
Citation: Song, B.; Feng, Y.; Wang, Y.

DIR-Net: Deep Residual Polar

Decoding Network Based on

Information Refinement. Entropy

2022, 24, 1809. https://doi.org/

10.3390/e24121809

Academic Editor: T. Aaron Gulliver

Received: 31 October 2022

Accepted: 7 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

DIR-Net: Deep Residual Polar Decoding Network Based on
Information Refinement
Bixue Song, Yongxin Feng * and Yang Wang

School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
* Correspondence: fengyongxin@sylu.edu.cn

Abstract: Polar codes are closer to the Shannon limit with lower complexity in coding and decoding.
As traditional decoding techniques suffer from high latency and low throughput, with the develop-
ment of deep learning technology, some deep learning-based decoding methods have been proposed
to solve these problems. Usually, the deep neural network is treated as a black box and learns to
map the polar codes with noise to the original information code directly. In fact, it is difficult for
the network to distinguish between valid and interfering information, which leads to limited BER
performance. In this paper, a deep residual network based on information refinement (DIR-NET) is
proposed for decoding polar-coded short packets. The proposed method works to fully distinguish
the effective and interference information in the codewords, thus obtaining a lower bit error rate.
To achieve this goal, we design a two-stage decoding network, including a denoising subnetwork
and decoding subnetwork. This structure can further improve the accuracy of the decoding method.
Furthermore, we construct the whole network solely on the basis of the attention mechanism. It has a
stronger information extraction ability than the traditional neural network structure. Benefiting from
cascaded attention modules, information can be filtered and refined step-by-step, thus obtaining a
low bit error rate. The simulation results show that DIR-Net outperforms existing decoding methods
in terms of BER performance under both AWGN channels and flat fading channels.

Keywords: polar codes; deep learning; DIR-Net; denoising subnetwork; decoding subnetwork;
attention mechanism

1. Introduction

Polar codes are a forward error correction coding method applied in communication
systems based on the theory of channel polarization and are closer to the Shannon limit
than other channel coding methods [1]. Researchers have paid attention to them for their
lower complexity of coding and decoding. In recent years, they have emerged as a hot
topic for academic research, especially for their successful application in fifth-generation
mobile communication (5G) [2,3]. As a result, this study focuses on how to further enhance
the performance of the decoder.

The conventional decoding techniques can be generally classified as successive elimina-
tion (SC) [1] and belief propagation (BP) algorithms [2], in addition to enhanced techniques
based on the abovementioned schemes. One of them, the SC algorithm, has low com-
putational complexity but suffers from high latency and low throughput. To address
this issue, some studies concentrated on low-latency SC decoding techniques [4,5], which
combine the stability of recognition-based techniques with the dynamism of check-based
techniques. In addition, some studies have been presented to improve error correction
performance [6–12]. While all of these are serial techniques, which suffer from random
node errors, some parallel decoding techniques, including the BP algorithm [13,14], have
been proposed to address this issue. Despite the improved error performance of the BP
algorithm, it has high complexity due to iterative computation.

Deep learning has been demonstrated to be a potent technique for enhancing the
speed and performance of algorithms in the domains of computer vision and natural

Entropy 2022, 24, 1809. https://doi.org/10.3390/e24121809 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121809
https://doi.org/10.3390/e24121809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24121809
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121809?type=check_update&version=1

Entropy 2022, 24, 1809 2 of 18

language processing. Recently, the technology has also been applied to communication
systems, including channel coding. Deep neural networks have been proposed to assist
conventional decoding in the area of polar decoding, such as lowering latency [15–20],
extracting sequence features [21–23], reducing the memory overhead [24], and learning
the noise correlation [25]. The construction of deep learning decoding networks has
recently caught the attention of some researchers. A deep feed-forward neural network was
introduced in [26] to directly decode the input polar codes. A fully connected network was
proposed in [27] to decode polar-coded short packets over a flat fading channel. Wei et al.
demonstrated that the neural network could learn the entire coding structure by comparing
the three network structures of MLP, CNN, and RNN under the same conditions [28]. To
improve the SNR of received symbols, a denoiser based on residual learning was introduced
before the neural network decoder (NND) in [29], which was characterized as a residual
neural network decoder (RNND). In [30], a double long short-term memory (DLSTM)
neural network was proposed to improve the performance of short block length by clipping
frozen bits to enhance prediction accuracy. Deep learning-based decoders perform better
than traditional decoders [31]. However, most decoding technologies treat deep neural
networks as black boxes, where the decoding network consists of only a few fully connected
or convolutional layers that take polar codes as inputs to the network and output decoded
symbols directly. These techniques assume that all information, including noise and some
other information, positively contributes to the decoding.

In this paper, a novel deep-learning framework is proposed for polar decoding to im-
prove accuracy. Unlike traditional deep learning decoders which use all input information
indiscriminately for decoding, a deep residual network based on information refinement
(DIR-Net) with attention mechanism is designed to refine the information step-by-step, and
it achieves high-quality decoding. We utilize a large number of attention modules in the
designed decoding network in order to better distinguish between valid and disturbing
information. The proposed DIR-Net is divided into two stages, the denoising stage and
the decoding stage. In the former stage, a denoising subnetwork (DN-SBN) is constructed
to remove the noise in the received codewords. Here, we utilize 1D convolution layers
with residual connection to construct the base subnetwork. Then, we add an attention
module after each convolution block to separate the valid information from the noise. In the
decoding stage, a decoding subnetwork (DC-SBN) with a fully connectivity and attention
mechanism is constructed. The designed attention module can refine the input information
and preserve only the effective information for decoding. By cascading these attention
modules, the performance of the decoder can be gradually improved. Experimental results
show that our proposed DIR-Net outperforms existing decoding methods and obtains
state-of-the-art performance.

The main contributions of this paper are summarized as follows:

(1) We design a novel information optimization module for polar decoding based on the
attention mechanism. This module can avoid the interference of invalid information
during the decoding.

(2) With the designed information optimization module as the core, we construct an
advanced deep learning decoding network. To our knowledge, this is the first time
that the attention modules are used completely to construct a decoding network for
polar codes. The network refines information step-by-step by cascading multiple
attention modules and exhibits excellent decoding performance.

(3) We evaluated the effectiveness of the proposed decoding network in the Gaussian
channel and the Rayleigh fading channel, respectively. The experimental results
demonstrate that our proposed decoding network can effectively suppress the inter-
fering information and achieve high BER performance in both channels.

The remainder of the paper proceeds as follows: the decoding method of polar codes is
first introduced in the next section. Then, the details of the proposed method are presented.
In Section 4, the experimental results are shown to demonstrate the effectiveness of our
method. We summarize our study in the last section.

Entropy 2022, 24, 1809 3 of 18

2. Background
2.1. Polar Code

A polar code of length N with K information bits can be expressed as (N, K), where
K channels are used to transmit information bits, and N–K channels are used to transmit
frozen bits. The encoding process of polar codes can be described as follows:

xN
1 = uN

1 GN , (1)

where xN
1 = {x1, x2, . . . , xn} represents the codeword bits, uN

1 represents the source bits,
GN = BN F⊗n is the generator matrix. BN is the bit-reversal permutation matrix, and F⊗n

denotes the n-th Kronecker power, with

F =

[
1 0
1 1

]
. (2)

2.2. Neural Network Decoder

Unlike the traditional decoding schemes which decode the codewords with analytical
or iterative methods, deep learning decoding methods implement decoding tasks by deep
neural networks. The decoding network is trained offline with huge amounts of data
and used online in the real world. To obtain a high-quality decoder, large amounts of
training data need to be collected first. The training data consist of noisy polar codes and
the original decoded signal. The former is the input of the decoding network, and the
latter is the corresponding label. The data can be collected in the communication system
with polar codes or by computer simulation. The latter is the method most used in the
literature. In general, training data are specified with a code length k, and there are n code
words X = {x1, x2, . . . , xn} under the code length requirements, where each code word
is xn =

{
x1

n, x2
n, . . . , xk

n
}

. Subsequently, the data are encoded using the polar encoding
algorithm. To make the decoding algorithm resistant to noise interference in the channel,
the encoded signal is usually processed with noise. The whole process is expressed as

zn = (xn)
∗ + µn, (3)

where zn is the received codeword, µn is noise, and (·)∗ is the codeword after encoding.
The training data pair (zn, xn) is obtained through this process, where zn ∈ Z is the input
of the network, and xn ∈ X is the training label.

