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Abstract: In the process of bridge management, large amounts of domain information are accumu‑
lated, such as basic attributes, structural defects, technical conditions, etc. However, the valuable
information is not fully utilized, resulting in insufficient knowledge service in the field of bridge
management. To tackle these problems, this paper proposes a complex knowledge base question
answering (C‑KBQA) framework for intelligent bridge management based on multi‑task learning
(MTL) and cross‑task constraints (CTC). First, with C‑KBQA as the main task, part‑of‑speech (POS)
tagging, topic entity extraction (TEE), and question classification (QC) as auxiliary tasks, an MTL
framework is built by sharing encoders and parameters, thereby effectively avoiding the error prop‑
agation problem of the pipeline model. Second, cross‑task semantic constraints are provided for dif‑
ferent subtasks via POS embeddings, entity embeddings, and question‑type embeddings. Finally, us‑
ing template matching, relevant query statements are generated and interaction with the knowledge
base is established. The experimental results show that the proposed model outperforms compared
mainstream models in terms of TEE and QC on bridge management datasets, and its performance
in C‑KBQA is outstanding.

Keywords: bridge management; knowledge base question answering; complex question; multi‑task
learning; cross‑task constraints

1. Introduction
In contrast to general search engines, question answering (QA) systems can simply

and quickly provide queries with accurate and clear answers rather than a series of doc‑
uments related to natural language questions [1]. The QA system mainly includes three
parts: Question analysis, information retrieval, and answer processing. As the main tasks
of question parsing, topic entity extraction (TEE) and question classification (QC) play im‑
portant roles in information retrieval and answer processing [2]. With the continuous de‑
velopment in big data knowledge engineering, data have realized the transformation and
upgrading from information to knowledge, and further deepened the research on knowl‑
edge base QA (KBQA) [3]. According to the difficulty of the question, it can be mainly
divided into simple KBQA and complex KBQA (C‑KBQA) [4].

Bridge management is essential to ensure bridges are always in safe condition [5]. In
addition to direct measures, such as detection, monitoring, evaluation, maintenance, and
reinforcement, bridge management includes some indirect measures, such as data man‑
agement, emergency plans, and auxiliary decision‑making [6]. At present, most of the
bridge management data are stored in the form of electronic documents, e.g., inspection
reports, which contain large amounts of valuable information to be further excavated and
integrated. Taking full advantage of the data can help bridge engineers in analyzing bridge
defects and assisting in their judgment and decision‑making [7]. Therefore, an intelligent
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system is urgently needed to realize the structured storage of management data and fur‑
ther realize the effective interaction between bridge engineers and the databases. For the
urgent need in intelligent bridge management, the KBQA technology is undoubtedly the
best solution.

The KBQA system can be used as a portable intelligent terminal to meet the require‑
ments of fine‑grained domain information interaction in bridge management scenarios in
real time, thereby supporting knowledge sharing in specific domains and improving work
efficiency. For example, bridge engineers can use the KBQA system to query the structural
attributes of bridges and the defect information of bridge members, quickly grasp the sim‑
ilar characteristics of bridges in the area, and achieve the purpose of assisting in decision‑
making. However, the KBQA research that is fully applicable to the bridge engineering
field is still in the preliminary exploratory stage [8], and some research in related fields
can provide insight [9–11], but there are still three main challenges:
(1) Due to the privacy policy, bridge management data have not been fully disclosed,

and the industry lacks ready‑made knowledge base and question answering corpus,
resulting in insufficient data support for research in this field. In addition, impor‑
tant information, such as basic attributes, defect damage, and technical conditions
are not fully utilized, leading to insufficient knowledge services in the field of bridge
management.

(2) Bridge management information has great domain characteristics in data storage,
term description, expression, etc. For example, the topic entity boundary is not clear
with a significant amount of specialized words, and the question types are not evenly
distributed. Existing methods cannot directly solve these problems.

(3) The bridge management questions are relatively complex, involving multiple‑hops,
judgment, constraints, numerical calculation, aggregation operation, etc.
To solve the above‑mentioned problems, this paper proposes a cross‑task constraint‑

enhanced multi‑task learning (MTL) framework to solve the C‑KBQA of bridge manage‑
ment. Figure 1 shows the overall process of C‑KBQA for bridge management.

Figure 1. The overall process of C‑KBQA for bridgemanagement. For the natural language question
(NLQ) given by the user, the purpose of C‑KBQA for bridge management is to generate the corre‑
sponding Cypher query. Then, the Neo4j graph database is searched to return the answer “3 类”
(Level 3) to the user. The process of transforming questions into structured queries involves some
key technologies, including TEE, POS, and QC.

The proposed framework classifies fine‑grained domain C‑KBQA as the main task,
TEE and QC as two key auxiliary tasks, and part‑of‑speech (POS) tagging as a secondary
auxiliary task. First, we jointly train model embeddings for multiple auxiliary tasks by
sharing similar pretrained language encodermodels and sharing parameters. Second, POS
information, question types, and topic entities are introduced into different subtasks as
external knowledge to enhance cross‑task semantic constraints. Finally, according to the
bridge management domain characteristics of TEE and QC, model improvement and in‑
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novation are carried out at the feature fusion layer. The main contributions of this paper
are as follows:
(1) We constructed a bridge management domain knowledge base and question answer‑

ing corpus, realized the integration and utilization of data, and laid the data founda‑
tion for the question answering task in this field.

