to retrieve the value of the CRT reconstruction coefficient, i.e., the
rank of a number, the extra-modulus me must satisfy the following conditions: me > k, and
me is any integer prime to Mk. In this way, the slow and challenging addition modulo Mk
in the straightforward CRT implementation is replaced by subtraction and multiplication
modulo me. Thus, we have an extra modular channel for rank calculation. This method
works well and correctly when it assumes that proper redundant residue |X|me

is available.
Hence, the “extra modulus method” is suitable for the base extension operation. At the
same time, when the number under consideration results from the modular addition or
subtraction operation [26], it cannot be used owing to eventual overflow or underflow,
respectively. Thus, in such a case, the exact value of |X|me

is not available. Therefore,
this method is not applicable for sign determination and magnitude comparison of two
numbers in RNS.

A different approach to evaluating the CRT reconstruction coefficient is proposed
in [27–29]. The main idea of the so-called ”fractional domain method” consists in the
representation of the reconstruction coefficient r as an integer part of a sum of at most k
proper fractions (see (10)). The value r is recursively estimated by approximating terms of a
fraction χi,k/mi. To avoid division by the modulus mi in the fraction, the denominator mi is
replaced by 2n (mi < 2n), while the numerator χi,k is approximated by its most significant

Entropy 2022, 24, 1824 6 of 22

υ bits (υ < n) (i = 1, 2, . . . , k). Since the division by powers of 2 is equivalent to simple
shifts, then the calculation of r can be implemented by addition only.

The main drawbacks of this method consist of the following. First of all, full-precision
fractional computations are required. In any case, such calculations are slower than operat-
ing on smaller word-length, and the full-precision fractional bits require substantial storage.
On the other hand, the number of iterations required is of the order of the bit-length needed
for the approximation. For example, the method employing a fractional interpretation of the
CRT [27] needs a very high precision of dlog2(kMk)e bits. The method proposed in [28,29]
uses a sequential bit-by-bit manner for evaluating reconstruction coefficient r. The iterative
structure of this method makes it very slow in the case of large word-length numbers.

There are also approaches to reconstruct the integer value of RNS number based on
the CRT by using special moduli-sets with a limited number of moduli such as m = 2n + d
(d ∈ {−1, 0, 1}) [5,8]. The main drawback of these methods consists of a small number
of the selected moduli, typically from three to five. Such moduli sets are suitable for
the efficient implementations of digital signal processing algorithms but completely not
applicable for the processing of large numbers which are widely used in cryptography.

In recent decades, the CRT algorithm, corresponding forms of number representation,
and the methods of integer reconstruction by residue code have been intensively studied,
especially concerning their application in high-performance computing. The major efforts
are aimed at reducing the computational complexity of calculating the main integral
characteristics of residue code.

There are some new approaches for calculating an approximate value of the rank of
a number which allow us to reduce the computational complexity of complicated non-
modular operations in RNS arithmetic [30–32]. The method proposed in [30] is based on the
so-called interval floating-point characteristic which provides information about the range
of changes in the relative value of RNS representation. Generally, it enables us to perform
effectively such operations as magnitude comparison, sign determination, and overflow
detection. The concept of an approximate value of the rank of a number is introduced
in [31]. This approach allows us to reduce the computational complexity of the decoding
from residue code to binary representation and decrease the size of the required coefficients.
Based on the properties of the approximate value and arithmetic properties of RNS, a new
method for error detection, correction, and controlling computational results has been
proposed. In [32], a new original general-purpose technique for CRT basis extension
and scaling in RNS using floating-point arithmetic for the rank estimation is proposed
for a homomorphic encryption scheme. The main algorithmic improvements focus on
optimizing decryption and homomorphic multiplication in the RNS using the CRT to
represent and manipulate the large coefficients in the ciphertext polynomials.

The rank positional characteristic has been thoroughly investigated in [33,34]. As
shown, the rank ρk(X) has a simple structure, high modularity of calculation, and a small
range of changes. At the same time, the rank ρk(X) is a sum of two small numbers, namely,
the inexact rank ρ̂k(X) < k and two-valued rank correction ∆k(X) ∈ {0, 1}:

ρk(X) = ρ̂k(X) + ∆k(X), (11)

where

ρ̂k(X) =

⌊
1

mk

k

∑
i=1

Ri,k(χi)

⌋
(12)

and

Ri,k(χi) =

⌊
mkχi,k

mi

⌋
=

⌊
mk
∣∣µi,kχi

∣∣
mi

mi

⌋
(i = 1, 2, ..., k− 1), (13)

Rk,k(χk) = χk,k =
∣∣µk,kχk

∣∣
mk

. (14)

In conventional non-redundant RNS, as it follows from (11)–(14), the calculation of
the inexact rank ρ̂k(X) is reduced to a summation of k small residues R1,k(χ1), R2,k(χ2),

Entropy 2022, 24, 1824 7 of 22

. . ., Rk,k(χk) modulo mk taking into account the number of the overflows occurring during
the modular addition operations. At the same time, as demonstrated in [34], the main
computational cost is associated with the estimation of the rank correction ∆k(X). Its
evaluation requires concurred modular addition operations in all independent modular
channels corresponding to primary RNS moduli m1, m2, . . . , mk. These computations can
be implemented easily by the pre-computation and lookup table techniques. As a result,
the total number of required modular addition operations and lookup tables for rank ρk(X)
calculation are

(
k2 + 5k− 10

)
/2 and

(
k2 + k− 2

)
/2, respectively.

As shown in [34], the minimum redundancy residue code enables optimization of the
rank calculation. It assumes the extension of non-redundant residue code (χ1, χ2, . . . , χk) of
the number X by the redundant residue χ0 = |X|m0

concerning extra modulus m0 = 2, i.e.,
by adding the parity of the number X to its residue representation. Therefore, in minimally
redundant RNS, the number X ∈ ZMk is represented by its minimally redundant residue
code (χ0, χ1, . . . , χk). So, the total residue code length increases by only one bit.

The main advantage of minimally redundant RNS compared with non-redundant
analogs consists of a significant simplification of calculating the rank correction ∆k(X) and,
accordingly, the rank ρk(X).

The use of minimum redundancy residue code makes it possible to replace in (11)
the rank correction ∆k(X), which evaluation is time-consuming and requires performing
addition operations in all modular channels, with a trivially calculated binary attribute
δk(X) ∈ {0, 1}. At the same time,

ρk(X) = ρ̂k(X) + δk(X) (15)

and

δk(X) =

∣∣∣∣∣χ0 +
k

∑
i=1

ψi + ρ̂0

∣∣∣∣∣
2

, (16)

where χ0 = |X|2, ψi =
∣∣χi,k

∣∣
2 =

∣∣∣∣∣µi,kχi
∣∣
mi

∣∣∣
2
, and ρ̂0 = |ρ̂k(X)|2.

Compared with non-redundant analogs, the use of minimally redundant RNS enables
us to reduce significantly the complexity of the rank ρk(X) calculation both in terms of
required modular addition operations and lookup tables. At the same time, the correspond-
ing computational cost is k modular addition operations and k one-input lookup tables.
The time complexity depends only on the number of primary RNS moduli and equals
Trank = dlog2kemodular clock cycles.

As shown in [34], the transition to the minimum redundant residue code enables a
decrease in the computational complexity of the rank calculation from the order O

(
k2/2

)
to O(k) concerning required modular addition operations and lookup tables. Thus, the
computational complexity reduction factor increases with the number k of non-redundant
moduli m1, m2, . . . , mk and asymptotically approaches the threshold k/2.

The use of minimally redundant RNS ensures significant optimization of calculating
the rank ρk(X) of the number X. Moreover, this is also applied to the implementation
of the CRT algorithm and, correspondingly, to the execution of various non-modular
operations based on it. First of all, that is caused owing to the extreme simplicity evaluation
of two-valued characteristic δk(X) ∈ {0, 1} as well as the modular structure of the main
calculation equation for inexact rank ρ̂k(X) (see (12)). This circumstance enables radical
simplifying the calculation of the rank ρk(X) in minimally redundant RNS in comparison
with conventional non-redundant RNS and, consequently, makes it possible to construct
faster and optimal with respect to computational complexity variants of RNS arithmetic.

