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Abstract: As a measure of complexity, information entropy is frequently used to categorize time series,
such as machinery failure diagnostics, biological signal identification, etc., and is thought of as a
characteristic of dynamic systems. Many entropies, however, are ineffective for multivariate scenarios
due to correlations. In this paper, we propose a local structure entropy (LSE) based on the idea of
a recurrence network. Given certain tolerance and scales, LSE values can distinguish multivariate
chaotic sequences between stochastic signals. Three financial market indices are used to evaluate the
proposed LSE. The results show that the LSEFSTE100 and LSES&P500 are higher than LSESZI , which
indicates that the European and American stock markets are more sophisticated than the Chinese
stock market. Additionally, using decision trees as the classifiers, LSE is employed to detect bearing
faults. LSE performs higher on recognition accuracy when compared to permutation entropy.

Keywords: multivariate time series; information entropy; chaotic sequence; random signal;
machinery fault diagnose

1. Introduction

The local structure and its integration are crucial components in defining the vast
system as a whole. For instance, the personal abilities of football players on the field and
their teamwork play key roles in a competition [1], or the seismic capacities of buildings
rely on materials and frame structures [2]. However, people tend to use local structures
to identify objects in machine learning work [3,4]. Numerous examples can be found
in feature selection [5,6], pattern recognition [7–9], and so on. Is it possible that a local
structure is enough to accomplish identification? If it is possible, it means that other
methods, such as global–local structure-based learning [10], are not necessary. So, no one
can deny that it depends on specific issues. People tend to agree that only when local
structures contain enough information for judging can the local structure-based strategies
take effect. Therefore, finding the amount of information contained in the local structures
of samples is important for further exploration.

In the time series analysis field, entropies were used to reflect the amount of informa-
tion contained in observed data. The first one can be traced back to Shannon entropy [11],
which is defined as,

H(X) = − ∑
x∈X

p(x)ln(p(x)) (1)

where X is a random variable and p(x) is its probability density. For a time series,
Equation (1) is valid under the assumption of stationarity despite whether X is univariate
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or multivariate. Interested readers can refer to other entropies based on Equation (1) for
univariate cases, such as sample entropy [12,13], multiscale entropy [14,15], permutation en-
tropy (PE) [16–18], etc. These methods have one thing in common—the observed time series
is embedded into a phase space in order to reflect the autocorrelation. However, the above-
mentioned entropies, except for PE, cannot be directly generalized to multivariate cases.
With regard to PE, although it naturally provides a multivariate version [19–21], it does not
reflect correlations between components. Although the Kullback–Leibler entropy [22] is a
classical tool to assess the correlation between two components, it is asymmetrical and can-
not be employed on a time series whose dimension is greater than 2. In general, correlations
between different components together with autocorrelation in every component, are con-
sidered double-edged swords, which provide positive affection where the times series can
be predicted, as well as a negative influence, where it is difficult to measure the complexity
of a multi-dimensional time series. Researchers managed to introduce other entropies
to characterize multivariate sequences, such as matrix-based entropy [23,24], multiscale
entropy [25–27], and estimation methods [28]. For instance, Azami proposed a refined
composite multivariate multiscale fuzzy entropy that demonstrates long-range, within, or
cross-channel correlations [29]. Han proposed a multivariate multi-scale weighted permu-
tation entropy to illustrate oil–water two-phase flow instability [30]. Mao constructed a
complexity–entropy causality plane based on the normalized Shannon entropy and mul-
tivariate permutation entropy, thus characterizing various chaotic systems [31]. With the
complex network method, Shang put forward another complexity–entropy causality plane
via multiscale entropy and the degree distribution of the vector visual graph to measure
the complexity of the stock index [32]. The above-mentioned methods have at least one
of the following drawbacks: (1) the observed sample numbers need to be large, otherwise
the results are not reliable; (2) the computing times are long, so they cannot satisfy the
real-time requirements of the application; (3) focusing on autocorrelation but neglecting
relationships between components. To illuminate those shortcomings, we plan to use a
complex network-like approach to represent the local structure.