(2) Cross‑task constraints (CTC) make the semantics of subtasks interrelated, enrich the
expression of contextual semantic features of domain questions, and can effectively
solve problems, such as unclear entity boundaries and inaccurate professional vocab‑
ulary recognition. MTL strategy can reduce the error propagation of TEE and QC
tasks. The template matching method combines semantic analysis and neural net‑
work technology to convert natural language questions into answer templates, which
can answer more complex questions and maximize the accuracy of QA, meeting the
complex application scenarios of bridge management.

(3) This research compensates for the shortage of fine‑grained knowledge service in the
bridge management field and realizes the fine‑grained information interaction be‑
tween bridge management users and domain knowledge base.
The remainder of the paper is organized as follows. Section 2 provides an overview

of related works. Section 3 presents the overall architecture of the proposed model and in‑
troduces its key components in detail. Section 4 presents the experimental and evaluation
results of the proposed model. Section 5 demonstrates an example of the C‑KBQA system
platform of bridgemanagement. Finally, Section 6 concludes the paper and outlines future
work directions.

2. Related Work
With the rapid development in natural language processing (NLP) and neural net‑

works, the research on KBQA has gradually shifted from general domains to specific do‑
mains. However, the research related to the field of bridge engineering is still in its infancy.
In this section, we reviewed the relevant topics of KBQA.

2.1. Complex Knowledge Base Question Answering
Complex questions contain multiple entities and relationships; therefore, C‑KBQA

involves multiple knowledge triples [12], including operations, such as multi‑hop, aggre‑
gation, logical operations, and reasoning [13]. At present, the mainstream methods of
C‑KBQA include semantic parsing, information retrieval, and template matching [14].

Semantic parsing converts natural language questions into logical symbols which can
be used on the knowledge base to obtain answers [15]. For example, Sun et al. [16] pro‑
posed a multi‑strategy method based on semantic parsing that combines sentence‑lexical
level semantics to represent high‑level semantics of complex questions. Zhang et al. [17]
proposed a KBQA semantic parsing model based on structural information constraints
(SIR). Guo et al. [18] introduced dialogue memory management to manipulate historical
entities, predicates, and logical forms, in order to infer the logical form of the current utter‑
ance. The method based on semantic parsing can achieve a more interpretable reasoning
process by generating a logical form. However, these methods depend heavily on the de‑
sign of the logical form and the quality of the parser algorithm [19]. It is difficult for existing
semantic parsers to cover a variety of complex queries [20].

Information retrieval‑basedmethods extract the relevant information of the questions
from the knowledge base, and then rank all the extracted entities and relationships [21].
For instance, Zhou et al. [22] proposed the use of information retrieval to update reasoning
instructions in the reasoning stage, in order to improve the reasoning ability of complex
problems. Jin et al. [23] decomposed complex questions into multiple triplet patterns, and
then retrieved thematching candidate subgraphs from the knowledge base to find answers
through a semantic similarity evaluation. Answer ranking is applicable to a small search
space [24], while complex questions contain more relationships and subject entities, which
increases the difficulty in searching and ranking for candidate answers.
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Template matching‑based approaches aim to generate structured query statements
using predefined templates [25]. In order to perform the question resolution process of
C‑KBQA, Gomes et al. [26] proposed a hereditary attentive template‑based approach for
C‑KBQA. This method uses the combination of semantic analysis and neural network tech‑
nology to classify natural language questions into answer templates. However, the limited
number of templates and insufficient coverage have become a bottleneck hindering perfor‑
mance improvement [27].

The above‑mentioned methods all involve some key subtasks, including TEE, QC,
semantic matching, etc. [28]. A popular method of subtask composition is the pipeline
model [29]. For example, Chen et al. [30] constructed a KBQA pipeline system to identify
the knowledge base relationship corresponding to the question. However, the pipeline
model consists of concatenated subtasks, and the prediction results of the previous task
will affect the subsequent tasks, thus causing serious error propagation. To solve this
problem, MTL has been applied to complex question answering [31,32]. For example,
Yang et al. [33] proposed a new multi‑tasking and knowledge‑enhanced multi‑head inter‑
active attention network, which classifies questions as auxiliary tasks and conducts com‑
munity question answering through multi‑tasking learning. In addition, multi‑tasking
joint learning can enhance the generalization ability of the model [34].

2.2. Domain‑Specific KBQA Approaches
In recent years, KBQA technologies have begun to be applied in specific fields, e.g.,

biomedicine [35], finance [36], and education [37]. With the deepening of KBQA research
in specific domains, some basic works have been carried out in bridge engineering related
fields. For example, Wu et al. [38] discussed the role and challenges of NLP in intelligent
construction, providing a reference for the application of NLP technology in the industrial
field. In theQA system of building regulations proposed byZhong et al. [39], the BERTpre‑
trainingmodel is used for feature extraction questions. Li et al. [40] used narrative descrip‑
tions in bridge inspection reports as data sources andproposed a data‑driven framework to
support automatic condition recommendation and real‑time quality control. Xia et al. [41]
proposed a data‑driven bridge condition assessment framework to effectively predict the
future condition of bridges. Although the research in related fields can provide reference
for the field of bridge management, the existing methods cannot be directly applied to the
question answering task of bridge management due to the strong field characteristics.