Therefore, the application of minimally redundant residue representation takes priority
over conventional non-redundant RNS arithmetic to implement the scaling procedures
based on the rank form of a number.

Entropy 2022, 24, 1824 8 of 22

4. The Main Types of Scaling Algorithms in RNS Arithmetic

In the conventional WNS, the power-of-two scaling is performed simply by right
shifting. In the RNS, compared with WNS, this procedure has substantial difficulty because
it is not easily implementable due to its non-positional nature.

The classical power-of-two scaling method consists of the residue code conversion to
binary representation, scaling in the conventional WNS, and converting the result back to
the RNS.

Unlike the WNS, the residue code does not contain explicit information about the
integer value of the represented number. Therefore, in addition to its usual purpose, which
consists of limiting the undesirable growth of calculation results, the scaling in RNS is
also used to detect the position of integers in a particular range (i.e., to evaluate their
values), rounding, and solving other similar tasks. This operation is often used in more
complex non-modular procedures such as general modular division. Many different scaling
algorithms, which do not require RNS-to-binary conversion, have been presented in the
literature. A detailed review of the known modular scaling methods is presented in [8].

The essence of the modular scaling operation is to obtain some integer approximation
X̂ = (χ̂1, χ̂2, . . . , χ̂k) (i = 1, 2, . . . , k) to the fraction X/S, where X = (χ1, χ2, . . . , χk) is an
arbitrary element of the RNS number range ZMk , and S is a constant factor (scale). The
fraction X/S is usually approximated by the integers bX/Sc and dX/Se (bxc and dxe are
the floor and ceiling function of x, respectively).

The most important aspect of the scaling problem in RNS is to ensure the high flexibility
of the created algorithmic tools. That implies adoption of the set S = {S0, S1, . . . , SΛ−1}
of scales Sl > 1 (l = 0, 1, . . . , Λ− 1) which is usually chosen based on the criterion for the
minimum calculating error under a given constraint on the number of scaling factors.

All known scaling techniques can be classified into four main categories:

1. scaling by the product of some RNS moduli [32,35–38],
2. scaling by an integer from the RNS number range [39,40],
3. scaling by a common fraction [41],
4. scaling by a power of two [42–44].

In the first group, many scaling methods take the scaling factor S as a product of
l moduli, i.e., of the form S = Ml (l = 1, 2, . . . , k− 1) [35–38]. That makes it easier to
obtain the residues χ̂l+1, χ̂l+2, . . . , χ̂k of the approximation X̂ to the fraction X/S. The
remaining residues χ̂1, χ̂2, . . . , χ̂l can be calculated sufficiently lightly within the framework
of procedures based on one of the base extension algorithms [2,35,45]. Due to the small
word length of residues, the pre-computation and lookup table techniques are suitable for
modular scaling.

In [35], the base extension algorithm uses the reverse conversion of residue code to
mixed-radix representation. The method proposed in [36] requires a redundant modulus to
evaluate the CRT reconstruction coefficient, i.e., the rank of a number, to complete the base
extension procedure. In [38], the suggested approach is entirely based on a lookup tables
technique, while all the required tables have two inputs. At the same time, the memory
costs are too high when the number of chosen moduli is sufficiently large. The method
proposed in [37] enables one to carry out base extension and exact scaling without some
system redundancy only by using additional lookup tables.

The CRT-base technique for modular scaling by an integer has been suggested in [39].
Here, the main idea is to approximate the CRT calculating relation for reconstructing the
integer value of RNS numbers. This enables the substitution of large modulo Mk addition
in the canonic CRT-decoding scheme by smaller word-length modular addition operations.
In [40], the proposed method uses minimum redundancy for modular scaling by arbitrary
positive scales. The distinctive feature of the algorithm consists of using the interval index
as a positional characteristic of residue code. At the same time, the interval index can
be calculated fast and lightly by modular addition of small residues in the kth modular
channel corresponding to the modulus mk from the RNS moduli-set {m1, m2, . . . , mk}.

Entropy 2022, 24, 1824 9 of 22

In the case of arbitrary rational scale S, an efficient basis for modular scaling is the
approach presented in [41]. The main feature is that for the scales of the form S = p/q,
the numbers p and q can take any integer values for which the fraction qX/p does not
exceed the upper bound of the RNS number range. In addition, both the number qX and
the results of intermediate calculations may not satisfy the specified requirement.

The scaling methods in the fourth group implement division by constants of the form
S = 2l (l = 1, 2, . . . , Λ), Λ ≤ blog2Mkc [7,42,43]. General approaches to solving this task
are based mainly on the bisection method. It consists of calculating the recurrence relation
X(j+1) = bX(j)/2c for j = 0, 1, . . . , l − 1. In this case, X(0) = X, and X(l) = bX/2lc. The
residue χ̂

(j+1)
i (i = 1, 2, . . . , k) of approximation X(j+1) is determined as

χ
(j+1)
i =

∣∣∣ 1

2 χ
(j)
i

∣∣∣
mi

if X(j) is even,∣∣∣ 1
2

(
χ
(j)
i − 1

)∣∣∣
mi

if X(j) is odd,
(17)

while all the primary moduli m1, m2, . . . , mk are coprime odd numbers. The last con-
dition ensures that 2 and mi (i = 1, 2, . . . , k) are relatively prime numbers, and, cor-
respondingly, the existence of a modular multiplicative inverse of 2, i.e., the number∣∣2−1

∣∣
Mk

=
(∣∣2−1

∣∣
m1

,
∣∣2−1

∣∣
m2

, . . . ,
∣∣2−1

∣∣
mk

)
. As followed from (17), the scaling by 2 requires

the parity detection of the number X(j), j = 0, 1, . . . , l − 1. So, there is a need for a base
extension operation to extra modulus equal 2.

An iterative algorithm for scaling by the factor S = 2l proposed in [42] is implemented
in l steps. At the same time, the parity of the intermediate results is checked at each iteration
using the base extension operation suggested in [25]. In [43], the power-of-two scaling
technique is applied to realize a digital filter in quadratic RNS. The scaling algorithm
presented in [44] focuses on arbitrary moduli sets with large dynamic ranges and requires
only machine-precision integer and floating-point operations. At the same time, it is
used for software implementation of rounding and exponent alignment procedures in a
multiple-precision RNS-based arithmetic library for parallel CPU-GPU systems.

Many modular scaling algorithms use special moduli sets with a limited number
of moduli. A detailed review of some of these methods is given in [8]. The most com-
monly used moduli sets for efficient RNS scalers are {22n+1 + 1, 22n+1, 22n+1 − 1}, {2n −
1, 2n+p, 2n + 1}, {2n+1 − 1, 2n, 2n − 1}, {2n+p, 2n − 1, 2n−1 − 1} among others [46–51]. The
main drawback of such approaches is imposing very restrictive constraints on the moduli
sets. They are certainly suitable for implementing scaling tasks in digital signal processing
but, at the same time, they do not fit for scaling and other non-modular operations on
numbers belonging to large dynamic ranges which are widely used in long-word-length
cryptography.

5. A Novel Approach for Calculating the Rank of a Number Resulting from Scaling
by 2

In RNS, the rank ρk(X) ∈ Zk = {0, 1, . . . , k− 1} is a principal positional characteristic
since all the non-modular operations, such as magnitude comparison, sign determination,
overflow detection, general division, scaling, residue-to-binary conversion, and others, can
be implemented on its basis. Because the rank ρk(X) enables estimation of the integer value
of the RNS-number X, then the development of efficient methods and algorithms for its
calculating is of primary importance in building efficient variants of RNS arithmetic and,
accordingly, high-performance modular computational structures.