The structure of the neural network decoder (NND) can be expressed as
{zn, S1, S2, . . . , SL, x̂n}, where L is the number of network layers, Sl refers to the l − th
layer and 1 ≤ l ≤ L, and x̂n denotes the output. For each layer, there is an associated
Sl−1 × Sl weight matrix w(l) and a 1× Sl bias vector b(l) [32]. The output vector of layer l
is denoted as

z(l)n = fl

(
z(l−1)

n

)
= ρ

(
z(l−1)

n ∗w(l) + b(l)
)

, (4)

where ρ(∗) is the activation function [32]. When 1 ≤ l ≤ L− 1, it can be expressed as

ρ(m) = max(0, m). (5)

When l = L, it can be expressed as

ρ(m) =
1

1 + e−m . (6)

It is the sigmoid function, which restricts the values of the output layer to the range (0, 1).
The NND can be denoted as

pn = f (zn) = f ρ
L(f ρ

L−1

(
. . . (f ρ

1 (zn)
)
)), (7)

Entropy 2022, 24, 1809 4 of 18

where pn refers to the vector of probabilities. f ρ
l refers to the activated output of the l − th

layer. Binarize pn to obtain x̂n.
Next, the parameters are updated utilizing backpropagation algorithm [33]. In NND,

the commonly used loss function is MSE or cross-entropy (CE) [32] as

LossMSE = 1
K×Znum

K−1
∑

i=0

Znum−1
∑

j=0
(xi

j − pi
j)

2,

LossCE = − 1
K×Znum

K−1
∑

i=0

Znum−1
∑

j=0

[(
1− xi

j

)
log
(

1− pi
j

)
+ xi

j log
(

pi
j

)]
,

(8)

where Znum and K are the mini-batch size and information bits of each codeword, respec-
tively. xi

j ∈ xn and pi
j ∈ pn represents the bit value and output probability of the i− th bit

in the j− th codewords.

3. DIR-Net Method

The proposed DIR-Net consists of two subnetworks, a denoising subnetwork, and
a decoding subnetwork. The cores of both networks are the attention modules. These
two parts utilize a specially designed attention structure to refine the input information
gradually and complete the process of decoding in the end. We first introduce the overview
processing of our polar encode/decode framework. Then, the denoising subnetwork and
decoding subnetwork are introduced. In the end, we introduce the training details.

3.1. Overview of the Framework

The whole framework of the proposed DIR-Net is shown in Figure 1. The input is the
encoded signal transmitted through the channel, while the output is the decoded signal by
DIR-Net.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 18

into the denoising subnetwork to perform refinement and obtain the denoising code-
words 𝑀 = {𝑚1, 𝑚2. . . 𝑚𝑁}. After the denoising subnetwork, a step-wish decoding sub-
network with attention mechanism is utilized to decode the polar codes.

1a
2a
3a

na

. . .

LLR

ResBlock

1D
 C

onv

LR
eLU

1D
 C

onv

+

Local
A

ttention

...

G
lobal

A
ttention

ResBlock

...

1D
 C

onv

LR
eLU

A
FC

M
odule

A
FC

M
odule

...

...

FC

1b
2b
3b

kb

.
.
.

Denoising Subnetwork Decoding Subnetwork

1D
 C

onv

TanH

Figure 1. Overview of the proposed framework.

The reasons for building a two-stage decoding network are as follows: The signal will
introduce much noise during transmission in the channel. This noise will bring a negative
impact on decoding accuracy. So, we construct a denoising subnetwork to reduce the
noise in the signal. The decoding accuracy of the decoder will be greatly improved after
that.

In addition, we introduce an attention mechanism to the denoiser and decoder. The
attention mechanism in the denoiser separates the valid information from the noise, which
further refines the information and prepares it for decoding. The attention mechanism in
the decoder allows further adaptive selects useful information in decoding process. The
important information is given higher weights compared with non-important infor-
mation. The accuracy can be improved by the two-stage information refinement. On basis
of the above considerations, we design a more advanced network structure than existing
NND methods, as shown in Figure 1.

The structure of decoder and denoiser whole work is explained in detail below.

3.2. Attention-Based Denoising Subnetwork
After comparing several neural networks, we choose the residual network as the

backbone of the denoising subnetwork. A residual network is cascaded by some residual
blocks with the same structure, and each block contains several layers. The core idea of
the residual block is learning only the difference between the input and output features,
which is much similar to the denoising process. With the signal with noise as input, the
residual block learns to extract noise and subtracts it from the signal. On the other hand,
residual network naturally has the advantages of easy training and preventing gradients
vanish. For the design of the denoising subnetwork, we refer to the structure proposed in
[34] which is each block contains two convolution layers and one activation layer. We
connect an attention module behind each residual block. The reason is that we think the
features extract by the network are not all helpful for denoising. Some features may be
useless or even negative. The attention module takes the output of the residual block as
input, generating a suitable weight for each feature. Multiply these weights by the corre-
sponding features, the features will be enhanced or suppressed. For the design of the at-
tention module, we refer to the structure proposed in CBAM [25]. A convolution layer
and a global average pooling layer are used to generate spatial feature weights and chan-
nel feature weights, respectively. For the last attention module, all the features from pre-
vious residual block are involved in the weight calculation, which makes the generated
weight more accurate. By feeding the weighted features to the following residual blocks,
a better denoising effect will be obtained.

Usually, signal denoising relies more on local features. In other words, the denoising
of each information bit is more dependent on its neighbors than distant information bits.
Therefore, a convolution network is constructed to perform the denoising task, which is
powerful in extracting local structural features in computer vision tasks. The structure of
our denoising subnetwork is shown in Figure 1.

Figure 1. Overview of the proposed framework.

The information sequence sent by the source transmitter is encoded into polar codes.
Subsequently, the codeword is modulated to suit transmission in the communication
channel. Usually, there is noise existing in the channel. Thus, the signal model for received
symbols can be formulated as follows:

zn = (xn)
∗ + µn, (9)

where µn ∼
(

0, σ2

2

)
represents Gaussian white noise. The goal of our work is to predict of

estimation x̂n of xn from the received signal zn.
As shown in Figure 1, there are three processing stages in our decoding method, the

preprocessing stage, the denoising stage, and the decoding stage. The preprocessing stage
is to obtain the log-likelihood ratio (LLR) values by assuming the distribution of Gaussian
noise. The LLR of the transmitted codeword is

LLR(zn)= ln
P(x = 0|zn)

P(x = 1|zn)
=

2zn

σ2 . (10)

Entropy 2022, 24, 1809 5 of 18

The denoising stage and decoding stage are performed by the two subnetworks in
DIR-Net, which refine and decode the signal via cascaded attention modules. Assuming
that the output is OLLR = {l1, l2 . . . lN} through the LLR process, where OLLR contains the
noise superimposed in the process of channel transmission, the obtained LLR value is fed
into the denoising subnetwork to perform refinement and obtain the denoising codewords
M = {m1, m2 . . . mN}. After the denoising subnetwork, a step-wish decoding subnetwork
with attention mechanism is utilized to decode the polar codes.

The reasons for building a two-stage decoding network are as follows: The signal will
introduce much noise during transmission in the channel. This noise will bring a negative
impact on decoding accuracy. So, we construct a denoising subnetwork to reduce the noise
in the signal. The decoding accuracy of the decoder will be greatly improved after that.

In addition, we introduce an attention mechanism to the denoiser and decoder. The
attention mechanism in the denoiser separates the valid information from the noise, which
further refines the information and prepares it for decoding. The attention mechanism in
the decoder allows further adaptive selects useful information in decoding process. The
important information is given higher weights compared with non-important information.
The accuracy can be improved by the two-stage information refinement. On basis of the
above considerations, we design a more advanced network structure than existing NND
methods, as shown in Figure 1.

The structure of decoder and denoiser whole work is explained in detail below.

3.2. Attention-Based Denoising Subnetwork

After comparing several neural networks, we choose the residual network as the
backbone of the denoising subnetwork. A residual network is cascaded by some residual
blocks with the same structure, and each block contains several layers. The core idea of
the residual block is learning only the difference between the input and output features,
which is much similar to the denoising process. With the signal with noise as input, the
residual block learns to extract noise and subtracts it from the signal. On the other hand,
residual network naturally has the advantages of easy training and preventing gradients
vanish. For the design of the denoising subnetwork, we refer to the structure proposed
in [34] which is each block contains two convolution layers and one activation layer. We
connect an attention module behind each residual block. The reason is that we think the
features extract by the network are not all helpful for denoising. Some features may be
useless or even negative. The attention module takes the output of the residual block
as input, generating a suitable weight for each feature. Multiply these weights by the
corresponding features, the features will be enhanced or suppressed. For the design of the
attention module, we refer to the structure proposed in CBAM [25]. A convolution layer
and a global average pooling layer are used to generate spatial feature weights and channel
feature weights, respectively. For the last attention module, all the features from previous
residual block are involved in the weight calculation, which makes the generated weight
more accurate. By feeding the weighted features to the following residual blocks, a better
denoising effect will be obtained.

Usually, signal denoising relies more on local features. In other words, the denoising
of each information bit is more dependent on its neighbors than distant information bits.
Therefore, a convolution network is constructed to perform the denoising task, which is
powerful in extracting local structural features in computer vision tasks. The structure of
our denoising subnetwork is shown in Figure 1.