Furthermore, our previous research laid the foundation for bridge management C‑
KBQA. For example, the previous work [42] constructed bridge structure and health mon‑
itoring ontology using Semantic Web technology, and realized multi‑angle fine‑grained
modeling of bridge structure, SHM system, sensor, and perception data, which lays a foun‑
dation for the semantic ontology construction of bridge maintenance. With the in‑depth
research, Li et al. [43] proposed a dictionary‑enhanced machine reading comprehension
NER neural model for identifying planes and nested entities from Chinese bridge detec‑
tion texts. In the previous work [44], a new entity related attention neural network model
was proposed for joint extraction of entities and relationships in bridge inspection. The re‑
search on domain text information extraction provides technical support for the construc‑
tion of bridge management knowledge graph. Yang et al. [45] proposed a novel BigKE‑
based intelligent bridge management and maintenance framework according to the big
data knowledge engineering paradigm, pointing out the direction for bridge management
knowledge services. However, the above‑mentionedwork is partial to theoretical research
and technical preparation. The core work of bridgemanagement QA task has not been car‑
ried out, and the problems, such as insufficient utilization of bridge management data and
insufficient domain knowledge service, have not been effectively solved.

2.3. Gaps and Challenges
Research status shows that the existingmethods cannot be directly applied to the field

of bridge management, and bridge management C‑KBQA faces many challenges. There‑
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fore, combined with the existing theories and methods, as well as the characteristics of the
field, a reasonable solution for bridge management C‑KBQA is briefly presented.
(1) The bridge management process is concerned with numerical values, such as tech‑

nical condition level and score, as well as textual information, such as structural de‑
fect and maintenance advice. Therefore, the Neo4j attribute graph structure can be
used for storing bridge management knowledge. In addition, the question types in
the field of bridge management are relatively fixed; therefore, template matching can
give full scope to its advantages, which can better ensure the QA effect in the practical
application scenarios of bridge management.

(2) Bridge management questions often contain multiple topic entities with ill‑defined
boundaries. For example, the question “A桥桥面系的技术状况等级是多少？” (“What
is the technical condition level of the bridge deck system of Bridge A?”) contains two
topic entities “A桥” (“Bridge A”) and “桥面系” (“Deck System”). The same character
“桥” (“bridge”) exists between topic entities, but without any separators. In addition,
the short text of bridge management questions lacks contextual semantics, which in‑
creases the difficulty in professional vocabulary recognition. Moreover, bridge man‑
agement questions can be classified according to two levels: Coarse‑grained and fine‑
grained. For example, the coarse‑grained type for the question “A桥和B桥有哪些共同
缺陷？” (“What common defects do Bridge A and Bridge B have?”) is “ 损伤缺陷”
(“damage defects”), and its fine‑grained type is “ 共同缺陷” (“common defects”).
Therefore, it is necessary to clarify the entity boundary and assist in the fine classifi‑
cation of questions through POS tagging. To improve the contextual comprehension
ability of questions, the semantic correlation between subtasks should be strength‑
ened to form CTC. (Due to the privacy property of bridge management information,
letters are used rather than real bridge names in this paper).

(3) There is no strict execution order between the TEE and QC tasks. Therefore, the mul‑
tiple subtasks of bridge management C‑KBQA can be jointly trained to avoid error
propagation and save computational resources.

3. Methodology
Aiming at the domain characteristics of the bridge management C‑KBQA, we pro‑

pose an MTL model that joints POS tagging, TEE, and QC. First, we analyze each subtask
module and then elaborate on the constraint strategy. As shown in Figure 2, the model
adopts BERT as a shared character‑grained embedding model for TEE and QC. In order
to make full use of the correlation information between different tasks and achieve CTC,
question‑type embeddings, BERT character embeddings, and POS embeddings are used
as joint encodings for TEE. Similarly, BERT character embeddings, POS embeddings, and
entity embeddings are used as joint encodings for QC. Bi‑directional long short‑termmem‑
ory (BiLSTM) network is shared for feature extraction, conditional random field (CRF) is
used as a decoder for TEE, and question types are obtained by max pooling. According
to the output of the multi‑task module, the template is matched and the semantic map is
constructed. Under the constraints of POS and entity type combinations, the query path is
locked, and finally a query is generated according to the extracted topic entities. In contrast
to the end‑to‑end deep learning framework, the proposed model framework is a combina‑
tion of semantic analysis and deep learning. For specific domain question answering tasks
with relatively fixed question types, template matching can ensure the interpretability of
the model and maximize the accuracy of question answering. At the same time, it can
also avoid the problems of over fitting, gradient explosion, and waste of computing power
caused by deep neural network stacking. Therefore, the template matching question an‑
sweringmethod is more suitable for the actual application scenario of bridgemanagement.
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Figure 2. Model architecture of C‑KBQA for bridge management. The multi‑task learning module
(left part) consists of four key components: Coding layer, part‑of‑speech (POS) tagging, topic entity
extraction (TEE), and question classification (QC). POS is used for obtaining domain POS features.
The encoder layer is composed of question‑type embeddings, BERT embeddings, POS embeddings,
and entity embeddings, and forms cross‑task semantic constraints. Shared BiLSTM is used for ex‑
tracting features; CRF and maximum pooling are used for decoding TEE and QC tasks. The query
generation module (right part) matches the template based on the QC result, replaces the concepts
in the template based on the TEE result, and aligns with the POS.