Let us show that the rank form (9) of the number representation in residue arithmetic
creates a basis for constructing relatively fast and sufficiently simple iterative algorithms
for the implementation of division by constant Sl = 2l (l = 1, 2, . . . , Λ, Λ ≤ blog2Mkc). In
this case, the following theorem is fundamental for solving the problem of modular scaling
by powers of 2.

Entropy 2022, 24, 1824 10 of 22

Theorem 2. Let in RNS with pairwise prime odd moduli m1, m2, . . . , mk the arbitrary number
X = (χ1, χ2, . . . , χk) from the range ZMk having rank ρk(X) be given. Then the rank of the integer
X̂ = bX/2c satisfies the equation

ρk

(
X̂
)
=

1
2

(
ρk(X) + ∑k

i=1 ψi

)
if X is even,

1
2

(
ρk(X)− ρk(1) + ∑k

i=1 ωi + ∑k
i=1 ϕi

)
if X is odd,

(18)

where
ψi =

∣∣χi,k
∣∣
2 =

∣∣∣∣∣µi,kχi
∣∣
mi

∣∣∣
2
, (19)

ωi =

{
0 if χi,k ≥ µi,k ,

1 if χi,k < µi,k ,
(20)

ϕi =

{
|ψi + ωi|2 if

∣∣µi,k
∣∣
2 = 0,

|ψi + ωi|2 if
∣∣µi,k

∣∣
2 = 1,

(21)

ρk(1) is the rank of the number 1, and x denotes the negation of the Boolean value x.

Proof. As follows from the rank form (9), the number 1 in a given RNS has the follow-
ing form

1 =
k

∑
i=1

Mi,kµi,k − ρk(1)Mk.

Therefore, we can write

X̂ = bX/2c = 1
2
(X− |X|2)=

=
1
2

(
k

∑
i=1

Mi,kχi,k − ρk(X)Mk − |X|2

(
k

∑
i=1

Mi,kµi,k − ρk(1)Mk

))
=

=
1
2

(
k

∑
i=1

Mi,k

(
χi,k − |X|2µi,k

)
−Mk

(
ρk(X)− |X|2ρk(1)

))
. (22)

Then, in accordance with Euclid’s Division Lemma (1), from (22) we have

X̂ =
1
2

(
k

∑
i=1

Mi,k

(∣∣χi,k − |X|2µi,k
∣∣
mi

+
⌊
(χi,k − |X|2µi,k)/mi

⌋
mi

)
−

−Mk

(
ρk(X)− |X|2ρk(1)

))
.

Thus,

X̂ =
k

∑
i=1

1
2

Mi,k
∣∣χi,k − |X|2µi,k

∣∣
mi
− 1

2
Mk

(
ρk(X)− |X|2ρk(1)−

−
k

∑
i=1

⌊
(χi,k − |X|2µi,k)/mi

⌋)
. (23)

Since for each least nonnegative residue χ ∈ Zm modulo an arbitrary odd modulus m,
there is a unique formal quotient |χ/2|m, and

|χ/2|m = (χ + m|χ|2)/2

Entropy 2022, 24, 1824 11 of 22

(see, for example, [1]), then

χ̂i,k =

∣∣∣∣12 ∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣∣
mi

=
1
2

(∣∣χi,k − |X|2µi,k
∣∣
mi

+ mi

∣∣∣∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣
2

)
.

Therefore,

1
2

∣∣χi,k − |X|2µi,k
∣∣
mi

= χ̂i,k −
1
2

mi

∣∣∣∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣
2
.

Taking this into account, from (23) we get

X̂ =
k

∑
i=1

Mi,kχ̂i,k −
1
2

(
ρk(X)− |X|2ρk(1)−

k

∑
i=1

⌊
(χi,k − |X|2µi,k)/mi

⌋
+

+
k

∑
i=1

∣∣∣∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣
2

)
.

Hence, according to the rank form of number representation (9), we conclude that the
following equation for the rank ρk

(
X̂
)

of the number X̂ is valid:

ρk

(
X̂
)
=

1
2

(
ρk(X)− |X|2ρk(1)−

k

∑
i=1

⌊
(χi,k − |X|2µi,k)/mi

⌋
+

+
k

∑
i=1

∣∣∣∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣
2

)
. (24)

If the number X is even, then |X|2 = 0, so that⌊
(χi,k − |X|2µi,k)/mi

⌋
=
⌊

χi,k/mi

⌋
= 0

and ∣∣∣∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣
2
=
∣∣χi,k

∣∣
2 = ψi

(i = 1, 2, . . . , k). Therefore, in this case, Equation (24) takes the form

ρk

(
X̂
)
=

1
2

(
ρk(X) +

k

∑
i=1

ψi

)

which corresponds to (18).
If the number X is odd, then |X|2 = 1, and it is easy to check that⌊

(χi,k − |X|2µi,k)/mi

⌋
=
⌊
(χi,k − µi,k)/mi

⌋
= −ωi,

while ∣∣∣∣∣χi,k − |X|2µi,k
∣∣
mi

∣∣∣
2
=
∣∣∣∣∣χi,k − µi,k

∣∣
mi

∣∣∣
2
= ϕi

(i = 1, 2, . . . , k), where ωi and ϕi are two-valued quantities determined by (19) and (20),
respectively. In this case, Equation (24) takes the form

ρk

(
X̂
)
=

1
2

(
ρk(X)− ρk(1) +

k

∑
i=1

ωi +
k

∑
i=1

ϕi

)

which also corresponds to (18).
The theorem is proved.

Entropy 2022, 24, 1824 12 of 22

As it follows from Theorem 2, the rank ρk

(
X̂
)

of the number X̂ = bX/2c can be
calculated rapidly and easily only taking into account the known value of the rank ρk(X)
of the initial number X. This circumstance makes it possible to optimize and significantly
speed up the execution of the power-of-two scaling operation. In this case, it is not necessary
at each iteration to calculate the rank of the number, which is the intermediate result of
scaling, by its residue code. At the same time, the complete operation of rank calculation is
necessary only for the initial number X at the preliminary stage of the scaling procedure.

6. A Novel Power-of-Two Modular Scaling Based on the Rank Positional
Characteristic in Minimally Redundant RNS

Theorem 2 implies the following step algorithm for power-of-two scaling in minimally
redundant RNS with primary pairwise prime odd modules m1, m2, . . . , mk, extra modulus
m0 = 2, and scales of the form Sl = 2l (l = 1, 2, . . . , Λ, Λ = blog2Mkc).

S.1. Based on the minimum redundant residue code (χ0, χ1, . . . , χk) of the original
number X, the rank ρk(X) is calculated following to (12)–(16). In addition, it is assumed
that X(0) = X, χ

(0)
i = χi (i = 0, 1, . . . , k), χ

(0)
i,k = χi,k =

∣∣µi,kχi
∣∣
mi

(i = 1, 2, . . . , k), and j = 0.