Considering that the signal is one-dimensional, a 1D convolutional layer is utilized
to construct our network. At the beginning of the network, a convolutional layer is used
to map the signal to the feature space. After that, a series of residual blocks and attention
modules are utilized to denoise the signal in the feature domain. The residual blocks are
responsible for feature extraction, and the attention modules are responsible for separating
valid information and noise. Through this cascade, signals can be gradually refined. The

Entropy 2022, 24, 1809 6 of 18

number of residual blocks is set using a tradeoff between denoising quality and speed.
Specifically, the structure of our residual block is shown in Figure 2.

Entropy 2022, 24, x FOR PEER REVIEW 6 of 18

Considering that the signal is one-dimensional, a 1D convolutional layer is utilized
to construct our network. At the beginning of the network, a convolutional layer is used
to map the signal to the feature space. After that, a series of residual blocks and attention
modules are utilized to denoise the signal in the feature domain. The residual blocks are
responsible for feature extraction, and the attention modules are responsible for separat-
ing valid information and noise. Through this cascade, signals can be gradually refined.
The number of residual blocks is set using a tradeoff between denoising quality and speed.
Specifically, the structure of our residual block is shown in Figure 2.

1D Convolution 1D Convolution
LReLU LReLUs(t)

f(s(t)) f(s(t))+s(t)

s(t) identity

Figure 2. Structure of residual block.

The residual block is composed of a convolution branch and a short connection
branch. The convolution branch contains two 1D convolution layers and an activation
layer. The output 𝐻(𝑥) of the residual block is defined as 𝐻 𝑠(𝑡) = 𝑠(𝑡) + 𝑓 𝑠(𝑡) , (11)

where 𝑠(𝑡) is the input of both branches, and 𝑓(𝑠(𝑡)) is the output of the convolution
branch. The final output is the sum of the two branches. Here, leaky ReLU (LReLU) is
utilized as activation function in our network. It is defined as follows:

𝐿 𝑅𝑒 𝐿 𝑈(𝑘 (𝑠(𝑡)) = 𝑘 (𝑠(𝑡)) 𝑖𝑓 𝑘 (𝑠(𝑡)) > 0𝑎 ⋅ 𝑘 (𝑠(𝑡)) 𝑒𝑙𝑠𝑒 , (12)

where 𝑎 is a constant value that decides the slope of the activation function on the nega-
tive semiaxis, and 𝑘 (𝑠(𝑡)) is the feature of 𝑠(𝑡) extracted by the 𝑖-th layer of the neural
network. As is shown in Figure 3, LReLU can preserve negative values that are beneficial
for our task, as the range of our data is [−1, 1].

2 4−2−4

2

4

−2

−4

0
0

2 4−2−4

2

4

−2

−4

0
0

(a) ReLU (b) LReLU

Figure 3. Curves of ReLU and LReLU.

In this way, the neural network can be forced to learn the noise distribution and then
remove the noise from the input signal via an addition operation. Compared with direct

Figure 2. Structure of residual block.

The residual block is composed of a convolution branch and a short connection branch.
The convolution branch contains two 1D convolution layers and an activation layer. The
output H(x) of the residual block is defined as

H(s(t)) = s(t) + f (s(t)), (11)

where s(t) is the input of both branches, and f (s(t)) is the output of the convolution branch.
The final output is the sum of the two branches. Here, leaky ReLU (LReLU) is utilized as
activation function in our network. It is defined as follows:

LReLU(ki(s(t)) =

{
ki(s(t)) i f ki(s(t)) > 0
a · ki(s(t)) else

, (12)

where a is a constant value that decides the slope of the activation function on the negative
semiaxis, and ki(s(t)) is the feature of s(t) extracted by the i-th layer of the neural network.
As is shown in Figure 3, LReLU can preserve negative values that are beneficial for our
task, as the range of our data is [−1, 1].

Entropy 2022, 24, x FOR PEER REVIEW 7 of 19

responsible for feature extraction, and the attention modules are responsible for
separating valid information and noise. Through this cascade, signals can be gradually
refined. The number of residual blocks is set using a tradeoff between denoising quality
and speed. Specifically, the structure of our residual block is shown in Figure 2.

1D Convolution 1D Convolution
LReLU LReLUs(t)

f(s(t)) f(s(t))+s(t)

s(t) identity

Figure 2. Structure of residual block.

The residual block is composed of a convolution branch and a short connection
branch. The convolution branch contains two 1D convolution layers and an activation
layer. The output 𝐻(𝑥) of the residual block is defined as 𝐻 𝑠(𝑡) = 𝑠(𝑡) + 𝑓 𝑠(𝑡) , (11)

where 𝑠(𝑡) is the input of both branches, and 𝑓(𝑠(𝑡)) is the output of the convolution
branch. The final output is the sum of the two branches. Here, leaky ReLU (LReLU) is
utilized as activation function in our network. It is defined as follows:

𝐿 𝑅𝑒 𝐿 𝑈(𝑘 (𝑠(𝑡)) = 𝑘 (𝑠(𝑡)) 𝑖𝑓 𝑘 (𝑠(𝑡)) > 0𝑎 ⋅ 𝑘 (𝑠(𝑡)) 𝑒𝑙𝑠𝑒 , (12)

where 𝑎 is a constant value that decides the slope of the activation function on the
negative semiaxis, and 𝑘 (𝑠(𝑡)) is the feature of 𝑠(𝑡) extracted by the 𝑖-th layer of the
neural network. As is shown in Figure 3, LReLU can preserve negative values that are
beneficial for our task, as the range of our data is [−1, 1].

2 4−2−4

2

4

−2

−4

0
0

2 4−2−4

2

4

−2

−4

0
0

(a) (b)

Figure 3. Curves of (a) ReLU and (b) LReLU.

In this way, the neural network can be forced to learn the noise distribution and then
remove the noise from the input signal via an addition operation. Compared with direct
learning, the residual method enables the network to converge more easily and achieve a
better denoising effect. We connect an attention module after each residual block. The
attention module learns to suppress noise and preserves only valid information. To
improve the denoising performance of the network, multiple residual blocks and attention

Figure 3. Curves of (a) ReLU and (b) LReLU.

In this way, the neural network can be forced to learn the noise distribution and
then remove the noise from the input signal via an addition operation. Compared with
direct learning, the residual method enables the network to converge more easily and
achieve a better denoising effect. We connect an attention module after each residual block.

Entropy 2022, 24, 1809 7 of 18

The attention module learns to suppress noise and preserves only valid information. To
improve the denoising performance of the network, multiple residual blocks and attention
modules are cascaded as shown in Figure 3, such that the codeword can be refined by these
blocks step-by-step. Consequently, the noise of the signal reaches a relatively low level,
thereby laying a foundation for the subsequent decoding processing.

We add two attention modules to the network for separating the signal and noise,
namely, local and global attention modules. As an independent module, the attention
module only changes the value of the feature without changing its shape. Thus, it can be
inserted anywhere on the network. A local attention module is inserted between every two
residual blocks to optimize local features. Furthermore, the output of the feature by the last
residual block is optimized by a global attention module.

The structure of the attention module is shown in Figure 4. For a feature with the
shape C× L that needs to be processed, it needs to be divided into two branches. Here, C
is the number of feature channels, and L is the length of the feature. For the first branch,
a global average pooling layer is utilized and the channel feature with shape C × 1 is
outputted. For the other branch, an 1× 1 convolution layer is used, and the spatial feature
with shape 1× L is outputted. Both features are processed by the sigmoid function to limit
the value to the range [0, 1]. They are multiplied with the original features as weights.
Among them, the normalized channel feature is multiplied by the original feature on each
channel. After that, the normalized spatial feature is multiplied by the channel-weighted
features on every location in the spatial dimension. Unlike the local attention module, the
attention weights of the global attention module derive from all shallow features. The
features from all residual blocks are concatenated together, and a 1× 1 convolution layer is
utilized to generate the features that have the same shape as the final feature. The weight
matrix is generated from this feature and applied to the final feature.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 19

modules are cascaded as shown in Figure 3, such that the codeword can be refined by
these blocks step-by-step. Consequently, the noise of the signal reaches a relatively low
level, thereby laying a foundation for the subsequent decoding processing.

We add two attention modules to the network for separating the signal and noise,
namely, local and global attention modules. As an independent module, the attention
module only changes the value of the feature without changing its shape. Thus, it can be
inserted anywhere on the network. A local attention module is inserted between every
two residual blocks to optimize local features. Furthermore, the output of the feature by
the last residual block is optimized by a global attention module.