3.1. Encoder
The model classifies the complex questions of bridge management as input, and ob‑

tains BERT embeddings, POS embeddings, entity embeddings, and question‑type embed‑
dings from character‑level, POS‑level, word‑level, and sentence‑level, respectively.

BERT contains three embeddings: Token embeddings, segment embeddings, and po‑
sition embeddings. The three embeddings are added element‑wise to obtain the synthe‑
sized embedding. The BERT model encodes embedded features through a transformer
componentwith amulti‑head attentionmechanism. The encoded character‑level distributed
representation is expressed as follows:

ebert =Mbert(xc) (1)

where xc represents the text embedding of the characters in the question, ebert represents
the character‑level feature embedding encoded by the BERT model, andMbert represents
the BERT model encoding component.

POS is the basic grammatical attribute of vocabulary, which contains rich semantic in‑
formation. The domain POS embedding lookup tableMpos is trained by one‑hot encoding,
and the POS embedding is expressed as follows:

Mpos = One_Hot{p1, p2, . . . , pn}
epos =Mpos(p)

(2)

where {p1, p2, . . . , pn} represent the POS set, and epos represents the encoding of the POS
in the lookup table.

The entity embeddingmatrix uses the domain specialized vocabulary as the database,
and uses Glove for entity embedding. The topic entity embedding will be used as the
embedding constraint for the QC task, which is expressed as follows:

ete =Mte(et) (3)

Similarly, the question‑type embedding is also obtained by one‑hot encoding that will
be used as the embedding constraint of the TEE task, which is expressed as follows:

eqt =Mqt
(
tq
)

(4)
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3.2. Multi‑Task Learning
The MTL module includes three key subtasks: POS tagging, TEE, and QC. Character‑

grained embedding of subtasks and feature extraction are achieved by sharing the BERT
encoder and BiLSTM feature extractor.

Part‑of‑speech tagging: POS tagging includesword segmentation and POS judgment.
POS tagging can effectively distinguish entity boundaries. The combination of different
POS in questions will also affect the judgment of QC. Formally, the question Q can be di‑
vided into multiple word combinations {w1, w2, . . . , wn} and then given the POS list {pos1,
pos2, . . . , posn} in the word combination. POS tagging is used for generating POS embed‑
dings and providing POS combination constraints during the query generation stage. As
shown in Table 1, we build a professional vocabulary library for bridge management and
define the vocabulary attributes of domain vocabulary to improve the performance of Jieba.
Figure 3 shows the two POS tagging results of bridge management questions by Jieba tool.
The former lacks the domain POS, resulting in incorrect word segmentation. Clearly, the
latter POS tagging results contain more domain semantic information.

Table 1. The examples of entity and POS labels. There are six types of entity and POS labels. Al‑
though the label symbols are different, the corresponding entity instances are the same.

Entity Name Entity Labels POS Labels Vocabulary Examples

Bridge BRI nb Bridge A (A桥)
Bridge Structure BST ns Bridge deck system (桥面系)
Structural Element BSE ne Left web plate (左腹板)
Structural Location BSL nl Within 2 m (2米范围内)
Structural Defect BSD nd Mesh crack (网状裂缝)

Technical Condition BTC nt Technical condition (技术状况)

Figure 3. Comparative example of POS tagging in bridge management questions. The former
is the POS tagging result of Jieba tool, and the latter is the POS tagging result after adding the
domain dictionary.

Topic entity extraction: The primary purpose of TEE is to extract key substrings
et =

(
ct

1, ct
2, . . . , ct

m
)
from question string Q =

(
cq

1, cq
2, . . . , cq

n

)
, where m ≤ n. Then, de‑

termine the entity type te of et, where te belongs to the list of entity labels {BRI, BST, BSE,
BSL, BSD, BTC}. An example of TEE is shown in Figure 4. The meaning and examples of
entity labels are shown in Table 1.
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Figure 4. Example of topic entity extraction. The topic entities of the question are “A桥” (“Bridge A”,
“桥面系” (“Deck System”), and “技术状况等级” (“Technical conditions level”). The corresponding
entity labels are “BRI”, “BST”, and “BTC”, respectively.

The features of question‑type embeddings, BERT embeddings, and POS embeddings
are fused to obtain the final encoding for TEE task. The embedding vector is expressed
as follows:

Ete =
{

eqt; ebert; epos
}

(5)

Taking Ete as the input of BiLSTM to capture long‑range dependencies and extract
features, the BiLSTMmodel consists of forget gate ft, input gate it, temporary cell state C̃t,

cell state Ct, output gate ot, and bidirectional hidden state
[→

h ;
←
h
]
. The status at each time

step is expressed as follows:

ft = σ

(
W f ·

[→
h t−1, xt

]
+ b f

)
it = σ

(
Wi·

[→
h t−1, xt

]
+ bi

)
C̃t = tanh

(
WC·

[→
h t−1, xt

]
+ bC

)
Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ

(
Wo·

[→
h t−1, xt

]
+ bo

)
→
h t = ot ∗ tanh(Ct)