S.2. For the residue number X(j) =
(

χ
(j)
0 , χ

(j)
1 , . . . , χ

(j)
k

)
, the integer

∆(j) =

 ∑k
i=1 ψ

(j)
i if χ

(j)
0 = 0,

∑k
i=1 ω

(j)
i + ∑k

i=1 ϕ
(j)
i − ρk(1) if χ

(j)
0 = 1

(25)

is calculated, where
ψ
(j)
i =

∣∣∣χ(j)
i,k

∣∣∣
2
, (26)

ω
(j)
i and ϕ

(j)
i are obtained by formulas similar to (19) and (20), namely:

ω
(j)
i =

 0 if χ
(j)
i,k ≥ µi,k ,

1 if χ
(j)
i,k < µi,k ,

(27)

ϕ
(j)
i =

∣∣∣ψ(j)

i + ω
(j)
i

∣∣∣
2

if
∣∣µi,k

∣∣
2 = 0,∣∣∣ψ(j)

i + ω
(j)
i

∣∣∣
2

if
∣∣µi,k

∣∣
2 = 1,

(28)

i = 1, 2, . . . , k.
S.3. The digits χ

(j+1)
1 , χ

(j+1)
2 , . . ., χ

(j+1)
k of the minimally redundant residue code

and the rank ρk

(
X(j+1)

)
of the number X(j+1) = bX(j)/2c are determined, respectively,

according to the rules

χ
(j+1)
i =

∣∣∣∣12(χ
(j)
i − χ

(j)
0

)∣∣∣∣
mi

(i = 1, 2, . . . , k), (29)

ρk

(
X(j+1)

)
=

1
2

(
ρk

(
X(j)

)
+ ∆(j)

)
. (30)

S.4. The redundant residue χ
(j+1)
0 =

∣∣∣(X(j+1)
∣∣∣
2

is calculated according to equation
following from the rank form (9)

χ
(j+1)
0 =

∣∣∣∣∣ k

∑
i=1

ψ
(j+1)
i + ρ

(j+1)
0

∣∣∣∣∣
2

, (31)

Entropy 2022, 24, 1824 13 of 22

where ψ
(j+1)
i =

∣∣∣χ(j+1)
i,k

∣∣∣
2
=

∣∣∣∣∣∣∣µi,kχ
(j+1)
i

∣∣∣
mi

∣∣∣∣
2

and ρ
(j+1)
0 =

∣∣∣ρk

(
X(j+1)

)∣∣∣
2
. In essence, it

determines the parity of the number X(j+1).
If j = l − 1, then the number X(j+1) = X(l) = bX/2lc is the required number, and the

scaling process ends. Otherwise, the variable j is incremented by one (j = j + 1), and the
jump to step S.2 is carried out.

For its hardware implementation, the most important feature of the above recursive
scaling algorithm is that the specified operations on steps S.2, S.3, and S.4 can be combined
in time and carried out within one modular clock cycle. Due to this circumstance, after
obtaining the rank ρk(X), each iteration of RNS number scaling by 2, i.e., each shift of its
integer value by one bit to the right, is performed in one modular clock cycle.

Since the calculating process of the rank ρk(X) has a pipeline structure, with the
appropriate organization of computations the described scaling procedure at low hardware
costs provides a reasonably high speed.

It follows from the above that all the necessary calculations within the scaling algo-
rithm can be implemented using tabular computational structures.

For example, the calculation of the inexact rank ρ̂k(X) of the initial number X is
reduced to a summation of the sets of small residues 〈R1,k(χ1), R2,k(χ2), . . . , Rk,K(χk)〉
modulo mk. Simultaneously, we take into account the number of occurred overflows
when performing these modular addition operations (see (12)–(14)). Therefore, we need
k one-input lookup tables to store the given set, while the bit length of recorded residues
is dlog2 mke (l = 1, 2, . . . , k). At the same time, the estimation of two-valued rank correc-
tion δk(X) (see (16)) requires the set 〈ψ1, ψ2, . . . , ψk〉 of least significant bits of normalized
residues χi,k (i = 1, 2, . . . , k) of the number X (see (6)).

Similarly, the sets of binary flags 〈ψ(j)
1 , ψ

(j)
2 , . . . , ψ

(j)
k 〉, 〈ω

(j)
1 , ω

(j)
2 , . . . , ω

(j)
k 〉 and also

〈ϕ(j)
1 , ϕ

(j)
2 , . . . , ϕ

(j)
k 〉 (see (26)–(28)) enable us to obtain the integer ∆(j) required for rank

calculating in the corresponding iterations of scaling procedure (j = 0, 1, . . . , l − 1). All
these binary sets can also be recorded in the appropriate lookup tables.

Thus, the content of the ith lookup table corresponding to the input residue χ
(j)
i has

the form 〈Ri,k

(
χ
(j)
i

)
, ψ

(j)
i , ω

(j)
i , ϕ

(j)
i 〉 (i = 1, 2, . . . , k), (j = 0, 1, . . . , l − 1).

Below we present the proposed scaling method in the form of a pseudo-code algorithm.
Let us evaluate the computational complexity of the proposed iterative power-of-two

scaling method. As follows from the above, Algorithm 1 requires total Tscal = Trank +
Titer × l modular clock cycles. According to [33,34], in minimally redundant RNS, the
time complexity of calculating the rank ρk(X) of the initial number X depends only on
the number k of primary RNS moduli and can be evaluated as Trank = dlog2ke. At the
same time, all calculations within each iteration, consisting in obtaining both the minimally
redundant residue code

(
χ
(j+1)
0 , χ

(J+1)
1 , . . . , χ

(j+1)
k

)
and the rank ρk

(
X(j+1)

)
of the number

X(j+1) = bX(j)/2c (j = 0, 1, . . . , l − 1), can be performed in one modular clock cycle by
using lookup table technique. Therefore, Titer = 1. Hence, the algorithm time complexity
Tscal = dlog2ke+ l modular clock cycles.

Entropy 2022, 24, 1824 14 of 22

Algorithm 1: Power-of-two scaling in minimally redundant RNS

Input: X = (χ0, χ1, . . . , χk), Sl = 2l

Output: X(l) = bX/2lc =
(

χ
(l)
0 , χ

(l)
1 , . . . , χ

(l)
k

)
1 // compute the rank of the number X:
2 ρk(X) = ρ̂k(X) + δk(X);
3 X(0) = X;
4 j = 0;
5 // iterations based on the bisection method:
6 while j < l − 1 do
7 // get the sets of binary flags:

8 ψ(j) = 〈ψ(j)
1 , ψ

(j)
2 , . . . , ψ

(j)
k 〉;

9 ω(j) = 〈ω(j)
1 , ω

(j)
2 , . . . , ω

(j)
k 〉;

10 ϕ(j) = 〈ϕ(j)
1 , ϕ

(j)
2 , . . . , ϕ

(j)
k 〉;

11 // compute the rank correction ∆(j) according to a parity of the number X(j):

12 if χ
(l)
0 = 0 then

13 ∆(j) = ∑k
i=1 ψ

(j)
i ;

14 else
15 ∆(j) = ∑k

i=1 ω
(j)
i + ∑k

i=1 ϕ
(j)
i − ρk(1);

16 end
17 // compute the residue code of the number X(j+1) = bX(j)/2c:
18 for i = 1; i ≤ k do
19 χ

(j+1)
i =

∣∣∣ 1
2

(
χ
(j)
i − χ

(j)
0

)∣∣∣
mi

;

20 end
21 // get the set of binary flags:

22 ψ(j+1) = 〈ψ(j+1)
1 , ψ

(j+1)
2 , . . . , ψ

(j+1)
k 〉;

23 // compute the rank of the number X(j+1):

24 ρk

(
X(j+1)

)
= 1

2

(
ρk

(
X(j)

)
+ ∆(j)

)
;

25 // get the least significant bit of the rank ρk

(
X(j+1)

)
:

26 ρ
(j+1)
0 =

∣∣∣ρk

(
X(j+1)

)∣∣∣
2
;

27 // compute the parity of the number X(j+1):

28 χ
(j+1)
0 =

∣∣∣∑k
i=1 ψ

(j+1)
i + ρ

(j+1)
0

∣∣∣
2
;

29 // increment the iteration counter:
30 j = j + 1;
31 end
32 return X(l) = bX/2lc;

To illustrate the power-of-two scaling of the number X = (χ0, χ1, . . . , χk) based on the
rank form (9) in the proposed minimally redundant RNS, we present below a numerical ex-
ample.

Let us consider the RNS with the primary moduli m1 = 5, m2 = 7, m3 = 9, and
m4 = 11, taking into account the excess modulus m0 = 2.

Example 1. Suppose we wish to scale the number X = 1731 having the minimally redundant
residue code (χ0, χ1, χ2, χ3χ4) = (1, 1, 2, 3, 4) by the constant S3 = 23 = 8.