In the past decades, we have witnessed the development of complex network sci-
ence [33–35], which is utilized to present complex systems such as climate dynamics [36]
and human language [37]. Meanwhile, it is regarded as a newly advanced tool for time
series analysis, such as for univariate cases [38–40] and multivariate cases [41]. Interested
readers can find more information in the review articles [42,43]. These complex network-
based methods can be divided into three classes: visibility graph (VG) [44,45], recurrence
net (RN) [46,47], and transition net (TN) [48,49]. For VG, a vertex is obtained by the linear
relationship contained in fragments. For TN, a vertex is usually generated by certain coarse-
graining strategies. Links between pairs of adjacent vertexes in VG or TN are naturally
produced according to the order. However, RN is quite different. Its edges are bridged by
the similarities of observed values. The validities of these methods also indicate that local
structures together with their combination forms could represent essential characteristics
of a complex system. Inspired by the above means, we propose a local structure-based en-
tropy (LSE) for analyzing a multivariate time series. This can be regarded as a multivariate
version of the Shannon Entropy defined on a discrete distribution of the local structure; the
recurrence of the observed vector is employed to represent local structure information. In
fact, RN is constructed by the similarity between all observed data. If we just consider the
reappearances of the initial state in the sliding window, then its distribution can be viewed
as a manifestation of local structure.

The rest of this paper is organized as follows. Section 2 introduces the process of
computing LSE; Section 3 tests LSE on the fractional-order chaotic time series; LSE is
applied to the stock market index and bearing fault signals; finally, we draw our conclusions
in Section 5.
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2. Method

In [50], Donner introduced the construction of RN, which takes individual values as
vertices and indicators of recurrences as edges. Here, a pair of states whose values are close
enough can be regarded as recurrences. Thus, RN represents the reappearance of system
states over a long period. It is natural for one to (hope to) use the recurrent numbers of
the initial states in sliding windows of different lengths to characterize the complexities of
the systems.

Let xt = (x1t, x2t, . . . , xmt)T
t≤N be an m-dimensional time series. τ and i are integers

with i + τ − 1 ≤ N. Extract fragment Yi from xt by

Yi =

 x1,i . . . x1,(i+τ−1)
...

...
...

xm,i . . . xm,(i+τ−1)

 (2)

Let j ∈ {0, 1, 2, . . . , τ − 1}, yi
j denotes the (j + 1)th column vector of Yi. Define

disj = |yi
0, yi

1+j| (3)

where |·, ·| is a distance in Rm (in this paper, we use the Euclidean distance). Given a
tolerant threshold r and the number of j, such that disj ≤ r is called the recurrent number
of Yi with the scale τ, and the tolerance r is denoted by #(Yi; τ, r). That is,

#(Yi; τ, r) = ∑
j∈{1,2,...,τ−1}

sign(disj ≤ r) (4)

where sign(·) is the indicator function. Two examples of the above procedure are demon-
strated in Figure 1.

#(Y1;4,0.16) = 2

τ = 4, r = 0.16

dis1=0.1

dis2=0.2

dis3=0.15 dis1=0.17

dis2=0.1

dis3=0.25

Y1
Y2

#(Y2;4,0.16) = 1

(a)

dis1=0.1

dis2=0.2

dis3=0.15

dis4=0.2

2

dis1=0.17

dis2=0.1

dis3=0.25

dis4=0.15

τ = 5, r = 0.16

Y1
Y2

#(Y1;5,0.16) = 2 #(Y2;5,0.16) = 2

(b)

Figure 1. Schematic diagram of #(Yi; τ, r) procedure. (a) tolerance r = 0.16, scale τ = 4, (b) r = 0.16,
τ = 5.

Now, the LSE of xt under scale τ and tolerance r is defined as

LSE(xt; τ, r) = ∑ g(#(Yi; τ, r))ln(g(#(Yi; τ, r))) (5)

where g(·) = p(·)/aτ,r, p(·) represents the density function, and aτ,r is the average of
#(Yi; τ, r).