(6)

where W f , Wi, WC, Wo, b f , bi, bC, and bo are the weight parameters that need to be learned
during the training process, and xt is the question embedding word vector at the current

moment. The forward hidden vectors
{→

h 0,
→
h 1, . . . ,

→
h n−1

}
and backward hidden vectors{←

h n−1,
←
h n−2, . . . ,

←
h 0

}
are spliced to obtain the final hidden layer state as follows:

h =

[→
h ;
←
h
]
=

{[→
h 0;
←
h n−1

]
,
[→

h 1;
←
h n−2

]
, . . . ,

[←
h n−1;

←
h 0

]}
(7)

The CRF layer classifies the emission score of BiLSTM as input and outputs the maxi‑
mumpossible predicted annotation sequence thatmeets the annotation transfer constraints.
The model loss function is defined as follows:

P(y|x) = exp(score(x, y))
∑ỹ∈YX

exp(score(x, ỹ))

score(x, y) =
n

∑
i=0

Pi,yi +
n

∑
i=0

Ayi ,yi+1

(8)



Entropy 2022, 24, 1805 9 of 19

where Pi,yi and Ayi ,yi+1 represent the emission score and transition score of yi in the labeling
sequence y, respectively. The maximum log‑likelihood function during model training is
expressed as follows:

log(P(y|x)) = score(x, y)− log( ∑
ỹ∈YX

exp(score(x, ỹ))) (9)

Question classification: QC aims to determine the type tq of the question Q and
establish the mapping relation f (Q) = tq. For example, the coarse‑grained type of the
question in Figure 4 is “ 技术状况” (“technical condition”) and the fine‑grained type is
“结构技术状况” (“structural technical condition”). The features of BERT embeddings, POS
embeddings, and entity embeddings are fused to obtain the final encoding for the QC task.
The embedding vector is expressed as follows:

Eqt =
{

ebert; epos; ete
}

(10)

Taking Eqt as the input of the text recurrent convolutional neural network (TextR‑
CNN), the recurrent neural network (RNN) adopts BiLSTM to guarantee model similar‑
ity for MTL. BiLSTM is used for capturing the semantic features of the word itself and
the left and right context in the question. The left and right context vectors are calculated
as follows:

el(wi) = σ
(

W(l)el(wi−1) + W(sl)Eqt(wi−1)
)

er(wi) = σ
(

W(r)er(wi+1) + W(sr)Eqt(wi+1)
) (11)

whereW(l),W(r),W(sl), andW(sr) are the weight parameters that need to be learned, el(wi)
and el(wi−1) are the left context embeddings of the current word and the previous word,
respectively, er(wi) and er(wi+1) are the right context embeddings of the current word
and the previous word, respectively, and σ is the sigmoid activation function. The vector
representation of the current word after feature fusion is expressed as follows:

xi =
[
el(wi); Eqc(wi); er(wi)

]
(12)

Perform linear transformation and tanh activation on xi to obtain a latent semantic
vector y1

i . After maximum pooling, the maximum value y2
i of the vector elements in y1

i is
obtained. The formula is expressed as follows:

y1
i = tanh(W1xi + b1)

y2
i =

n
max
i = 1

y1
i

(13)

where W1 and b1 are hyperparameters that need to be learned during training, and the
model output and probability are expressed as follows:

y3
i = W2y2

i + b2

pi =
exp

(
y3

i
)

∑n
k=1 exp

(
y3

i
) (14)

Objective function: Themain training tasks of theMTLmodule are TEE andQC. Two
key subtasks are jointly trained. The objective functions are expressed as follows:

L = αLtee + βLqc (15)

where Ltee and Lqc are the loss function for TEE and QC, α and β are the hyperparameters
that need to be learned to control the importance of each subtask.
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3.3. Cross‑Task Constraints
The proposed model adopts different CTC in the MTL and query generation stages

to improve the model performance. Semantic constraints are used in the MTL stage to
enrich the embedded features of subtasks. Conditional constraints are used in the query
generation stage to further prune query paths. The key to query generation is template
matching and concept replacement. The question template is matched by QC, and the
concepts in the template are replaced by TEE, thereby transforming the question into a
structured query. Formally, there is a mapping relationship g

(
tq
)
= T between question

types tq and query templates T . Templates are structured representations at the conceptual
level, replacing conceptual descriptions in T with instances of topic entities et to obtain the
Cypher query qc. Semantic constraints are embodied in the encoding layer of the model,
while conditional constraints include three steps and two limitations.

Step 1: Narrow down templates based on coarse‑grained question types and deter‑
mine query templates based on fine‑grained question types.

Limitation 1: ti ∈ Trange, where ti indicates the matched correct template and Trange
indicates the locked template range.

Step 2: Add potential constraints to query templates and prune query paths based on
POS and entity‑type combinations. Correct the TEE result according to POS information.

Limitation 2: Ensure the POS combination is consistent with the entity‑type combi‑
nation (entity and POS tags are detailed in Table 1).

Step 3: The Cypher query is generated by replacing the concept description in the
query template with an instance of the topic entity.

4. Experiments
Utilizing the constructed knowledge base and C‑KBQA corpus for bridge manage‑

ment as domain data sources, we evaluate the performance of the proposed model and
conduct experimental comparisons.