The structure of the attention module is shown in Figure 4. For a feature with the
shape 𝐶 × 𝐿 that needs to be processed, it needs to be divided into two branches. Here, 𝐶 is the number of feature channels, and 𝐿 is the length of the feature. For the first branch,
a global average pooling layer is utilized and the channel feature with shape 𝐶 × 1 is
outputted. For the other branch, an 1 × 1 convolution layer is used, and the spatial
feature with shape 1 × 𝐿 is outputted. Both features are processed by the sigmoid
function to limit the value to the range [0, 1]. They are multiplied with the original features
as weights. Among them, the normalized channel feature is multiplied by the original
feature on each channel. After that, the normalized spatial feature is multiplied by the
channel-weighted features on every location in the spatial dimension. Unlike the local
attention module, the attention weights of the global attention module derive from all
shallow features. The features from all residual blocks are concatenated together, and a 1 × 1 convolution layer is utilized to generate the features that have the same shape as
the final feature. The weight matrix is generated from this feature and applied to the final
feature.

×
Global

avepooling

1 1×
Conv

C

L

Input
Feature

Output
Feature

×
Global

avepooling

1 1×
ConvmC

L

1 1×
Conv

C

L

...

Concat Feature

1fea

2fea

mfea

mfea

Input
Feature Output

Feature

(a) (b)

Figure 4. Structure of (a) local attention module and (b) global attention module.

In the last part of the subnetwork, a convolutional layer is used to map the codewords
from the feature domain to the signal domain. A TanH activation function limits the signal
value to [−1, 1], which is defined as follows:

𝑇𝑎𝑛𝐻(𝑥) = 𝑒 − 𝑒𝑒 + 𝑒 . (13)

The detailed values of the denoising subnetwork parameters are listed in Table 1.

Figure 4. Structure of (a) local attention module and (b) global attention module.

In the last part of the subnetwork, a convolutional layer is used to map the codewords
from the feature domain to the signal domain. A TanH activation function limits the signal
value to [−1, 1], which is defined as follows:

TanH(x) =
ex − e−x

ex + e−x . (13)

The detailed values of the denoising subnetwork parameters are listed in Table 1.

Entropy 2022, 24, 1809 8 of 18

Table 1. Network structure of denoising subnetwork.

Block Layer Number

Input N × 1 × 1

ResBlock
Conv + LReLU k3s1 N × 16

Conv k3s1 N × 16
Add + LReLU —— N × 16 × 4

Local
Attention

GAP + Sigmoid—1 × 16 Conv + Sigmoid k1s1 N × 1

Multiply —— N × 16

ResBlock
Conv + LReLU k3s1 N × 16

Conv k3s1 N × 16
Add + LReLU —— N × 16

× 1
Global

Attention

Concat —— N × 64
Conv + LReLU k1s1 N × 16

LReLU —— N × 16

GAP + Sigmoid—1 × 16 Conv + Sigmoid k1s1 N × 1

Multiply —— N × 16

Output Conv + Tanh k3s1 N × 1 × 1

In Table 1, k is the kernel and s is the stride. For example, k3s1 denotes that the kernel
is 3 and stride is 1. GAP represents global average pooling.

In the training stage, the loss function (MSE) used to optimize the network is ex-
pressed as

MSE =
1
m

m

∑
i=1

(yi − g(xi))
2, (14)

where yi and g(xi) represent the true value and predicted value of the i-th sample, respec-
tively, and m is the number of samples.

3.3. Attention-Based Decoding Subnetwork

After being processed by the denoising subnetwork, the signal is further decoded
to obtain the original information. According to the encoding rules of polar codes, each
encoded bit contains the information of most other bits. Thus, the process of polar encoding
can be regarded as a global operation. However, one-dimensional convolution can only
obtain local information for each operation. Although the receptive field can be increased
to obtain global information by superimposing multilayer convolution, a deeper network
is required, and two bits that are far apart cannot establish an effective connection by these
means. Considering the above, the fully connected layer with attention mechanism (AFC)
is adopted to construct the decoding sub-network.

In order to ensure that the decoding network to have sufficient decoding capacity to
deal with various codewords, the network is usually designed to extract more feature than
the decoding process really needs. For a codeword with length N, the number of neurons in
the first layer is often greater than N. With the depth increase of the network, the number of
neurons gradually decreases until information bits K. In the training process, the nonlinear
operation of the network will automatically learn a decoding algorithm, while there must
be some features extract from decoding subnetwork are invalid. Similar to denoising
subnetwork, we connect an attention module after each fully connected layer except the
last one to preserve useful information and suppress invalid information. Inspired by the
structure proposed in image semantic segmentation [35] and translation tasks [36], we
construct an encode/decode structure to generate weights for each feature. This structure
has been proved to be effective in extracting semantic information. Here, we simplify it to
three layers of fully connected layers, in which the number of neurons in the middle layer
is less than that in the front and back layers.

Entropy 2022, 24, 1809 9 of 18

As shown in Figure 1, the decoding subnetwork is composed of three parts, the feature
extraction part, the feature mapping part, and the classification part. As with the denoising
subnetwork, a convolution layer is utilized to transform the input data to the feature
domain. After that, the features are fed to a series of feature mapping networks composed
of AFC units, which map the codeword from the polar encoding feature space to the
original codeword feature space. The structure of the AFC is shown in Figure 5. The input
features are first copied out and used to calculate the weights of each neuron. The weight
calculation subnetwork has an encode/decode structure. The input is first squeezed by a
fully connected layer to extract semantic features. After that, an expended fully connected
layer is utilized to inflate the feature to its original shape. To limit the range of weights, the
sigmoid function is used to normalize the feature value to [0, 1]. In the end, the normalized
weights are multiplied by the original features to finish the refinement of the input feature.
Through the units, this system can carry out adaptive processing on the input information
according to importance, giving more weight to important information and less weight to
unimportant or negative information.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 18

we simplify it to three layers of fully connected layers, in which the number of neurons in
the middle layer is less than that in the front and back layers.

As shown in Figure 1, the decoding subnetwork is composed of three parts, the fea-
ture extraction part, the feature mapping part, and the classification part. As with the de-
noising subnetwork, a convolution layer is utilized to transform the input data to the fea-
ture domain. After that, the features are fed to a series of feature mapping networks com-
posed of AFC units, which map the codeword from the polar encoding feature space to
the original codeword feature space. The structure of the AFC is shown in Figure 5. The
input features are first copied out and used to calculate the weights of each neuron. The
weight calculation subnetwork has an encode/decode structure. The input is first
squeezed by a fully connected layer to extract semantic features. After that, an expended
fully connected layer is utilized to inflate the feature to its original shape. To limit the
range of weights, the sigmoid function is used to normalize the feature value to [0, 1]. In
the end, the normalized weights are multiplied by the original features to finish the re-
finement of the input feature. Through the units, this system can carry out adaptive pro-
cessing on the input information according to importance, giving more weight to im-
portant information and less weight to unimportant or negative information.

FC FC

AFC module

Figure 5. Structure of attention fully connected layer (AFC) module.

In the decode subnetwork, multiple AFC units are cascaded into a multilayer AFC
network to decode the input data. The output of each AFC unit serves as the input of the
next layer of the AFC unit. In the process of decoding each bit, the contribution of different
bits is different. The attention mechanism in the AFC unit can impose an importance co-
efficient on each bit self-adaptively, thereby ensuring that important information can be
fully utilized, while reducing the interference of other information to the decoding pro-
cess. By this means, the features can be refined step-by-step. The detailed values of net-
work parameters of the decoding subnetwork are listed in Table 2.

Table 2. Network structure of decoding subnetwork.

Block Layer Number
Input 𝑁 × 1 × 1

ConvBlock Conv + LReLU 𝑘3𝑠1 𝑁 × 16 × 1

AFC
Module

FC + LReLU 512 × 1
FC + LReLU 256 × 1

FC + Sigmoid 512 × 1
Multiply 512 × 1

× 1

AFC
Module

FC + LReLU 256 × 1
FC + LReLU 128 × 1

FC + Sigmoid 256 × 1
Multiply 256 × 1

× 1

AFC FC + LReLU 128 × 1 × 1

Figure 5. Structure of attention fully connected layer (AFC) module.

In the decode subnetwork, multiple AFC units are cascaded into a multilayer AFC
network to decode the input data. The output of each AFC unit serves as the input of the
next layer of the AFC unit. In the process of decoding each bit, the contribution of different
bits is different. The attention mechanism in the AFC unit can impose an importance
coefficient on each bit self-adaptively, thereby ensuring that important information can be
fully utilized, while reducing the interference of other information to the decoding process.
By this means, the features can be refined step-by-step. The detailed values of network
parameters of the decoding subnetwork are listed in Table 2.

Due to the inconsistent length of the codeword before and after decoding, a fully
connected layer is added at the end of the decoding subnetwork. In this way, the features
can be mapped to the original codewords to complete the entire decoding process. In the
decoding network training phase, the decoding process is treated as a multilabel binary
classification task. Accordingly, the loss function of the subnetwork is expressed as follows:

Loss = −
(

y · log(
∧
y)
)
+ (1− y) · log(1− ∧y)), (15)

where y is the real decoded data, and
∧
y is the predicted decoded data.