NOTE 1 The value of LSE depends on the selection of τ and r. When their ranges are
given, they can be chosen by the maximal LSE. Namely,

(τ, r) = argmax
τ,r

LSE(xt; τ, r) (6)
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In general, the range of τ can be decided by the length of the time series, such as
1/100 to 1/10 of the raw data. The range of r can be selected by referring to the standard
deviation of the multivariate standard Gaussian series. See Appendix A.1.

NOTE 2 Given a set of values for τ and r, respectively, such as τ ∈ {τ1, τ2, . . . , τq} and
r ∈ {r1, r2, . . . , rs}, the values of LSE(xt; τi, rj) form a matrix, which presents the variation
of the complexity of xt over different scales and tolerances. Therefore, it could be used to
characterize xt.

NOTE 3 We adopt two strategies for further exploration. To designate the correspond-
ing LSE values, we utilize the variables LSEA and LSEB. METHOD A: normalize each
component of xt and specify a tolerance range as described above, which leads to LSEA
being immune to linear transformations; METHOD B: do not normalize xt but set tolerance
range by the total of component variances, thus taking into account the extents of various
channel volatilities. Broadly speaking, LSEA and LSEB are not equivalent, and they can
be seen as two different ways of describing the initial sequence. See Appendix A.2 for
more information.

3. Numerical Simulations

In this section, we test LSE on several multivariate deterministic and stochastic signals.
At first, we analyze fractional-order chaotic systems and random series and find out ranges
of τ and r in Section 3.1, then we test LSE on integer-order, fractional-order chaotic systems
and random sequences in Section 3.2.

3.1. Fractional-Order Chaotic Systems and Random Series

Derivatives and integrals of fractional orders are employed to describe objects with
memory properties, such as power law nonlocality or long-range dependence [51] and,
thus, can model real-world systems more accurately than the classical integer calculus.
Many fractional-order dynamical systems [52–54] with total order of less than three can
exhibit chaos while continuous nonlinear systems with the total order of less than three
cannot under the concept of the usual integer order. In this section, we simulate three
multivariate fractional-order dynamical models and three random signals to test LSE.

For many classes of functions, the three most well-known fractional-order derivatives
(the Grünwald–Letnikov (GL), Riemann–Liouville, and Caputo) are equivalent under some
conditions [55]. Here, we use the GL definition, i.e.,

Dα
t f (t) = lim

h→0

1
hα

∞

∑
j=0

(−1)j
(

α
j

)
f (t− jh) (7)

Then, for the fractional-order differential equation

aDα
t y(t) = f (y(t), t) (8)

a general numerical solution has the form of [56]

y(tk) = f (y(tk), tk)hα −
k

∑
j=v

c(α)j y(tk−j) (9)

where
c(α)0 = 1, c(α)j = (1− 1 + α

j
)c(α)j−1 (10)

Then, several different dynamic systems, including the fractional order chaotic sys-
tem, multivariate vector autoregression moving-average process (VARMA), white Gaus-
sian noise (WGN), and 1/f noise, are generated and then analyzed by LSE to showcase
its effectiveness. The method in [56] is adopted to generate numerical solutions of
Equations (11) to (13); they are chaotic time series, which are cross-validated with the
largest Lyapunov exponent [54]. The simulation timespan is 0:0.005:30. (Start at 0, end at
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30, the step is 0.005). To avoid the influences of the initial values, the first 10% of data are
discarded and the sampled series (500× 3, 500 simulated three-dimensional vectors) start
from a random position. Figure 2 displays examples of these signals.

1. Fractional-order Chen system [52]
Dα1 x = a(y− x)
Dα2 y = dx− xz + cy
Dα3 z = xy− bz

(11)

α1 = α2 = α3 = 0.9, a = 35, b = 3, c = 28, d = c − a = −7, initial values
(x0, y0, z0) = (−9,−5, 14).