4.1. Neo4j Knowledge Base
Combined with the practical application scenarios of bridge management and the

characteristics of domain data, the Neo4j graph database is used for storing bridge man‑
agement knowledge. Data are obtained from an unstructured text, semi‑structured tables,
and relational data. Based on the previous research work [8], the extracted triple knowl‑
edge is stored in the Neo4j graph database. As shown in Figure 5, the bridge maintenance
knowledge base is composed of various types of bridge entities and relation edges, and
the entity nodes contain basic attributes. The constructed bridge maintenance knowledge
base contains 9352 entities, 19,556 relationships, and 5674 attribute values.

4.2. Experimental Dataset
Aiming at the multi‑task strategy of domain C‑KBQA, the QA, TEE, and QC datasets

are constructed, respectively. The annotated corpus consists of 26,798 questions with in‑
formation about 126 bridges, which contain 513,631 characters. The corpus is divided into
training, validation, and test sets according to 8:1:1. For the TEE task, Table 2 shows the
distribution of entities in its training, validation, and test sets. Figure 6 shows the number
of characters for various entities.
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Figure 5. The example of Neo4j knowledge base for bridgemanagement. Neo4j is an attribute graph.
The entity node contains some basic attributes. For example, the value of the attribute “中心桩号”
(“Center Station”) of the bridge entity “K桥” (“Bridge K”) is “K253+465”. Different entities are con‑
nected by relational edges to form a graph structure. For example, there is a “ 结构” (“Structure”)
relationship between “K桥” (“Bridge K”) and “桥墩” (“Bridge Pier”).

Table 2. The number of entities in the training, validation, and test sets.

Entity Types Training Set Validation Set Test Set Total

BRI 21,438 2680 2731 26,849
BST 14,432 1961 2248 18,641
BSE 2073 301 198 2572
BSL 1483 189 257 1929
BSD 5124 682 776 6582
BTC 10,940 1504 1325 13,769

Figure 6. The number of characters for various entities. Max.char, Min.char, and Avg.char, respec‑
tively represent the maximum, minimum, and average characters of different types of entities.

The bridge management questions are divided into coarse‑grained and fine‑grained.
There are three types of coarse‑grained questions and ten types of fine‑grained questions.
Table 3 shows the number of various bridge management questions.



Entropy 2022, 24, 1805 12 of 19

Table 3. Number of different types of bridge management questions.

Coarse‑Grained Fine‑Grained Number Total

基础信息
(Basic information)

桥梁信息 (Bridge information) 3018
6283

结构信息 (Structural information) 3265

损伤缺陷
(Damage defect)

桥梁缺损 (Bridge defect) 126

11,400

结构缺损 (Structural damage) 4047
缺损描述 (Defect description) 3970
缺损属性 (Defect properties) 673
缺损位置 (Defect location) 1056
共同缺损 (Common defect) 1528

技术状况
(Technical condition)

桥梁技术状况 (Bridge technical
condition) 504

9115
结构技术状况 (Structural technical

condition) 8611

The 2680 questions in the test set were selected to construct QA pairs to verify the
C‑KBQA effect of bridge management. Complex questions are often characterized by
multiple‑hops, numerical calculations, aggregation, etc. Combining the question charac‑
teristics in the bridge management domain, Table 4 lists some examples of complexity in
bridge management QA pairs. In the table, the multi‑hop questions indicate that the ques‑
tions involve multiple knowledge triples. Numerical calculation questions are mainly in
regrad to the types of defects and the number of components. The questions of judgment,
constraint, and aggregation operation have certain inference properties, which are difficult
questions in bridge management C‑KBQA.

Table 4. The examples of complexity in bridge management QA pairs. Bridge management ques‑
tions mainly include the following five complex types: Multi‑hops, numerical calculation, judgment,
constraint, and aggregation operation. Examples of QA pairs for each complex type are provided in
the table, where Q stands for “question” and A stands for “answer”.

Complex Types QA Pairs Examples

Multiple‑hops

Q: What is the technical condition level of the bridge deck system of Bridge A?
(A桥桥面系的技术状况等级为多少?)

A: The technical condition level of the bridge deck system of Bridge A is level 3.
(A桥桥面系的技术状况等级为3类.)

Numerical calculation Q: How many defects exist in Bridge D? (D桥存在几种缺陷?)
A: There are seven defects in Bridge D. (D桥有7种缺陷.)

Judgment

Q: Are Bridge B and Bridge C the same technical condition level?
(A桥和B桥的技术状况等级一样吗?)

A: Bridge B and Bridge C are the same technical condition level.
(A桥和B桥的技术状况等级一样.)

Constraint

Q: What are the bridges with technical condition level 1?
(技术状况等级为1类的桥有哪些?)

A: The bridges with technical condition level 1 are Bridge E, Bridge J, and Bridge I.
(技术状况等级为1类的桥有E桥, J桥和I桥.)

Aggregation operations

Q: What defects are common to Bridge D and Bridge F?
(D桥和F桥存在哪些共同缺损?)