Therefore, the number of required iterations is l = 3.
Before describing the proposed scaling algorithm, we give below the required primitive constants

used in the RNS under consideration. So, we have

Entropy 2022, 24, 1824 15 of 22

M4 = 3465,
M1,4 = 693, M2,4 = 495, M3,4 = 385, M4,4 = 315,
µ1,4 = 2, µ2,4 = 3, µ3,4 = 4, µ4,4 = 8,
ρ4(1) = 2.
S.1. The rank calculation of the initial number.
First, having the non-redundant residue code (1, 2, 3, 4) of the number X, by using lookup

tables, we obtain the following sets of residues and least-significant bits, respectively,
〈R1,4(χ1), R2,4(χ2), R3,4(χ3), R4,4(χ4)〉 = 〈4, 9, 3, 10〉,
〈ψ1, ψ2, ψ3, ψ4〉 = 〈0, 0, 1, 0〉.
Let us show in more detail how these values were obtained, according to (6), (19), and (13), (14),

respectively, before storing in the lookup tables:
χ1,4 = |2 · 1|5 = 2, ψ1 = |2|2 = 0,
χ2,4 = |3 · 2|7 = 6, ψ2 = |6|2 = 0,
χ3,4 = |4 · 3|9 = 3, ψ3 = |3|2 = 1,
χ4,4 = |8 · 4|11 = 10, ψ4 = |10|2 = 0,
R1,4(χ1) = b(11 · 2)/5c = 4,
R2,4(χ2) = b(11 · 6)/7c = 9,
R3,4(χ3) = b(11 · 3)/9c = 3,
R4,4(χ4) = |8 · 4|11 = 10.
Further, using the set of residues 〈4, 9, 3, 10〉, according to (12), we calculate the inexact rank

ρ̂4(X) = b(4 + 9 + 3 + 10)/11c = b26/11c = 2,

and also take its parity bit
ρ̂0 = |ρ̂4(X)|2 = 0.

Then, taking into account that χ0 = 1, using the set 〈ψ1, ψ2, ψ3, ψ4〉 = 〈0, 0, 1, 0〉 and ρ̂0,
according to (16), we find two-valued correction

δ4(X) = |1 + (0 + 0 + 1 + 0) + 0|2 = |2|2 = 0.

As a result, according to (16), we get the exact rank of the initial number X

ρ4(X) = ρ̂4(X) + δ4(X) = 2 + 0 = 2.

To verify the obtained result, using the rank form (9), we find

X =
4

∑
i=1

Mi,4χi,4 − ρ4(X)M4 = 693 · 2 + 495 · 6 + 385 · 3 + 315 · 10− 2 · 3465 = 1731.

In addition, it is assumed that j = 0, X(0) = X, χ
(0)
i = χi

(
i = 0, 4

)
, χ

(0)
i,4 = χi,4, ψ

(0)
i = ψi(

i = 1, 4
)
.

Iteration 1.
S.2.1. Since χ

(0)
0 = 1, using the sets of binary flags (see (27) and (28))

〈ω(0)
1 , ω

(0)
2 , ω

(0)
3 , ω

(0)
4 〉 = 〈0, 0, 1, 0〉,

〈ϕ(0)
1 , ϕ

(0)
2 , ϕ

(0)
3 , ϕ

(0)
4 〉 = 〈0, 1, 0, 0〉,

according to (25), we calculate the quantity

∆(0) =
4

∑
i=1

ω
(0)
i +

4

∑
i=1

ϕ
(0)
i − ρk(1) = 1 + 1− 2 = 0.

S.3.1. We calculate the non-redundant residue code and the rank of the number X(1) =
bX(0)/2c, according to (29) and (30), respectively:(

χ
(1)
1 , χ

(1)
2 , χ

(1)
3 , χ

(1)
4

)
= (0, 4, 1, 7),

Entropy 2022, 24, 1824 16 of 22

ρ4

(
X(1)

)
= 1

2

(
ρ4

(
X(0)

)
+ ∆(0)

)
= 1

2 (2 + 0) = 1,

ρ
(1)
0 =

∣∣∣ρ4

(
X(1)

)∣∣∣
2
= 1.

S.4.1. Using the set 〈ψ(1)
1 , ψ

(1)
2 , ψ

(1)
3 , ψ

(1)
4 〉 = 〈0, 1, 0, 1〉 corresponding to the non-redundant

residue code (0, 4, 1, 7) and taking into account that ρ
(1)
0 = 1, according to (31), we find

χ
(1)
0 = |(0 + 1 + 0 + 1) + 1|2 = 1.

Hence, as a result of Iteration 1, we have the minimally redundant residue code (1, 0, 4, 1, 7) of
the number X(1) = bX(0)/2c = b1731/2c = 864.

Iteration 2.
S.2.2. Since χ

(1)
0 = 1, using the following sets of binary flags

〈ω(1)
1 , ω

(1)
2 , ω

(1)
3 , ω

(1)
4 〉 = 〈1, 0, 0, 1〉,

〈ϕ(1)
1 , ϕ

(1)
2 , ϕ

(1)
3 , ϕ

(1)
4 〉 = 〈1, 0, 0, 0〉,

we have

∆(1) =
4

∑
i=1

ω
(1)
i +

4

∑
i=1

ϕ
(1)
i − ρk(1) = 2 + 1− 2 = 1.

S.3.2. We calculate the non-redundant residue code and the rank of the number X(2) =
bX(1)/2c:(

χ
(2)
1 , χ

(2)
2 , χ

(2)
3 , χ

(2)
4

)
= (2, 5, 0, 3),

ρ4

(
X(2)

)
= 1

2

(
ρ4

(
X(1)

)
+ ∆(1)

)
= 1

2 (1 + 1) = 1,

ρ
(2)
0 =

∣∣∣ρ4

(
X(2)

)∣∣∣
2
= 1.

S.4.2. Using the set 〈ψ(2)
1 , ψ

(2)
2 , ψ

(2)
3 , ψ

(2)
4 〉 = 〈0, 1, 0, 0〉 corresponding to the non-redundant

residue code (2, 5, 0, 3) and taking into account that ρ
(2)
0 = 1, we obtain

χ
(2)
0 = |(0 + 1 + 0 + 0) + 1|2 = 0.

Hence, as a result of Iteration 2, we have the minimally redundant residue code (0, 2, 5, 0, 3) of
the number X(2) = bX(1)/2c = bX(0)/4c = b1731/4c = 432.

Iteration 3.
S.2.3. Since χ

(2)
0 = 0, using the set

〈ψ(2)
1 , ψ

(2)
2 , ψ

(2)
3 , ψ

(2)
4 〉 = 〈0, 1, 0, 0〉,

according to (25), we find

∆(2) =
4

∑
i=1

ψ
(2)
i = 1.

S.3.3. We calculate the non-redundant residue code and the rank of the number X(3) =
bX(2)/2c:(

χ
(3)
1 , χ

(3)
2 , χ

(3)
3 , χ

(3)
4

)
= (1, 6, 0, 7),

ρ4

(
X(3)

)
= 1

2

(
ρ4

(
X(2)

)
+ ∆(2)

)
= 1

2 (1 + 1) = 1,

ρ
(3)
0 =

∣∣∣ρ4

(
X(3)

)∣∣∣
2
= 1.

S.4.3. Using the set 〈ψ(3)
1 , ψ

(3)
2 , ψ

(3)
3 , ψ

(3)
4 〉 = 〈0, 0, 0, 1〉 corresponding to the non-redundant

residue code (1, 6, 0, 7) and taking into account that ρ
(3)
0 = 1, we get

χ
(3)
0 = |(0 + 0 + 0 + 1) + 1|2 = 0.

Hence, as a result of Iteration 3, we have the minimally redundant residue code (0, 1, 6, 0, 7) of
the number X(3) = bX(2)/2c = bX(0)/8c = b1731/8c = 216.

As far as j = l− 1 = 2, the scaling procedure ends, and the number X(3) is the desired solution.