2. Fractional-order Rössler system [53]
Dα1 x = y− z
Dα2 y = x + ay
Dα3 z = b + z(x− c)

(12)

α1 = 0.9, α2 = 0.85, α3 = 0.95, a = 0.5, b = 0.2, c = 10, (x0, y0, z0) = (0.5, 1.5, 0.1).
3. Fractional-order financial system [54]

Dα1 x = z + (y− a)x
Dα2 y = 1− by− x2

Dα3 z = −x− cz
(13)

α1 = 1, α2 = 0.95, α3 = 0.99, a = 1, b = 0.1, c = 1, (x0, y0, z0) = (2,−1, 1).
4. Multivariate vector autoregression moving-average process

yt = c +
p

∑
j=1

Φjyt−j +
q

∑
k=1

Θkεt−k + εt (14)

Φ1 =

0.2 −0.1 0
0.1 0.2 0.05
0 0.1 0.3

, Φ2 =

0.3 0 0
0.1 0.4 0.1
0 0 0.2

, Φ3 =

 0.4 0.1 −0.1
0.2 −0.5 0

0.05 0.05 0.2

,

Θ1 =

0.2 0 0
0 0.2 0
0 0 0.2

, Θ2 =

0.3 0.2 0.1
0.2 0.4 0
0.1 0 0.5

, c = (0.05, 0,−0.05)T , covariance

matrix is the unit matrix, ε is a standard Gaussian White noise, and the length equals
to the above numerical solutions. This procedure is completed by the ARMA2AR and
VARMA function of MATLAB2020b.

5. White Gaussian noise
We use the NORMRND function of MATLAB2020b to simulate WGN (500 × 3). Its
components are independent with zero mean and unit standard deviation.

6. 1/f noise
On the basis of the algorithm in [57], the procedure of generating 1/f noise consists
of three basic steps: (i) simulating white noise whose length is 1500, we obtain y0;
(ii) DFT (discrete Fourier transformation) on y0, multiplied by f−

1
2 and symmetrized

for a real function, then IDFT (inverse discrete Fourier transformation), adjust the
mean and standard deviations, yielding y1; (iii) resize y0 and y1 to 500× 3 matrix;
finally, the 1/f noise series is composed as [y0(:, 1), y1(:, 2), 1

2 (y0(:, 3) + y1(:, 3))].

Now, we set the simulation parameters as follows: τ ∈ {5, 6, . . . , 15}, r ∈ {0.05 :
0.041 : 0.5} ×

√
24 for METHOD A, r ∈ {0.05 : 0.041 : 0.5} × Σ for METHOD B, where

Σ = ∑3
i=1 σ4

i and σi is the standard deviation of ith component. More details can be found
in Appendix A.2. LSE values are shown in Figure 3.
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Figure 2. Examples of the chaotic and stochastic series. In fact, we view the multivariate time as a
vector sequence. The first axis is the time, (t,0,0) is regarded as the original point for plotting the
vectors (x(t),y(t),z(t)). The length is 300, and the time step is 0.005. Note that the series of Rössler and
the financial systems appear to be very simple variations.

(a) (b)

Figure 3. LSE(Local structure based entropy) values, as functions of τ and r. (a) METHOD A,
(b) METHOD B.

From Figure 3, we found both METHOD A and METHOD B can distinguish multi-
variate chaotic signals from stochastic ones. For a fixed (τ, r), the LSE of random time series
is higher than that of a chaotic one. As shown in Figure 3a, WGN has the most complex
signals, the 1/f noise and VARMA series appear to have similar trends, and the other three
chaotic series lie under 0.1. They keep the same orders for most (τ, r). In Figure 3b, LSE
values are significantly different and hardly overlap, except for Chen and Rössler systems.
The reason these two systems are indistinguishable can be because the range of coefficients
of r is rather small. Next, we change the lower and upper bounds to 0.01 and 1. Moreover,
the above simulation will be repeated 100 times (100 trajectories for each system) to check
the robustness of LSE. In each simulation, we add small disturbances to initial values
(Disturbinitial = 0.3× ε) ). Time series generated from Equations (11) to (13) are still chaos
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with these disturbances; refer to [56]. Note that the intersections of LSE surfaces and τ = τi
(or r = ri), other than surfaces themselves, are utilized to verify the validity of our methods.
Subjecting to the space, only part of the results are demonstrated, see Figures 4 and 6.
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Figure 4. LSE values, as functions of τ or r. The time step is 0.005 for Equations (11) to (13). The
marker presents the average and the error bar presents the standard deviation of LSE for fixed τ and
r. (a–h) METHOD A, (i–p) METHOD B.