Entropy 2022, 24, 1809 10 of 18

Table 2. Network structure of decoding subnetwork.

Block Layer Number

Input N × 1 × 1

ConvBlock Conv + LReLU k3s1 N × 16 × 1

AFC
Module

FC + LReLU 512 × 1
FC + LReLU 256 × 1

FC + Sigmoid 512 × 1
Multiply 512 × 1

× 1

AFC
Module

FC + LReLU 256 × 1
FC + LReLU 128 × 1

FC + Sigmoid 256 × 1
Multiply 256 × 1

× 1

AFC
Module

FC + LReLU 128 × 1
FC + LReLU 64 × 1

FC + LSigmoid 128 × 1
Multiply 128 × 1

× 1

AFC
Module

FC + LReLU 64 × 1
FC + LReLU 32 × 1

FC + Sigmoid 64 × 1
Multiply 64 × 1

× 1

Output FC K × 1 × 1

4. Experiments and Results
4.1. Experiment Setting and Training Details

To simulate and verify the effectiveness of the decoding model, the program was
written in Python language, and the network part was implemented in the Pytorch deep
learning framework. The computer used an Ubuntu 16 operating system.

We tested the DIR-Net method with five lengths of original codewords: 8, 16, 32, 64,
and 128 code lengths, with the corresponding polar decode length of 16, 32, 64, 128, and 256,
respectively. As for the training data, all the original codewords were generated randomly
with the binary model. Then, they were encoded into polar codes for network training. In
all training stages, the learning rate of these networks was set to 0.001 during training. To
prevent the network from overfitting at the initial stage of training, the warmup training
strategy was utilized. In the first 1000 iterations, the learning rate was gradually increased
from 0.0001 to 0.001, while, in the subsequent training process, the learning rate remained
constant until the model converged.

The neural network training process we designed was divided into three steps. Firstly,
only the denoising subnetwork was trained. Here, the input to the network was the re-
ceived data processed by LLR, while the trained label was the data input to the channel.
Furthermore, the label data contained no noise and attenuation via the channel. Secondly,
after training the denoising subnetwork, the parameters of the network were fixed, and
the decoding subnetwork was trained. At this point, the output of the denoising subnet-
work was regarded as the input of the decoding subnetwork, and the original unencoded
codeword was taken as the label to train the decoding subnetwork. Finally, the entire
network was finetuned together. At this stage, the denoising subnetwork and the decoding
subnetwork were released for training at the same time, so that the two subnetworks could
better work together.

4.2. Ablation Experiments
4.2.1. Denoiser Performance

As is known, denoising is the preprocessing for codewords before decoding. The noise
interference can be effectively reduced by a denoiser, which is convenient for more accurate
performance of the decoder. In this section, we explore the effect of the proposed denoisers

Entropy 2022, 24, 1809 11 of 18

with different code lengths, and we compare the results with the absence of denoising.
The denoiser is composed of a convolution layer, which can denoise codes with different
lengths without changing the structure. As a result, (16, 8) polar codes were adopted as
training data, and (16, 8), (32, 16), (64, 32), (128, 64), and (256, 128) polar codes were utilized
as test data in the experiment. The test signal-to-noise ratio (SNR) ranged from 0 dB to 8 dB
for different code lengths. The results before and after denoising are shown in Figure 6.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 18

denoising. The denoiser is composed of a convolution layer, which can denoise codes with
different lengths without changing the structure. As a result, (16, 8) polar codes were
adopted as training data, and (16, 8), (32, 16), (64, 32), (128, 64), and (256, 128) polar codes
were utilized as test data in the experiment. The test signal-to-noise ratio (SNR) ranged
from 0 dB to 8 dB for different code lengths. The results before and after denoising are
shown in Figure 6.

Figure 6. The SNR comparison of signals before and after denoising with different code lengths.

In Figure 6, the blue line is the SNR of the signal received without denoising. As
shown, the convolutional denoiser utilized could achieve denoising for different code
lengths. Our denoising network was trained at the code length of (16, 8); thus, the optimal
effect was achieved for this code length as we expected. Furthermore, the data with other
code lengths were fed into the network for testing. It can be seen in Figure 6 that, even
though the denoiser was not trained on these code lengths, the noise could still be re-
moved effectively, mainly benefiting from the local information processing capacity of the
convolutional network. Moreover, the denoising effect was obvious when the code length
was short. With the increase in code length, although the denoising ability of the denoiser
weakened, it could still play a role in noise reduction. The experiment illustrates that the
convolutional denoiser we utilized could denoise the received codeword information ef-
fectively such that the output result of the decoder was less affected by noise and more
accurate.

The probability density distribution obtained after training with 0 dB of SNR is
shown in Figure 7. The green area is the signal not denoised by the denoiser, while the
pink area is the signal denoised by the denoiser. When the SNR was small, the codeword
information suffered much noise interference. It can be seen from the green area that the
signal was submerged by noise. However, after passing through the denoiser, more noise
could be removed and the BPSK modulated signal was obtained, indicating that the de-
noiser could work effectively.

Figure 6. The SNR comparison of signals before and after denoising with different code lengths.

In Figure 6, the blue line is the SNR of the signal received without denoising. As
shown, the convolutional denoiser utilized could achieve denoising for different code
lengths. Our denoising network was trained at the code length of (16, 8); thus, the optimal
effect was achieved for this code length as we expected. Furthermore, the data with
other code lengths were fed into the network for testing. It can be seen in Figure 6 that,
even though the denoiser was not trained on these code lengths, the noise could still
be removed effectively, mainly benefiting from the local information processing capacity
of the convolutional network. Moreover, the denoising effect was obvious when the
code length was short. With the increase in code length, although the denoising ability
of the denoiser weakened, it could still play a role in noise reduction. The experiment
illustrates that the convolutional denoiser we utilized could denoise the received codeword
information effectively such that the output result of the decoder was less affected by noise
and more accurate.

The probability density distribution obtained after training with 0 dB of SNR is shown
in Figure 7. The green area is the signal not denoised by the denoiser, while the pink area is
the signal denoised by the denoiser. When the SNR was small, the codeword information
suffered much noise interference. It can be seen from the green area that the signal was
submerged by noise. However, after passing through the denoiser, more noise could be
removed and the BPSK modulated signal was obtained, indicating that the denoiser could
work effectively.

Entropy 2022, 24, 1809 12 of 18

Entropy 2022, 24, x FOR PEER REVIEW 12 of 18

Figure 7. Probability density function with and without denoiser under different signal-to-noise
ratios.

4.2.2. AFC Module Number
The decoder is the core part of the DIR-Net algorithm, while the AFC is the significant

unit that constructs the decoder, for which the number of modules plays a crucial role in
the performance of the decoding. In this section, we investigate the impact of the number
of AFC modules on the performance of the DIR-Net algorithm. In the experiment, (16, 8)
polar codes were selected as training and test data, i.e., the code length N = 16, and the
information bit length K = 8. In addition, Gaussian white noise was added to the encoded
data as input of the network. At the same time, the corresponding original codeword was
used as the training label. The network structure in our experiment was the same as that
introduced in the previous section, consisting of a denoiser and a decoder. The denoiser
was an attention-based residual network, and the decoder was composed of a series of
AFC units.

In our experiment, five network structures were adopted for comparison where the
only difference among them was the number of AFC units in the decoder. Thus, 1–5 AFC
units were utilized to investigate the impact of AFC module number on decoding perfor-
mance. In the training process, all 2 codewords were involved in training. Each network
structure was trained until convergence. The BER, BLER, and loss curves of five AFC
modules converged with the number of iterations increasing, as shown in Figure 8. It is
obvious that the network was finally convergent. When the AFC number was less than
five, the network converged more quickly.

(a) BER curve with epoch (b) BLER curve with epoch (c) Loss curve with epoch

Figure 8. The BER, BLER, and loss curves with epoch.

Figure 7. Probability density function with and without denoiser under different signal-to-noise ratios.

4.2.2. AFC Module Number

The decoder is the core part of the DIR-Net algorithm, while the AFC is the significant
unit that constructs the decoder, for which the number of modules plays a crucial role in
the performance of the decoding. In this section, we investigate the impact of the number
of AFC modules on the performance of the DIR-Net algorithm. In the experiment, (16, 8)
polar codes were selected as training and test data, i.e., the code length N = 16, and the
information bit length K = 8. In addition, Gaussian white noise was added to the encoded
data as input of the network. At the same time, the corresponding original codeword was
used as the training label. The network structure in our experiment was the same as that
introduced in the previous section, consisting of a denoiser and a decoder. The denoiser
was an attention-based residual network, and the decoder was composed of a series of
AFC units.