Entropy 2022, 24, 1824 17 of 22

To verify the obtained result, according to the rank form (9), we find

X(3) =
4

∑
i=1

Mi,4χ
(3)
i,4 − ρ4

(
X(3)

)
M4 = 693 · 1 + 495 · 4 + 385 · 0 + 315 · 1− 1 · 3465 =

= 3681− 3645 = 216.

The result is correct.

The above example shows that the use of minimally redundant RNS enables us to
optimize and speed up the power-of-two scaling procedure compared with the conventional
non-redundant RNS to a large extent. First of all, that is caused by the extreme simplicity
of calculating the inexact rank ρ̂k(X) and estimating two-valued characteristic δk(X) of
the initial number X as well as by the trivial operations for obtaining the rank ρk

(
X(j)

)
(j = 0, 1, . . . , l − 1) at each iteration of the scaling procedure (see Theorem 2).

Therefore, the proposed minimally redundant residue representation takes priority
over non-redundant analogs in optimization and speed-up of the scaling and other non-
modular procedures based on the CRT implementation using a rank characteristic.

7. Discussion

Let us now discuss the theoretical and practical aspects of the approach proposed in
this paper.

As followed from (17), the power-of-two scaling algorithm based on the bisection
method requires the parity detection of the number X(j) (j = 0, 1, . . . , l − 1) at each iteration.
Therefore, fast calculating the residue concerning extra modulus m0 = 2 is a significantly
important task.

In conventional non-redundant RNS, the parity detection of the number X(j) =(
χ
(j)
1 , χ

(j)
2 , . . . , χ

(j)
k

)
is usually based on estimating the integer value of X(j) by the use

of specific positional characteristics. The generally accepted ones are the digits of mixed-
radix representation, core function, the rank of a number, and interval index [1–3,5,8].

In RNS arithmetic, the parity check of a number refers to complicated non-modular
operations requiring high computational costs. The computational complexity of this
operation is comparable to the computational complexity of the reverse conversion from
the residue code into the mixed-radix representation or to the calculation of the rank of
a number.

Generally, in non-redundant RNS, the implementation of parallel parity check algo-
rithm requires O(k2) modular addition operations [33,34]. So it can become computationally
expensive for large values of k. Thus, for efficient implementation of the power-of-two
scaling algorithm based on the bisection method, one needs to speed up and optimize the
RNS parity detection technique.

In this article, the proposed approach to power-of-two scaling is based on using
the rank of a number as the main RNS positional characteristic. Therefore, in our case,
obtaining residue modulo m0 = 2 is reduced to the calculation of the rank ρk

(
X(j)

)
with

the following use of the rank form (9).
Hence,

χ
(j)
0 =

∣∣∣X(j)
∣∣∣
2
=

∣∣∣∣∣ k

∑
i=1

∣∣∣Mi,kχ
(j)
i,k

∣∣∣
2
+
∣∣∣ρk

(
X(j)

)
Mk

∣∣∣
2

∣∣∣∣∣
2

=

∣∣∣∣∣ k

∑
i=1

ψ
(j)
i + ρ

(j)
0

∣∣∣∣∣
2

.

Thus, determining the parity of a number has a computational complexity identical to
the complexity of rank calculating concerning the numbers of required modular addition
operations RMO and lookup tables RLUT . At the same time, obtaining the residue code(

χ
(j+1)
1 , χ

(j+1)
2 , . . . , χ

(j+1)
k

)
of the number X(j+1) = bX(j)/2c needs k additional lookup

tables (see (17)).

Entropy 2022, 24, 1824 18 of 22

Therefore, the computational cost of the iterative procedure of scaling by Sl = 2l

consists of SMO = RMO × l modular addition operations and SLUT = RLUT + k lookup
tables, whereas the time complexity is Tscal = Titer × l modular clock cycles, where Titer is
a performance time of one iteration based on the bisection method.

Thus, in conventional non-redundant RNS, the computational cost of the canonical
power-of-two scaling procedure based on the bisection method (17) and the rank calculation
method described in [34] is estimated as

SMO = RMO × l =
1
2

(
k2 + 5k− 10

)
× l. (32)

SLUT = RLUT + k =
1
2

(
k2 + 3k− 2

)
. (33)

The main advantage of the proposed approach to power-of-two scaling over the
existing ones consists in the use of minimally redundant RNS and the novel method for
calculating the rank of a number resulting from division by two (see Theorem 2) in each
iteration of the scaling algorithm. This circumstance enables a significant reduction of the
computational complexity of the scaling algorithm.

As follows from [34], the corresponding computational cost of calculating the rank
ρk(X) of the initial number X is R?

MO = k and R?
LUT = k in terms of required modular

addition operations and lookup tables, respectively. Furthermore, the performance time of
the rank calculation is T?

rank = dlog2kemodular clock cycles (see Section 3).
It is important to note that all calculations at each iteration are implemented using the

lookup tables technique and the simplest combinational logic circuits.
As shown above, the minimally redundant residue code of the number X(j+1) =

bX(j)/2c (j = 0, 1, . . . , l − 1) is yielded in only one modular clock cycle and needs the use
of k + 1 additional lookup tables. At the same time, the first k of these lookup tables are
used for obtaining the residue code

(
χ
(j+1)
1 , χ

(j+1)
2 , . . . , χ

(j+1)
k

)
, while the last lookup table

gives us the rank ρk

(
X(j+1)

)
of the number X(j+1) (see (29) and (30)). So, at each iteration,

there are no additional modular operations.
The total numbers of required modular addition operations and lookup tables are

estimated, respectively, as
S?

MO = k (34)

and
S?

LUT = 2k + 1, (35)

The time complexity of the novel power-of-two scaling algorithm is T?
scal = T?

rank + l =
dlog2ke+ l modular clock cycles.

Thus, the use of minimally redundant RNS and novel approach to rank calculation
at each iteration of power-of-two scaling (see Theorem 2) enables significant decrease of
the computational complexity. The corresponding reduction factors of the computational
complexity, in terms of the required modular addition operations (see (32) and (34)) and
lookup tables (see (33) and (35)), are

CMO(k, l) =
SMO
S?

MO
=

(
k2 + 5k− 10

)
2k

× l, (36)

CLUT(k) =
SLUT
S?

LUT
=

k2 + 3k− 2
4k + 2

. (37)

Below, Tables 1 and 2 present these reduction factors.

Entropy 2022, 24, 1824 19 of 22

Table 1. Dependence of the reduction factor CLUT(k) on the moduli number.

Reduction Factor
Moduli Number

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

CLUT 1.73 3.05 4.32 5.59 6.84 8.10

Table 2. Dependence of the reduction factor CMO(k, l) on the moduli number k and scaling factor
Sl = 2l .

Scaling Factor Moduli Number

Sl l k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

8 3 12.00 21,00 29.00 36.75 44.40 52.00
16 4 16.00 28.00 38.67 49.00 59.20 69.33
32 5 20.00 35.00 48.33 61.25 74.00 86.67
64 6 24.00 42.00 58.00 73.50 88.80 104.0
128 7 28.00 49.00 67.67 85.75 103.60 121.33
256 8 32.00 56.00 77.33 98.00 118.40 138.67
512 9 36.00 63.00 87.00 110.25 133.20 156.00
1024 10 40.00 70.00 96.67 122.5 148.00 173.33

It should be noted that the use of the novel method for calculating the rank ρk

(
X(j+1)

)
of the number X(j+1) = bX(j)/2c (j = 0, 1, . . . , l − 1) at each iteration of the scaling proce-
dure (see Theorem 2) in non-redundant RNS, gives us the following computational cost

S
′
MO = RMO =

1
2

(
k2 + 5k− 10

)
, (38)

S
′
LUT = RLUT + (k + 1) =

1
2

(
k2 + 3k

)
. (39)

Simultaneously, the time complexity is T
′
scal = dlog2ke+ l + 1 modular clock cycles.