In Figure 4, the LSE of random series is higher than that of chaotic ones, thus we
believe LSE can be treated as an efficient tool to characterize multivariate time series. When
τ is fixed, LSE values of different dynamics show their own features. In Figure 4a–d,
LSE values of chaotic systems show similar trends where LSEchaos

A oscillates heavily when
r = r1 = 0.01 ×

√
24. Then, LSEchaos

A decreases as tolerance increases. For LSErandom
A ,

they reach their highest values at r2 and then keep reducing as r increases. However, for
METHOD B, all LSE values are decreasing, see Figure 4i–l. When r is fixed, except for
the Rössler and Financial systems, other series can be distinguished by LSE values over
different scales. For instance, in Figure 4e, LSEchen

A < 0.08 but LSErandom
A > 0.1, in Figure 4f,

LSEWGN
A lie at the highest level, and Figure 4g,h,m,n, LSE1/ f locate higher than LSEVARMA.
Compare METHOD A with METHOD B, when r is small, the later performs better

at distinguishing multivariate stochastic series from chaotic ones, as well as more stable
LSE values for chaos (basically the same). For instance, all LSEchaos are overlapped and
smaller than LSErandom when the coefficient is 0.109 in Figure 4m. However, in Figure 4e,f,
LSEChen

A is close to LSErandom
A . Moreover, the former shows better discrimination on chaotic
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systems. This is because of the standardization process of METHOD A, which weights all
components at an equal level. It may amplify the LSE if the system’s variation is caused by
only one or a small group of components.

Based on the simulation findings mentioned above, the following reference range of
parameters can be provided:

• 5 ≤ τ ≤ 15 is acceptable. In Figure 4a–d and in Figure 4i–l, when r is taken appropri-
ately, these curves have essentially the same shape, making it possible to distinguish
between different signals. This suggests that the distinction is not dependent on the
value of τ, and the corresponding time complexity can be taken into consideration
when designing this parameter.

• For METHOD A, 0.5 ≤ r ≤ 2. For METHOD B, 0.1 ≤ coe f f icient ≤ 0.4. For example,
when r = 0.53399, LSEchaos is less than 0.1 but LSErandom is higher than 0.1. Therefore,
the stochastic sequence can be distinguished from chaotic ones. See Figure 4e. If r is
too small, LSE has a large standard deviation, as is shown in Figure 4a,i. If r is too
large, LSEchaos and LSErandom are overlapped, thus, it is difficult to tell apart various
signals. See Figure 4g,o.

However, one problem is that LSErossler and LSE f inancial cannot be distinguished,
as they are coincident in Figure 4. The reason for this is that the simulated series of
Equations (12) and (13) is short and the time step is too small, thus they cannot reflect
the feature of the whole system. So, we change the time step to 0.05 and the time span
to [0:0.05:300] for the above two systems in order to verify whether LSE functions or not.
Examples of the above six kinds of signals are shown in Figure 5.

Figure 5. Examples of chaotic and stochastic series. The time step is 0.005 for the Chen system, and
0.05 for the Rössler and financial systems. Compare to Figure 2, the Rössler and financial series show
significant oscillations.

After repeating 100 times, similar to what we have done in previous tasks, we perceive
that LSE works for many tolerance values and some results are drawn in Figure 6. Here,
we just show several LSE-τ figures for fixed tolerances or coefficients, such as Figure 4e,n,
because LSE-r charts appear too similar to disparate different series.
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Figure 6. LSE values, as functions of τ for several fixed tolerances or coefficients. The time step
is 0.05 for the Rössler and Financial systems and 0.005 for the Chen system. (a–d) METHOD A,
(e–h) METHOD B.