In our experiment, five network structures were adopted for comparison where the
only difference among them was the number of AFC units in the decoder. Thus, 1–5 AFC
units were utilized to investigate the impact of AFC module number on decoding perfor-
mance. In the training process, all 2K codewords were involved in training. Each network
structure was trained until convergence. The BER, BLER, and loss curves of five AFC
modules converged with the number of iterations increasing, as shown in Figure 8. It is
obvious that the network was finally convergent. When the AFC number was less than
five, the network converged more quickly.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 19

Figure 7. Probability density function with and without denoiser under different signal-to-noise
ratios.

4.2.2. AFC Module Number
The decoder is the core part of the DIR-Net algorithm, while the AFC is the significant

unit that constructs the decoder, for which the number of modules plays a crucial role in
the performance of the decoding. In this section, we investigate the impact of the number
of AFC modules on the performance of the DIR-Net algorithm. In the experiment, (16, 8)
polar codes were selected as training and test data, i.e., the code length N = 16, and the
information bit length K = 8. In addition, Gaussian white noise was added to the encoded
data as input of the network. At the same time, the corresponding original codeword was
used as the training label. The network structure in our experiment was the same as that
introduced in the previous section, consisting of a denoiser and a decoder. The denoiser
was an attention-based residual network, and the decoder was composed of a series of
AFC units.

In our experiment, five network structures were adopted for comparison where the
only difference among them was the number of AFC units in the decoder. Thus, 1–5 AFC
units were utilized to investigate the impact of AFC module number on decoding
performance. In the training process, all 2 codewords were involved in training. Each
network structure was trained until convergence. The BER, BLER, and loss curves of five
AFC modules converged with the number of iterations increasing, as shown in Figure 8.
It is obvious that the network was finally convergent. When the AFC number was less
than five, the network converged more quickly.

(a) (b) (c)

Figure 8. The (a) BER, (b) BLER, and (c) loss curves with epoch. Figure 8. The (a) BER, (b) BLER, and (c) loss curves with epoch.

Entropy 2022, 24, 1809 13 of 18

The effects of different AFC module numbers are shown in Figure 9. When the number
of AFC units was one, its bit error rate was still relatively high although the network could
complete the task of decoding. Especially in the case of high SNR, compared with other
network structures, the decoding performance still needed to be improved. The network
performance tended to be saturated when the number of AFC units increased to four, and
the decoding performance improvement gradually became smaller. When the number of
AFC units increased to five, the decoding performance deteriorated. Comparing the bit
error rate curves of four and five AFC units, it can be seen that, when the signal-to-noise
ratio was less than 7 dB, the two were very close. The advantages of the decoder network
depth began to appear when the signal-to-noise ratio was located at 7–8 dB. In addition,
the performance gap of each network gradually increased with the SNR, indicating that
the deep network had better generalization capabilities.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 18

The effects of different AFC module numbers are shown in Figure 9. When the num-
ber of AFC units was one, its bit error rate was still relatively high although the network
could complete the task of decoding. Especially in the case of high SNR, compared with
other network structures, the decoding performance still needed to be improved. The net-
work performance tended to be saturated when the number of AFC units increased to
four, and the decoding performance improvement gradually became smaller. When the
number of AFC units increased to five, the decoding performance deteriorated. Compar-
ing the bit error rate curves of four and five AFC units, it can be seen that, when the signal-
to-noise ratio was less than 7 dB, the two were very close. The advantages of the decoder
network depth began to appear when the signal-to-noise ratio was located at 7–8 dB. In
addition, the performance gap of each network gradually increased with the SNR, indi-
cating that the deep network had better generalization capabilities.

Figure 9. The comparison of BER performance with different AFC numbers.

4.2.3. Training Rate
In this section, we investigate the impact of the amount of data in the training set on

the DIR-Net decoding algorithm. There are a total of 2 codewords when the information
bit length is K. In theory, when 2 codewords are involved in training, the decoding net-
work obtains the best decoding performance. When the value of K is small, it is feasible to
use full codeword training. However, as the length of the codewords increases, the num-
ber of corresponding codewords increases exponentially. Thus, it is impossible for all
codewords to participate in training. During the training process, we only selected part of
the data as the training set. Specifically, we calculated the total amount of data participat-
ing in training as follows: 𝑛 = 𝑟 × 2 , (16)

where 𝑟 is the data utilization rate with a value range of (0, 1], representing the ratio of
the number of codewords participating in training to the total number of codewords. In
our experiment, the number of information bits of our codeword K was 16, and the en-
coded codeword bit N was 32. In contrast, we set 𝑟 to 0.4, 0.6, 0.8, and 1.0 to train the
network. During the test phase, a batch of codewords was extracted randomly into the
network for decoding. The SNR/BER curve of the obtained decoder is shown in Figure 10.

Figure 9. The comparison of BER performance with different AFC numbers.

4.2.3. Training Rate

In this section, we investigate the impact of the amount of data in the training set on the
DIR-Net decoding algorithm. There are a total of 2K codewords when the information bit
length is K. In theory, when 2K codewords are involved in training, the decoding network
obtains the best decoding performance. When the value of K is small, it is feasible to use
full codeword training. However, as the length of the codewords increases, the number of
corresponding codewords increases exponentially. Thus, it is impossible for all codewords
to participate in training. During the training process, we only selected part of the data as
the training set. Specifically, we calculated the total amount of data participating in training
as follows:

nd = rd × 2K, (16)

where rd is the data utilization rate with a value range of (0, 1], representing the ratio of the
number of codewords participating in training to the total number of codewords. In our
experiment, the number of information bits of our codeword K was 16, and the encoded
codeword bit N was 32. In contrast, we set rd to 0.4, 0.6, 0.8, and 1.0 to train the network.
During the test phase, a batch of codewords was extracted randomly into the network for
decoding. The SNR/BER curve of the obtained decoder is shown in Figure 10.

Entropy 2022, 24, 1809 14 of 18
Entropy 2022, 24, x FOR PEER REVIEW 14 of 18

Figure 10. The BER performance comparison for different training rates.

As can be seen from Figure 10, even without using all codewords for training, the
trained decoding algorithm could still decode codewords that had not been seen before.
This indicates that the decoding algorithm learned the rules of codewords rather than
simply memorizing the correspondence of codewords. On the other hand, as the value of 𝑟 increased, the performance of the decoding network also improved. This is because the
decoding algorithm recognized a more diverse combination of codewords and noise in
the decoding process. The generalization and robustness of the denoiser and decoder were
improved.

4.3. Comparison with Other Methods
4.3.1. Comparison Based on BER

In this section, (32, 16) polar codes were selected to evaluate DIR-Net. We compared
this network with other polar decode methods based on deep learning. In the process of
testing, some codewords were generated randomly, and encoding was performed accord-
ing to the polar encoding rules. To simulate the transmission of information in the chan-
nel, different levels of Gaussian white noise were added to the encoded codewords. Then,
the codewords were taken as test data with diverse deep learning methods. Among the
methods, the DIR-Net method with attention-based denoising and attention-based decod-
ing was denoted as “dno_dec”. In order to evaluate the decoder performance, we used
the DIR-Net method without denoiser as the comparison, which is denoted as “only_dec”,
whereas “only_fc_dec” denotes the fully connected decoder proposed in [27], which does
not contain a denoiser, and “fc_dec” denotes the addition of the attention-based denoiser
in our paper to [27]. To further evaluate the performance of the attention-based denoiser
and decoder, we compared it with the residual decoder, which was proposed in [29], de-
noted as “res_dec”. We additionally compared DIR-Net with the traditional SC and BP
algorithms to comprehensively evaluate the performance. We tested the methods at dif-
ferent signal-to-noise ratios, SNR = [0, 1, 2, 3, 4, 5, 6, 7, 8] dB, and the curves are shown in
Figure 11.

Figure 10. The BER performance comparison for different training rates.

As can be seen from Figure 10, even without using all codewords for training, the
trained decoding algorithm could still decode codewords that had not been seen before.
This indicates that the decoding algorithm learned the rules of codewords rather than
simply memorizing the correspondence of codewords. On the other hand, as the value
of rd increased, the performance of the decoding network also improved. This is because
the decoding algorithm recognized a more diverse combination of codewords and noise
in the decoding process. The generalization and robustness of the denoiser and decoder
were improved.