As can be seen, the reduction factors of the computational complexity of power-of-two
scaling based on Theorem 2 in minimally redundant RNS compared with conventional
non-redundant RNS are represented by the following fractions

C
′
MO(k) =

S
′
MO

S?
MO

=
k2 + 5k− 10

2k
, (40)

C
′
LUT(k) =

S
′
LUT

S?
LUT

=
k2 + 3k
4k + 2

. (41)

In this case, as follows from (40), the reduction factor C
′
MO(k) = CMO(k, 1) does not

depend on the value Sl = 2l (l = 0, 1, . . . , Λ− 1). At the same time, C
′
LUT(k) ≈ CLUT(k).

The dependence of the reduction factors C
′
MO(k) and C

′
LUT(k) on the number of

primary RNS moduli k is presented in Table 3.

Table 3. Dependence of reduction factors C
′

MO and C
′
LUT on the moduli number k.

Reduction Factor
Moduli Number

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

C
′

MO 4.00 7.00 9.67 12.25 14.80 17.33

C
′
LUT 1.81 3.10 4.84 5.61 6.86 8.11

Thus, the use of minimally redundant RNS and novel approach to calculating the
rank of a number at each iterations of bisection method enables radically simplifying

Entropy 2022, 24, 1824 20 of 22

the carrying out of power-of-two scaling compared with conventional non-redundant
RNS. This circumstance enables us to construct faster and optimal in computational cost
RNS-oriented complicated computing procedures which widely use scaling algorithms.

8. Conclusions

As shown in this paper, the use of minimum-redundancy residue code enables the con-
struction of efficient scaling procedures based on the CRT due to optimizing the calculation
of the rank of a number, a principal positional characteristic in RNS arithmetic.

At the beginning stage of the power-of-two scaling procedure, to calculate the rank
of the initial number, we apply the approach for the rank calculation proposed by one of
the authors in [33,34]. It is reduced to the summation of the small word-length residues
R1,k(χ1), R2,k(χ2), . . ., Rk,k(χk), taking into account the number of occurred overflows
during the modular addition operations modulo mk, and fast calculation of two-valued
rank correction δk(X) ∈ {0, 1} (see (12) and (16)).

We propose a novel approach to power-of-two scaling based on Theorem 2. Using
minimal residue code redundancy, we have optimized and sped up the rank calculation
and parity determination of the numbers that result from division by two at each iteration
of the bisection method. Each iteration of modular scaling by two is performed in only
one modular clock cycle. Thus, owing to the proposed improvements, the power-of-two
scaling procedure becomes simplest and faster than the currently known methods.

The computational complexity of the proposed scaling method by constant Sl = 2l

concerning required both modular addition operations and lookup tables is estimated as
k and 2k + 1, respectively, where k equals the number of primary non-redundant RNS
moduli. The time complexity is dlog2ke+ l modular clock cycles.

The use of minimally redundant RNS and a novel approach to calculating the rank of a
number at each iteration of the bisection method enables a significant decrease in the power-
of-two scaling computational complexity. Corresponding reduction factors concerning the
required modular addition operations and lookup tables are given in Tables 1–3.

The proposed approach to power-of-two scaling coincides with the development
vector of modern high-performance computing using RNS arithmetic. It enables the
implementation of an extensive class of tasks in various areas of science and technology,
first of all in cryptography and digital signal processing.

Author Contributions: Conceptualization, M.S.; investigation, Y.P.; methodology, M.S.; writing—
original draft preparation, M.S.; writing—review and editing, Y.P. All authors have read and improved
the final version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akushskii, I.Y.; Juditskii, D.I. Machine Arithmetic in Residue Classes; Soviet Radio: Moscow, Russia, 1968. (In Russian)
2. Amerbayev, V.M. Theoretical Foundations of Machine Arithmetic; Nauka: Alma-Ata, Kazakhstan, 1976. (In Russian)
3. Omondi, A.R.; Premkumar, B. Residue Number Systems: Theory and Implementation; Imperial College Press: London, UK, 2007.
4. Szabo, N.S.; Tanaka, R.I. Residue Arithmetic and Its Application to Computer Technology; McGraw-Hill: New York, NY, USA, 1967.
5. Molahosseini, A.S.; de Sousa, L.S.; Chang, C.H. (Eds.) Embedded Systems Design with Special Arithmetic and Number Systems;

Springer: Cham, Switzerland, 2017.
6. Soderstrand, M.A.; Jenkins, W.K.; Jullien, G.A.; Taylor, F.J. (Eds.) Residue Number System Arithmetic: Modern Applications in Digital

Signal Processing; IEEE Press: New York, NY, USA, 1986.
7. Chernyavsky, A.F.; Danilevich, V.V.; Kolyada, A.A.; Selyaninov, M.Yu. High-Speed Methods, and Systems of Digital Information

Processing; Belarusian State University: Minsk, Belarus, 1996. (In Russian)

Entropy 2022, 24, 1824 21 of 22

8. Ananda Mohan, P.V. Residue Number Systems. Theory and Applications; Springer: Cham, Switzerland, 2016.
9. Ding, C.; Pei, D.; Salomaa, A. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific:

Singapore, 1996.
10. Omondi, A.R. Cryptography Arithmetic: Algorithms and Hardware Architectures; Springer: Cham, Switzerland, 2020.
11. Chren, W.A., Jr. A new residue number division algorithm. Comput. Math. Appl. 1990, 19, 13–29. [CrossRef]
12. Chiang, J.-S.; Lu, M. A general division algorithm for the Residue Number System. In Proceedings of the 10th IEEE Symposium on

Computer Arithmetic, Grenoble, France, 26–28 June 1991; IEEE Computer Society Press: Washington, DC, USA, 1991; pp. 76–83.
13. Lu, M.; Chiang, J.-S. A novel division algorithm for Residue Number Systems. IEEE Trans. Comput. 1992, 41, 1026–1032. [CrossRef]
14. Hitz, M.A.; Kaltofen, E. Integer division in residue number systems. IEEE Trans. Comput. 1995, 44, 983–989. [CrossRef]
15. Hiasat, A.A.; Abdel-Aty-Zohdy, H.S. Design and implementation of an RNS division algorithm. In Proceedings of the 13th IEEE

Symposium on Computer Arithmetic, Asilomar, CA, USA, 6–9 July 1997; IEEE Computer Society Press: Washington, DC, USA,
1997; pp. 240–249.

16. Bajard, J.-C.; Didier, L.-S.; Muller, J.-M. A new Euclidean division algorithm for residue number systems. J. VLSI Signal Process.
Syst. Signal Image Video Technol. 1998, 19, 167–178. [CrossRef]

17. Yang, Y.H.; Chang, C.C.; Chen, C.Y. A high-speed division algorithm in residue number system using parity-checking technique.
Int. J. Comput. Math. 2004, 81, 775–780. [CrossRef]

18. Chang, C.-C.; Lai, Y.-P. A division algorithm for residue numbers. Appl. Math. Comput. 2006, 172, 368–378. [CrossRef]
19. Chang, C.-C.; Yang, J.-H. A division algorithm using bisection method in residue number system. Int. J.Comput. Consum. Control

(IJ3C) 2013, 2, 59–66.
20. Hung, C.Y.; Parhami B. An approximate sign detection method for residue numbers and its application to RNS division. Comput.

Math. Appl. 1994, 27, 23–35. [CrossRef]
21. Burton, D.M. Elementary Number Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 2011.
22. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: London, UK, 2008.
23. Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Boston, MA,

USA, 1998.
24. Shoup, V. A Computational Introduction to Number Theory and Algebra, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005.
25. Shenoy, A.P.; Kumaresan, R. Fast base extension using a redundant modulus in RNS. IEEE Trans. Comput. 1989, 38, 292–297.

[CrossRef]
26. Phatak, D.S.; Houston, S.D. New distributed algorithms for fast sign detection in residue number systems (RNS). J. Parallel Distrib.