A: The common defects are shear deformation and longitudinal cracks.
(D桥和F桥的共同缺损有剪切变形和纵向裂缝.)
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4.3. Baselines and Configurations
The precision, recall, and F1 score are used for evaluating the performance of TEE

tasks. Accuracy and F1 score are used as evaluation metrics for QC tasks. The calculation
formulas of these evaluation metrics are expressed as follows:

Accuary = (TN + TP)/(TN + TP + FN + FP)
Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 = 2 ∗ Precision ∗ Recall/(Precision + Recall)

(16)

where TP is true positive, TN is true negative, FP is false positive, and FN is false nega‑
tive. Accuary represents the ratio of the number of correctly classified samples to the total
number of samples. Precision represents the ratio of the number of correctly retrieved sam‑
ples to the total number of retrieved samples. Recall represents the ratio of the number of
samples that were correctly retrieved to the number of samples that should have been re‑
trieved. F1 is theweighted harmonicmean of Precision and Recall. The baselinemodels for
the TEE task include CNN‑CRF, BiLSTM‑CRF, and BERT‑CRF. The baselinemodels for the
QC task include TextRNN_Att, TextRCNN, ERNIE, BERT, BERT_CNN, and BERT_RNN.

All experiments were conducted on a server with Intel Xeon Gold 6338 CPU, NVIDIA
A40 GPU, 32 GB DDR3 RAM, and 512 GB disk space. For the MTL of C‑KBQA, the param‑
eter settings on the two key subtasks of TEE and QC are shown in Table 5. The parameter
settings of the pretrained model mainly use the native embedding dimension and hyper‑
parameters of Bert_base_Chinese.

Table 5. Parameter settings for TEE and QC.

Parameters TEE Task QC Task

Pretrained model Bert_base_Chinese Bert_base_Chinese
Optimizer AdamW AdamW
Batch size 64 64

Learning rate 0.00005 0.00005
Word vector size 100 100

BiLSTM_hidden_size 128 128
Epoches 30 15

4.4. Experimental Results
The performance comparison of TEE task is shown in Table 6, BiLSTM outperforms

CNN, and its F1 score is improved by 1.01%. The BERT pretraining model is effective, and
its F1 score is 2.04% higher than BiLSTM. Based on BERT, our proposed model improves
the domain adaptability and achieves the expected effect. Its F1 score is 94.76%, which is
better than the above baselines.

Table 6. The comparative experimental results of TEE task. The bold numbers represent the best
experimental results.

Models Precision (%) Recall (%) F1 (%)

CNN‑CRF 90.32 91.47 90.89
BiLSTM‑CRF 92.51 91.29 91.90
BERT‑CRF 94.25 93.63 93.94
Our model 93.86 95.68 94.76

The model performance comparison for the QC task is shown in Table 7. For the text
classification series model, TextRCNN performed best with an F1 score of 96.79%. The
F1 score of the BERT model is 1.87% higher than the TextRCNN model. The BERT series
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model is significantly better than the text classification model. Our proposed model intro‑
duces MTL and CTC on BERT, and the F1 score is 98.84%, which has well
model performance.

Table 7. The comparative experimental results of QC task. The bold numbers represent the best
experimental results.

Models Accuracy (%) Precision (%) Recall (%) F1 (%)

TextRNN_Att 98.02 97.97 94.81 95.87
TextRCNN 98.26 96.67 96.94 96.79
ERNIE 99.14 98.35 98.71 98.51
BERT 99.18 98.40 98.94 98.66

BERT_CNN 99.10 98.33 98.87 98.59
BERT_RNN 99.12 98.19 99.03 98.57
Our model 99.26 98.68 99.01 98.84

For the bridgemanagement C‑KBQA task, this paper conducts question answering ex‑
periments on 2680 complex questions in the test set. The trained multi‑task model is used
forQCandTEE, and structured queries are generated according to templatematching prin‑
ciples and concept replacement rules. A total of 10 overall experiments were conducted on
2680 questions, and the average test scores and standard deviations of the 10 results were
used as comprehensive evaluation indicators. The experimental results shown in Table 8
demonstrate that the model effect of basic information question and technical condition
question is remarkable, and the comprehensive F1 score of bridge management C‑KBQA
also reaches more than 90%, which initially meets the needs of specific scenarios. How‑
ever, the accuracy of damage defects needs to be improved, and it will be the work of
continuous optimization and improvement in this paper. This is due to the fact that the
damage defect question involvesmulti‑hop retrieval calculation, and the question scenario
is more complicated.

Table 8. The experimental results of bridge management C‑KBQA. The symbol “±” indicates that
the results of each experiment fluctuate within the positive and negative range.

Question Types Precision (%) Recall (%) F1 (%)

Basic information 92.32 ± 0.02 87.9 ± 0.03 90.06 ± 0.03
Damage defect 82.57 ± 0.03 78.89 ± 0.03 80.69 ± 0.05

Technical condition 95.24 ± 0.02 92.65 ± 0.01 93.93 ± 0.02
Overall evaluation 91.17 ± 0.02 88.93 ± 0.01 90.04 ± 0.02

In addition, we compare the proposedmodel frameworkwith the latest general frame‑
work, as shown in Table 9. Comparison models are some general domain models based
on information retrieval ideas. They are mainly encoded by pretraining models, and then
some deep neural networks can be accessed for feature extraction. Finally, answers are
matched by semantic similarity calculation. However, the comparison model does not im‑
prove the model according to the characteristics of the domain, nor does it introduce the
domain rules, which is quite different from the template matching method. The exper‑
imental results show that the indexes of the proposed model are clearly better than the
comparison models, which proves the superior performance of the proposed model based
on template matching in the C‑KBQA task of bridge management. It is further proved that
the existing deep learning techniques cannot be directly applied to the C‑KBQA scenewith
the knowledge inference property in a specific domain.
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Table 9. Comparison of C‑KBQA models for bridge management. “Similarity” indicates semantic
similarity calculation.