4.3. Comparison with Other Methods
4.3.1. Comparison Based on BER

In this section, (32, 16) polar codes were selected to evaluate DIR-Net. We compared
this network with other polar decode methods based on deep learning. In the process of
testing, some codewords were generated randomly, and encoding was performed according
to the polar encoding rules. To simulate the transmission of information in the channel,
different levels of Gaussian white noise were added to the encoded codewords. Then,
the codewords were taken as test data with diverse deep learning methods. Among
the methods, the DIR-Net method with attention-based denoising and attention-based
decoding was denoted as “dno_dec”. In order to evaluate the decoder performance,
we used the DIR-Net method without denoiser as the comparison, which is denoted as
“only_dec”, whereas “only_fc_dec” denotes the fully connected decoder proposed in [27],
which does not contain a denoiser, and “fc_dec” denotes the addition of the attention-based
denoiser in our paper to [27]. To further evaluate the performance of the attention-based
denoiser and decoder, we compared it with the residual decoder, which was proposed
in [29], denoted as “res_dec”. We additionally compared DIR-Net with the traditional SC
and BP algorithms to comprehensively evaluate the performance. We tested the methods at
different signal-to-noise ratios, SNR = [0, 1, 2, 3, 4, 5, 6, 7, 8] dB, and the curves are shown
in Figure 11.

Entropy 2022, 24, 1809 15 of 18Entropy 2022, 24, x FOR PEER REVIEW 15 of 18

Figure 11. BER performance comparison of different network structures and traditional algorithms.

Firstly, we compared only_dec and only_fc_dec, which contained only the decoding
network without the denoising subnetwork. As shown in Figure 11, when there was only
the decoder, the decoding performance of the AFC decoder was significantly better than
that of the fully connected decoder with the same number of layers. This illustrates that
the attention mechanism in the AFC units indeed improved the decoding performance of
the polar codes. On the other hand, we found that, after adding denoising subnetworks
to the decoding algorithm, i.e., “dno_dec” and “fc_dec”, the decoding performance of the
network was significantly improved. Meanwhile, we also compared the “dno_dec” algo-
rithm with “rec_dec”, and it can be seen in Figure 11 that the DIR-Net method had better
decoding performance due to the addition of the attention mechanism in both the denoi-
ser and the decoder. In addition, the proposed method had a lower BER compared to the
conventional SC and BP algorithms.

In the real communication process, fading is often present in the channel. To evaluate
the performance of the DIR-Net method in fading channels, Rayleigh fading was taken as
an example to perform a simulation. The same dataset was utilized to train and test the
fully connected deep learning decoding method proposed in [28], which was specifically
designed to decode polar codes in a Rayleigh fading channel. The BER/SNR curves of the
two methods are shown in Figure 12.

Figure 12. BER performance of FC-Decoder and DIR-Net in a Rayleigh fading channel.

Figure 11. BER performance comparison of different network structures and traditional algorithms.

Firstly, we compared only_dec and only_fc_dec, which contained only the decoding
network without the denoising subnetwork. As shown in Figure 11, when there was only
the decoder, the decoding performance of the AFC decoder was significantly better than
that of the fully connected decoder with the same number of layers. This illustrates that
the attention mechanism in the AFC units indeed improved the decoding performance of
the polar codes. On the other hand, we found that, after adding denoising subnetworks
to the decoding algorithm, i.e., “dno_dec” and “fc_dec”, the decoding performance of
the network was significantly improved. Meanwhile, we also compared the “dno_dec”
algorithm with “rec_dec”, and it can be seen in Figure 11 that the DIR-Net method had
better decoding performance due to the addition of the attention mechanism in both the
denoiser and the decoder. In addition, the proposed method had a lower BER compared to
the conventional SC and BP algorithms.

In the real communication process, fading is often present in the channel. To evaluate
the performance of the DIR-Net method in fading channels, Rayleigh fading was taken as
an example to perform a simulation. The same dataset was utilized to train and test the
fully connected deep learning decoding method proposed in [28], which was specifically
designed to decode polar codes in a Rayleigh fading channel. The BER/SNR curves of the
two methods are shown in Figure 12.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 18

Figure 11. BER performance comparison of different network structures and traditional algorithms.

Firstly, we compared only_dec and only_fc_dec, which contained only the decoding
network without the denoising subnetwork. As shown in Figure 11, when there was only
the decoder, the decoding performance of the AFC decoder was significantly better than
that of the fully connected decoder with the same number of layers. This illustrates that
the attention mechanism in the AFC units indeed improved the decoding performance of
the polar codes. On the other hand, we found that, after adding denoising subnetworks
to the decoding algorithm, i.e., “dno_dec” and “fc_dec”, the decoding performance of the
network was significantly improved. Meanwhile, we also compared the “dno_dec” algo-
rithm with “rec_dec”, and it can be seen in Figure 11 that the DIR-Net method had better
decoding performance due to the addition of the attention mechanism in both the denoi-
ser and the decoder. In addition, the proposed method had a lower BER compared to the
conventional SC and BP algorithms.

In the real communication process, fading is often present in the channel. To evaluate
the performance of the DIR-Net method in fading channels, Rayleigh fading was taken as
an example to perform a simulation. The same dataset was utilized to train and test the
fully connected deep learning decoding method proposed in [28], which was specifically
designed to decode polar codes in a Rayleigh fading channel. The BER/SNR curves of the
two methods are shown in Figure 12.

Figure 12. BER performance of FC-Decoder and DIR-Net in a Rayleigh fading channel. Figure 12. BER performance of FC-Decoder and DIR-Net in a Rayleigh fading channel.

Entropy 2022, 24, 1809 16 of 18

It can be seen in Figure 12 that, after adding Rayleigh fading, the difficulty of decoding
was significantly increased. As a result, the bit error rate of the decoding algorithm was
much higher compared to when only Gaussian noise was introduced. With the addition of
the same Rayleigh fading condition, the decoding performance of the DIR-Net method was
significantly better than that of the FC-Decoder, which demonstrates that our proposed
DIR-Net may be a strong candidate for resisting Rayleigh fading due to its lower BER.

4.3.2. Comparison Based on Decoding Time

We compared DIR-Net with the traditional method in terms of BER, but also in terms
of decoding time. In this experiment, we used Windows 10 system with 16G of running
memory and an NVIDIA GeForce RTX3050Ti Laptop GPU as the test environment.

In order to compare the speed of each decoding technique more comprehensively, we
test the denoiser speed, decoder speed, and denoiser-decoder speed of DIR-Net method
with different code lengths, including (16, 8), (32, 16), (64, 32), (128, 64), and (256, 128) polar
codes. To further evaluate the speed of DIR-Net, it is compared with traditional SC algo-
rithms, BP algorithms, and deep learning-based methods only_fc_dec [27], FC_Decoder [28],
and res_dec [29]. The decoding time for each method listed in Table 3.

Table 3. Comparison of DIR-Net Decoding Time and Conventional Techniques with Different
Code Lengths.

16-8 32-16 64-32 128-64 256-16

Denoiser 8.310 × 10−4 8.386 × 10−4 8.397 × 10−4 8.414 × 10−4 8.456 × 10−4

Decoder 3.371 × 10−4 3.386 × 10−4 3.409 × 10−4 3.423 × 10−4 3.431 × 10−4

DIR-Net 1.168 × 10−3 1.180 × 10−3 1.181 × 10−3 1.183 × 10−3 1.187 × 10−3

res_dec 7.089 × 10−4 7.115 × 10−4 7.120 × 10−4 7.145 × 10−4 7.469 × 10−4

only_fc_dec 1.844 × 10−4 1.856 × 10−4 1.857 × 10−4 1.864 × 10−4 1.868 × 10−4

FC_Decoder 1.818 × 10−4 1.819 × 10−4 1.836 × 10−4 1.840 × 10−4 1.848 × 10−4

SC 3.039 × 10−3 9.498 × 10−3 3.122 × 10−2 1.106 × 10−1 1.408 × 10−1

BP 3.727 × 10−2 9.214 × 10−2 2.189 × 10−1 5.047 × 10−1 1.1512

Benefiting from the parallel ability of deep learning algorithms and GPU, the deep
learning approach outperforms the SC and BP algorithms in terms of running speed,
as shown in Table 3. Additionally, the decoding speed is little affected with the code
length increases.

When utilizing only the decoder with the attention mechanism, the DIR-Net technique
has a decoding comparable speed with that of the only_fc_dec and the FC-Decoder method.
Since the attention mechanism for deep feature extraction is used in both the denoiser and
decoder, we gain a significant improvement in decoding accuracy in exchange for a slight
loss in speed.

5. Conclusions

In this paper, a novel polar decoding algorithm, DIR-Net, based on deep learning
was proposed. To achieve the goal of separating effective information from interference
information, we carefully designed several information optimization modules based on
the attention mechanism. Furthermore, we constructed a high-performance decoding
network based on the proposed attention modules. The proposed network contains two
subnetworks with different functions, i.e., the denoising subnetwork to remove the noise
brought in the transmission channel and the decoding subnetwork to decode the denoised
information. Benefiting from the cascaded attention module, the information can be refined
step-by-step, thus obtaining a low error rate. Furthermore, the residual connections in
the denoising subnetwork facilitate the convergence of this network. In the end, a series
of experiments were conducted to verify the effectiveness of the DIR-Net algorithm. The
experimental results show that our method had a low BER in the presence of both noise

Entropy 2022, 24, 1809 17 of 18

and fading in the channel. Compared with existing decoding methods, DIR-Net achieved
better performance.