Comput. 2016, 97, 78–95. [CrossRef]
27. Vu, T.V. Efficient implementations of the Chinese Remainder Theorem for sign detection and residue decoding. IEEE Trans.

Comput. 1985, 34, 646–651.
28. Kawamura, S.; Koike, M.; Sano, F.; Shimbo, A. Cox-rower architecture for fast parallel Montgomery multiplication. In Proceedings

of the EUROCRYPT’00: 19th International Conference on Theory and Application of Cryptographic Techniques, Bruges, Belgium,
14–18 May 2000; Springer: Berlin, Germany, 2000; pp. 523–538.

29. Nozaki, H.; Motoyama, M.; Shimbo, A.; Kawamura, S. Implementation of RSA algorithm based on RNS Montgomery multiplica-
tion. In Proceedings of the CHES 2001: Cryptographic Hardware and Embedded Systems, Third International Workshop, Paris,
France, 6–14 May 2001; Springer: Berlin, Germany, 2001; pp. 364–376.

30. Isupov, K.; Knyazkov, V. Interval estimation of relative values in Residue Number System. J. Circuits, Syst. Comput. 2018, 27,
1850004. [CrossRef]

31. Chervyakov, N.; Babenko, M.; Tchernykh, A.; Kucherov, N.; Miranda-López, V.; Cortés-Mendoza, J.M. AR-RRNS: Configurable
reliable distributed data storage systems for Internet of Things to ensure security. Future Gener. Comput. Syst. 2019, 92, 1080–1092.
[CrossRef]

32. Halevi, S.; Polyakov, Y.; Shoup, V. An improved RNS variant of the BFV homomorphic encryption scheme. In Topics in Cryptology–
CT-RSA 2019, Proceedings of the Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA, 4–8 March 2019; Lecture Notes
in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11405, pp. 83–105.

33. Selianinau, M. An efficient implementation of the Chinese Remainder Theorem in minimally redundant Residue Number System.
Comput. Sci. 2020, 21, 237–252. [CrossRef]

34. Selianinau, M. Computationally efficient approach to implementation of the Chinese Remainder Theorem algorithm in minimally
redundant Residue Number System. Theory Comput. Syst. 2021, 65, 1117–1140. [CrossRef]

35. Jullien, G. Residue number scaling and other operations using ROM arrays. IEEE Trans. Comput. 1978, 27, 325–336. [CrossRef]
36. Shenoy, M.A.P.; Kumaresan, R. A fast and accurate RNS scaling technique for high speed signal processing. IEEE Trans. Acoust.

Speech Signal Process. 1989, 37, 929–937. [CrossRef]
37. Barsi, F.; Pinotti, M. Fast base extension and precise scaling in RNS for look-up table implementation. IEEE Trans. Signal Process.

1995, 43, 2427–2430. [CrossRef]
38. Garsia, A.; Lloris, A. A look up scheme for scaling in the RNS. IEEE Trans. Comput. 1999, 48, 748–751. [CrossRef]
39. Griffin, M.; Sousa, M.; Taylor, F. Efficient scaling in the residue number system. In Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, Glasgow, UK, 23–26 May 1989; IEEE Computer Society Press: Washington, DC, USA,
1989; pp. 1075–1078.

http://doi.org/10.1016/0898-1221(90)90190-U
http://dx.doi.org/10.1109/12.156545
http://dx.doi.org/10.1109/12.403714
http://dx.doi.org/10.1023/A:1008065819322
http://dx.doi.org/10.1080/00207160410001708805
http://dx.doi.org/10.1016/j.amc.2005.02.008
http://dx.doi.org/10.1016/0898-1221(94)90052-3
http://dx.doi.org/10.1109/12.16508
http://dx.doi.org/10.1016/j.jpdc.2016.06.005
http://dx.doi.org/10.1142/S0218126618500044
http://dx.doi.org/10.1016/j.future.2017.09.061
http://dx.doi.org/10.7494/csci.2020.21.2.3616
http://dx.doi.org/10.1007/s00224-021-10035-y
http://dx.doi.org/10.1109/TC.1978.1675105
http://dx.doi.org/10.1109/ASSP.1989.28063
http://dx.doi.org/10.1109/78.469842
http://dx.doi.org/10.1109/12.780883

Entropy 2022, 24, 1824 22 of 22

40. Vasilevich, L.N.; Kolyada, A.A. Scaling in residue number systems. Cybern. Syst. Anal., 1989, 25, 610–615. [CrossRef]
41. Chernyavsky, A.F.; Kolyada, A.A.; Revinsky, V.V.; Selyaninov, M.Y.; Shabinskaja, E.V. Scaling methods in minimally redundant

modular arithmetic. Proc. Natl. Acad. Sci. Belarus Phys. Math. Ser. 1998, 4, 132–137.
42. Meyer-Base, U.; Stouraitis, T. New power-of-2 RNS scaling scheme for cell-based IC design. IEEE Trans. VLSI Syst. 2003, 11,

280–283. [CrossRef]
43. Cardarilli, G.C.; Del Re, A.; Nannarelli, A.; Re, M. Programmable power-of-two RNS scaler and its application to a QRNS

polyphase filter. In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005;
IEEE Computer Society Press: Washington, DC, USA, 2005; pp. 1002–1005.

44. Isupov, K.; Knyazkov, V.; Kuvaev, A. Fast power-of-two RNS scaling algorithm for large dynamic ranges. In Proceedings of the
2017 IVth International Conference on Engineering and Telecommunication (EnT), Moscow, Russia, 29–30 November 2017; IEEE
Computer Society Press: Washington, DC, USA, 2017; pp. 135–139.

45. Clemens, K.J. A modified definition of symmetric RNS improving scaling and overflow detection. IEEE Trans. Circuits Syst. 1985,
32, 412–413. [CrossRef]

46. Sousa, L. 2n RNS scalers for extended 4-moduli sets. IEEE Trans. Comput. 2015, 64, 3322–3334. [CrossRef]
47. Mustapha K.S.; Bankas E.K. RNS scaling algorithm for a new moduli set {22n+1 + 1, 22n+1, 22n+1 − 1}. Int. J. Comput. Appl. 2017,

165, 21–28.
48. Hiasat, A. Efficient RNS scalers for the extended three-moduli set {2n − 1, 2n+p, 2n + 1}. IEEE Trans Comput. 2017, 66, 1253–1260.

[CrossRef]
49. Hiasat, A. New residue number system scaler for the three-moduli set {2n+1 − 1, 2n, 2n − 1}. Computers 2018, 3, 46. [CrossRef]
50. Hiasat, A. A scaler design for the RNS three-moduli set {2n+1 − 1, 2n, 2n − 1} based on mixed-radix conversion. J. Circuits. Syst.

Comput. 2020, 29, 2050041. [CrossRef]
51. Taheri, M.R.; Navi, K.; Molahosseini, A.S. Efficient programmable power-of-two scaler for the three-moduli set {2n+p, 2n −

1, 2n+1 − 1}. ETRI J. 2020, 42, 596–607. [CrossRef]

http://dx.doi.org/10.1007/BF01075217
http://dx.doi.org/10.1109/TVLSI.2003.810799
http://dx.doi.org/10.1109/TCS.1985.1085714
http://dx.doi.org/10.1109/TC.2015.2401026
http://dx.doi.org/10.1109/TC.2017.2652474
http://dx.doi.org/10.3390/computers7030046
http://dx.doi.org/10.1142/S0218126620500413
http://dx.doi.org/10.4218/etrij.2018-0408

	Introduction
	The Basic Concepts of RNS Arithmetic
	The Approaches Currently Used to Calculate the Rank of a Number
	The Main Types of Scaling Algorithms in RNS Arithmetic
	A Novel Approach for Calculating the Rank of a Number Resulting from Scaling by 2
	A Novel Power-of-Two Modular Scaling Based on the Rank Positional Characteristic in Minimally Redundant RNS
	Discussion
	Conclusions
	References