From Figure 6, one can easily distinguish six series. For example, in Figure 6d,
LSErossler

A lies at the top, in Figure 6b, the LSE values of the other five series do not intersect,
and the order is WGN, 1/f noise, VARMA, Chen, and financial, from the top to the bottom.
However, the coefficient should be small, such as it is around 0.4 (Figure 6b,f). Otherwise,
LSE curves are overlapped (Figure 6d,h).

Moreover, to test the dependence on the distance function, we replace Equation (3)
with the distance derived from the l∞ norm, i.e.,

disj = |yi
0, yi

1+j|∞ = max|yi
0 − yi

1+j| (15)

Repeat the above simulations, the corresponding results are drawn in Figure 7.
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Figure 7. LSE values, where the distance function is derived from the infinite norm, Equation (15).
(a–d) METHOD A, (e–h) METHOD B.

Compare Figure 7 to Figure 6, one can see that LSE with the same range of parameters
can still effectively distinguish between different signals when using the l∞ norm-derived
distance, as Figure 7a,b,f show. Meanwhile, the range of r should be carefully chosen, or
the LSE curve may be overlapped, such as Figure 7d,h.
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To compare with the multivariate permutation entropy (PE) [17,58], Figure 8 shows
PE curves for the above six series.

5 10 15

0

0.1

0.2

0.3

0.4

0.5

P
E

Chen

Rossler

Financial

VARMA

WGN

1/f

Figure 8. PE values. The embedding dimensions are {5, 6, . . . , 15}.

Chaotic signals can be distinguished from stochastic ones via PE since PEchaos <
PErandom for all τ in Figure 8. However, PE cannot discriminate random series, which
have correlations in different degrees. Moreover, it fails in the Rössler and financial
cases. It means that PE is not sensitive to tiny differences in the complexity of systems.
However, LSE can distinguish those systems, which indicates LSE is a more accurate
measure of complexity.

3.2. Integer-Order Chaos, Fractional-Order Chaos, and Random Series

In this subsection, we test LSE on the integer-order chaotic systems, fractional-order
chaotic systems, and stochastic sequences. For integer-order chaos, we use Chen, Rössler,
and financial systems. The timespans are 0:0:005:30, 0:0.05:300, and 0:0.05:300, respectively.
In each simulation, small disturbances are added to the initial values. See
Equations (16) to (18).

1. Integer-order Chen system [52]
ẋ = a(y− x)
ẏ = dx− xz + cy
ż = xy− bz

(16)

a = 35, b = 3, c = 28, d = c− a = −7, initial values (x0, y0, z0) = (−9,−5, 14) + ε.
2. Integer-order Rössler system [53]

ẋ = y− z
ẏ = x + ay
ż = b + z(x− c)

(17)

a = 0.4, b = 2, c = 4, (x0, y0, z0) = (0.5, 1.5, 0.1) + ε.
3. Integer-order financial system [54]

ẋ = z + (y− a)x
ẏ = 1− by− x2

ż = −x− cz
(18)
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a = 1, b = 0.1, c = 1, (x0, y0, z0) = (2,−1, 1) + ε.

With the given parameters, the above three systems produce three-dimensional
chaotic series.

For fractional-order chaos, Equations (11) to (13) are used to generate chaotic time
series, such as in Section 3.1. Additionally, we add a small disturbance (Disturbα =
±0.02× ε) to parameters (α1, α2, and α3), in each simulation. Moreover, we use the same
methods as in Section 3.1 to generate random signals. All the simulated series have the
same size (500 × 3).

Since we aim to illustrate the effectiveness of LSE, here, we only employ METHOD A
to distinguish between different types of signals. Similar to Section 3.1, we also repeat the
simulation procedure 100 times; τ ∈ {6, 7, . . . , 14} and r ∈ [0.5, 1.81]. The results are drawn
in Figure 9.
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Figure 9. LSE values with τ ∈ {6, 7, . . . , 14} and different tolerances. (a–d) r = 0.5, 0.6875, 0.8750,
1.0625, (e–h) r = 1.2500, 1.4375, 1.6250, 1.8125.