Models Precision (%) Recall (%) F1 (%)

BERT‑Similarity 67.93 66.25 67.08
BERT‑BiLSTM‑
Similarity 72.31 70.89 71.59

BERT‑BiLSTM‑
Attention 75.58 75.04 75.31

Our Model 91.17 88.93 90.04

4.5. Ablation Study
Furthermore, we evaluate the MTL model performance and cross‑task constraint ef‑

fect of bridgemanagement C‑KBQA. As shown in Table 10, the single‑task experiments are
equivalent to the use of the BERT‑BiLSTM‑CRF and BERT‑RCNN models independently
for TEE and QC, respectively. Subsequently, the semantic embedding constraints of each
subtask are sequentially added to other tasks, and the BERT and model parameters are
shared, thereby proving the effectiveness of each key component in the model. The exper‑
imental results show that the performance of the MTL model is significantly better than
the single‑task model.

Table 10. Ablation results of the proposed model. The bold numbers represent the best experimen‑
tal results.

Task Types TEE QC C‑KBQA

P (%) R (%) F1 (%) P (%) R (%) F1 (%) F1 (%)

Single‑Task 94.65 93.32 93.98 98.21 98.89 98.54 88.32
+POS emb 94.79 93.23 94.00 98.16 98.97 98.66 89.43
+Entity.emb / / / 98.48 99.07 98.77 /
+Q‑Type.emb 94.95 93.87 94.41 / / / /
Our model 94.89 94.64 94.76 98.68 99.01 98.84 90.04

5. System Prototype
To evaluate the effect of the proposed C‑KBQA method in bridge management sce‑

narios, we developed a bridge management C‑KBQA prototype system. As shown in
Figure 7, when logging in to the system interface, bridge management users can query
bridge management‑related information in natural language, and the system will directly
return the processed answer. The question answer module includes the retrieval function
of fact triple knowledge, the enumeration function of various bridge defects, the inference
function of bridge common defects, and the calculation function of bridge defect types. In
this way, information retrieval, structural state evolution trend, technical condition assess‑
ment, and damage safety warning among multiple bridges with similar structure types
and similar operating environments are realized, and the bridge management unit can
make corresponding decisions.
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Figure 7. C‑KBQA prototype system for bridge management. The system takes the proposed model
as the back‑end technical support. The right part consists of the natural language questions in the
field of bridgemanagement input by domain users, and the left part consists of the answers returned
by the system after analysis and processing. In addition, the answer is in a natural language and
contains the context, which makes the human‑computer interaction more friendly.

6. Conclusions
The informatization in the field of bridge engineering has developed rapidly. Large

amounts of data have been accumulated in the process of bridge management, which
has laid the foundation for the digital development in bridge management. This paper
proposes an MTL framework based on CTC, with POS tagging, TEE, and QC as aux‑
iliary tasks, to improve the performance of bridge management C‑KBQA task by shar‑
ing BERT and jointly setting model parameters. The proposed model combines BERT
embeddings, POS embeddings, entity embeddings, and question‑type embeddings to en‑
hance the contextual representation of short‑text questions and achieve cross‑task seman‑
tic constraints. Moreover, the proposed model is experimentally evaluated on the bridge
management dataset and compared with the baseline. The results demonstrate that the
model outperforms the baseline model on both TEE and QC tasks. Furthermore, the pro‑
posedMTL framework achieves good performance in solving themain task of bridgeman‑
agement C‑KBQA. The research provides knowledge‑based services and intelligent deci‑
sions for bridge management users, which has important significance and far‑reaching
influence on accelerating the information construction of bridge engineering, and pro‑
vides a new application scenario for the interdisciplinary research of computer science and
bridge engineering.

However, the proposed model has certain limitations. Some future work should be
carried out as follows:
(1) The template still needs to be designed manually and is closely related to the storage

form of the knowledge base; therefore, it cannot be flexibly improved. As a result,
the automatic generation of query templates will be the focus of future research. The
followingworkwill carry out syntactic dependency analysis and part of speech analy‑
sis on natural language questions to obtain the core sentence pattern of the questions.
The QA pairs are used as training data, and feature extraction is carried out through
the deep neural network to automatically construct question templates.
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(2) The bridge management knowledge base contains large numbers of entities and re‑
lationships; therefore, the follow‑up work can build a domain knowledge graph em‑
bedding model to integrate prior knowledge into the model in advance. In order to
retain the structural and semantic features between entities and relations at the same
time, the graph neural network and attention mechanism will be combined to gen‑
erate the knowledge graph embedding to capture the deep interaction information
between entities and relationships.

(3) With the advancement in deep learning, end‑to‑end C‑KBQA models have been ex‑
tensively studied in the general domain; therefore, researching C‑KBQA end‑to‑end
models for bridge management is another important and challenging task. The fu‑
ture work will be based on the semantic support of knowledge graph embedding,
and automatically construct structured queries through the automatic generation of
templates, in an attempt to obtain an automatic question answering solution for com‑
plex knowledge bases with enhanced domain knowledge semantics.
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