Author Contributions: Conceptualization, Y.F. and B.S.; methodology, Y.F.; software, B.S. and Y.W.;
validation, B.S. and Y.W.; formal analysis, Y.W.; data curation, B.S.; writing—original draft preparation,
B.S.; writing—review and editing, B.S. and Y.W.; supervision, Y.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
Number 61971291), the central government leads local science and technology development projects
(2022020128-JH6/1001), the science and technology funds from Liaoning Education Department
(serial number: LJKZ0242), and Shenyang Natural Science Foundation (Grant No. 22-315-6-10).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless

channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]
2. Bioglio, V.; Condo, C.; Land, I. Design of polar codes in 5G new radio. IEEE Commun. Surv. Tutor. 2020, 23, 29–40. [CrossRef]
3. Jalali, A.; Ding, Z. Joint detection and decoding of polar coded 5G control channels. IEEE Trans. Wirel. Commun. 2020, 19,

2066–2078. [CrossRef]
4. Xing, C.; Huang, Z.; Zhao, S. Improvement of Fast Simplified Successive-Cancellation Decoder for Polar Codes. Information 2018,

9, 254. [CrossRef]
5. Mondelli, M.; Hashemi, S.A.; Cioffi, J.M.; Goldsmith, A. Sublinear latency for simplified successive cancellation decoding of polar

codes. IEEE Trans. Wirel. Commun. 2020, 20, 18–27. [CrossRef]
6. Ercan, F.; Tonnellier, T.; Doan, N.; Gross, W.J. Practical dynamic SC-flip polar decoders: Algorithm and implementation. IEEE

Trans. Signal Process. 2020, 68, 5441–5456. [CrossRef]
7. Wang, X.; Ma, Q.; Li, J.; Zhang, H.; Xu, W. An Improved SC Flip Decoding Algorithm of Polar Codes Based on Genetic Algorithm.

IEEE Access 2020, 8, 222572–222583. [CrossRef]
8. Yang, D.; Yang, K. Error-aware SCFlip decoding of polar codes. IEEE Access 2020, 8, 163758–163768. [CrossRef]
9. Tao, Y.; Cho, S.-G.; Zhang, Z. A configurable successive-cancellation list Polar decoder using split-tree architecture. IEEE J.

Solid-State Circuits 2020, 56, 612–623. [CrossRef]
10. Miloslavskaya, V.; Vucetic, B. Design of short polar codes for SCL decoding. IEEE Trans. Commun. 2020, 68, 6657–6668. [CrossRef]
11. Zhou, H.; Zhang, C.; Song, W.; Xu, S.; You, X. Segmented CRC-aided SC list polar decoding. In Proceedings of the 2016 IEEE 83rd

Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5.
12. Xiang, L.; Liu, Y.; Maunder, R.G.; Yang, L.-L.; Hanzo, L. Soft-Output Successive Cancellation Stack Polar Decoder. IEEE Trans. Veh.

Technol. 2021, 70, 6238–6243. [CrossRef]
13. Gao, J.; Niu, K.; Dong, C. Learning to decode polar codes with one-bit quantizer. IEEE Access 2020, 8, 27210–27217. [CrossRef]
14. Arlı, A.Ç.; Gazi, O. Noise-aided belief propagation list decoding of polar codes. IEEE Commun. Lett. 2019, 23, 1285–1288.

[CrossRef]
15. Doan, N.; Hashemi, S.A.; Gross, W.J. Neural successive cancellation decoding of polar codes. In Proceedings of the 2018 IEEE

19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28
June 2018; pp. 1–5.

16. Fang, J. Improved Polar Decoder Utilizing Neural Network in Fast Simplified Successive-Cancellation Decoding. J. Comput.
Commun. 2020, 8, 90. [CrossRef]

17. Chen, C.-H.; Teng, C.-F.; Wu, A.-Y. Low-complexity LSTM-assisted bit-flipping algorithm for successive cancellation list polar
decoder. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1708–1712.

18. Teng, C.-F.; Wu, A.-Y.A. Convolutional neural network-aided tree-based bit-flipping framework for polar decoder using imitation
learning. IEEE Trans. Signal Process. 2020, 69, 300–313. [CrossRef]

19. Wodiany, I.; Pop, A. Low-precision neural network decoding of polar codes. In Proceedings of the 2019 IEEE 20th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5.

20. Qin, Y.; Liu, F. Convolutional neural network-based polar decoding. In Proceedings of the 2019 2nd World Symposium on
Communication Engineering (WSCE), Nagoya, Japan, 20–23 December 2019; pp. 189–194.

http://doi.org/10.1109/TIT.2009.2021379
http://doi.org/10.1109/COMST.2020.2967127
http://doi.org/10.1109/TWC.2019.2962113
http://doi.org/10.3390/info9100254
http://doi.org/10.1109/TWC.2020.3022922
http://doi.org/10.1109/TSP.2020.3023582
http://doi.org/10.1109/ACCESS.2020.3041290
http://doi.org/10.1109/ACCESS.2020.3022176
http://doi.org/10.1109/JSSC.2020.3005763
http://doi.org/10.1109/TCOMM.2020.3014946
http://doi.org/10.1109/TVT.2021.3077757
http://doi.org/10.1109/ACCESS.2020.2971526
http://doi.org/10.1109/LCOMM.2019.2918535
http://doi.org/10.4236/jcc.2020.87008
http://doi.org/10.1109/TSP.2020.3040897

Entropy 2022, 24, 1809 18 of 18

21. Xu, W.; Tan, X.; Be’ery, Y.; Ueng, Y.-L.; Huang, Y.; You, X.; Zhang, C. Deep learning-aided belief propagation decoder for polar
codes. IEEE J. Emerging Sel. Top. Circuits Syst. 2020, 10, 189–203. [CrossRef]

22. Gao, J.; Liu, R. Neural network aided SC decoder for polar codes. In Proceedings of the 2018 IEEE 4th International Conference
on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 2153–2157.

23. Wang, X.; Zhang, H.; Li, R.; Huang, L.; Dai, S.; Huangfu, Y.; Wang, J. Learning to flip successive cancellation decoding of polar
codes with LSTM networks. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Istanbul, Turkey, 1–8 September 2019; pp. 1–5.

24. Teng, C.-F.; Wu, C.-H.D.; Ho, A.K.-S.; Wu, A.-Y.A. Low-complexity recurrent neural network-based polar decoder with weight
quantization mechanism. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1413–1417.

25. Wen, C.; Xiong, J.; Gui, L.; Shi, Z.; Wang, Y. A novel decoding scheme for polar code using convolutional neural network. In
Proceedings of the 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Jeju,
Republic of Korea, 5–7 June 2019; pp. 1–5.

26. Seo, J.; Lee, J.; Kim, K. Decoding of polar code by using deep feed-forward neural networks. In Proceedings of the 2018
International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 238–242.

27. Irawan, A.; Witjaksono, G.; Wibowo, W.K. Deep learning for polar codes over flat fading channels. In Proceedings of the 2019
International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February
2019; pp. 488–491.

28. Lyu, W.; Zhang, Z.; Jiao, C.; Qin, K.; Zhang, H. Performance evaluation of channel decoding with deep neural networks. In
Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018;
pp. 1–6.

29. Zhu, H.; Cao, Z.; Zhao, Y.; Li, D. Learning to denoise and decode: A novel residual neural network decoder for polar codes. IEEE
Trans. Veh. Technol. 2020, 69, 8725–8738. [CrossRef]

30. Cui, J.; Kong, W.; Zhang, X.; Chen, D.; Zeng, Q. DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes.
Entropy 2021, 23, 863. [CrossRef]

31. Gross, W.J.; Doan, N.; Ngomseu Mambou, E.; Ali Hashemi, S. Deep learning techniques for decoding polar codes. Mach. Learn.
Future Wirel. Commun. 2020, 2020, 287–301.

32. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
33. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
35. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

36. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

http://doi.org/10.1109/JETCAS.2020.2995962
http://doi.org/10.1109/TVT.2020.3000345
http://doi.org/10.3390/e23070863
http://doi.org/10.1038/nature14539
http://doi.org/10.1038/323533a0

	Introduction
	Background
	Polar Code
	Neural Network Decoder

	DIR-Net Method
	Overview of the Framework
	Attention-Based Denoising Subnetwork
	Attention-Based Decoding Subnetwork

	Experiments and Results
	Experiment Setting and Training Details
	Ablation Experiments
	Denoiser Performance
	AFC Module Number
	Training Rate

	Comparison with Other Methods
	Comparison Based on BER
	Comparison Based on Decoding Time

	Conclusions
	References