In Figure 9, chaotic signals can be distinguished from random ones. For instance,
LSErandom is greater than 0.1 but LSEchaos is less than 0.1 in Figure 9a. A similar situation
can be seen in the images corresponding to other r values.

The return map (RM) can be used to characterize the nonlinear process by the transfor-
mation of the local maxima (or minima) of the signal [59–62]. We tested RM on the length
sequences associated with the above nine multivariate time series and the results are drawn
in Figure 10.

The difference between the Rössler system and the other signals is relatively obvious
in both the integer-order and fractional-order cases, as shown in Figure 10a,b. However, it
is difficult to distinguish between the Chen system and financial system. In addition, both
the Chen and Financial systems are mostly located in [0.5, 1]× [0.5, 1], overlapping with
the position where random signals are located, see Figure 10c. Thus, Figure 10 shows that
several signals are muddled and difficult to differentiate apart. This failure could be related
to the time series’ length, since RM commonly calls for a sizable amount of data points.
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Figure 10. Return map. LM presents the local maxima of each length sequence, which is mapped into
[0, 1] by the min–max method. (a) Integer-order chaotic systems, (b) fractional-order chaotic systems,
(c) random signals.

Three shortcomings noted in Section 1 have been somewhat mitigated by the LSE method.

1. Multi-scale entropy and complex networks often necessitate a substantial number of
data nodes to obtain useful findings, but LSE can process relatively short time series.
The length of the test cases in this section is only 500.

2. According to the calculation process in Section 2, it is simple to know that the
time complexity of the LSE method is linear (O(τn)) and appropriate for handling
real-time jobs.

3. LSE is more effective at depicting the short-term autocorrelation and the correla-
tion between various components of multidimensional time series because it takes
advantage of the similarity of vectors in sliding windows.

In Section 3.1, the time steps for Rössler and financial systems are 0.005 and 0.05, and
the LSE values vary remarkably. Here, we test LSE on the Rössler system with different
steps. The results are shown in Figure 11. It can be seen that the increase in the step length
causes LSE to increase, but the gap between LSErossler and LSErandom is still clear.
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Figure 11. LSE for trajectories of the Rössler system with different time step sizes (δ). (a) LSErossler

for different time step sizes and LSErandom, (b) LSErossler only.

In order to assess the robustness of the proposed method, the original signal is sup-
plemented with Gaussian white noise at different levels, and the LSE values are recorded
accordingly. The original time series is produced by the chaotic Rössler system. The
signal-to-noise ratio (SNR) is used to measure the level of background noise, which is
defined by

SNR = 10× log10(
PS
PN

) (19)

where PS is the power of the signal and PN is that of noise. See Figure 12.



Entropy 2022, 24, 1752 13 of 20

6 8 10 12 14
0

0.1

0.2

0.3

0.4

L
S

E

r = 0.5

20dB

15dB

13dB

10dB

9dB

8dB

VARMA

WGN

1/f

Figure 12. LSE of the Rössler system with WGN.

Noise tolerance is present in LSE to some extent. The LSErossler is less than 0.1 when
the SNR is higher than 10 dB. As a result, the random signals differ significantly. LSE,
however, is unable to properly discriminate between chaotic and random signals as SNR
continues to drop.

The above analysis indicates that the proposed LSE, based on its variations in different
scales for certain tolerances (or coefficients), can be regarded as an efficient tool to identify
multivariate time series. In the next section, we attempt to apply LSE to real-world data,
such as the financial market index and machinery data.

4. Application on Real-World Data

As we introduced in Section 1, multivariate time series conceal the characters in
the autocorrelation of each component, as well as the cross-correlation between some
channels, which makes it difficult to extract suitable features for further exploration. Two
real-world applications, one for the financial market and another for fault diagnosing, will
be discussed below.

4.1. Financial Market Index

Financial time series are typical signals with high complexities. How do we illustrate
the discrimination between financial markets in different regions? Here, we use LSE to
quantify the complexities of three important indices, S&P500, FTSE100, and Shenzhen
Securities Component Index (SZI). Their values can be attained from Yahoo.com [63]. The
time period is between 25/06/2017 and 24/06/2022. In this experiment, daily OHLC
(open, high, low, close) prices and volume are considered. In order to avoid the result
being manipulated by the volume only, METHOD A is employed to explore the complexity
of the three indices, because volume values have much higher standard deviations than
OHLC prices. For more details, see Table 1. The scales are {5, 6, . . . , 15} and the tolerance is
between 0.63 and 3.16. The results are drawn in Figure 13.

Table 1. Financial market index information.

Index Length Region

S&P500 1256 American
SZI 1220 China

FTSE 100 1263 Europe
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(a) (b)

(c) (d)

Figure 13. LSE values for stock market index. (a) r = [0.6325 : 0.6325 : 1.2649] (Start:time step:End),
(b) r = [1.2649 : 0.6325 : 1.8974], (c) r = [1.8974 : 0.6325 : 2.5298], (d) r = [2.5298 : 0.6325 : 3.1623].

From Figure 13, we can see that LSEFTSE100 lies at the top, LSESZI at the bottom,
and LSES&P500 is between them when r < 1.8. That is, the European stock market shows
higher complexity than the other two markets; maturate financial markets, European, and
American stock markets display more complexity and stability than the Chinese stock
market, which is in accordance with Cao [64]. Note that LSESZI lies between LSEFTSE100

and LSES&P500 for 1.8 < r < 2.4. It contradicts the above result. The reason for this
can be attributed to the value of r. We are aware that the range r is determined by multi-
dimensional WGN, but since the financial market index actually has a significant correlation,
the tolerance should be lower than usual.

4.2. Machinery Fault Recognition

In this part, we examine the ability of the LSE to recognize vibration signals produced
by normal or faulty mechanical systems. The bearing dataset is from the machinery fault
database (MAFAULDA), which is kindly provided by the Signals Multimedia and Telecom-
munications Laboratory (SMT) of the Federal University of Rio de Janeiro (UFRJ) [65].
MAFAULDA collects multivariate time series recorded by sensors on a SpectraQuest’s
machinery fault simulator (MFS) alignment–balance–vibration (ABVT) and comprises six
different simulated states. We tested LSE for three states: normal function as well as hori-
zontal and vertical misalignment faults. The data acquisition system is composed of several
sensors: one Monarch Instrument MT-190 analog tachometer, three Industrial IMI Sensors
accelerometers (Model 601A01), one IMI sensors triaxial accelerometer (model 604b31),
and a Shure SM81 microphone. Each sequence has 8 columns sampled at 50 KHz for 5 s,
namely a 250,000 × 8 matrix. We randomly intercept 100 fragments (each has 3000 rows)
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for every state from the database as the test dataset. Figure 14 shows the distribution of
each component of the test data (first 100 rows).
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Figure 14. The average and standard deviation of each component (first 100 observations), where the
x-axis represents time and the y-axis the readings. (a) Tachometer signal, (b–d) underhang bearing
accelerometer: axial, radial, and tangential directions, (e–g) overhang bearing accelerometer: axial,
radial, and tangential directions, (h) microphone.

Then, we employed METHOD A to compute the LSE values. The scale set is
{5, 6, . . . , 15} and the tolerance is 0.2457. Moreover, the decision tree method is applied to
classify LSE values of different states. A decision support tool known as a decision tree
employs a tree-like paradigm to represent options and their outcomes. It consists of nodes,
branches, and leaves, each of which displays a property, a rule, or an outcome [66]. In this
study, three alternative classification algorithms based on the decision tree theory, fine tree
(about 100 leaves make fine distinctions between classes), medium tree (less than 20 leaves
with medium flexibility), and coarse tree (less than 4 splits), were used to categorize the
vibration signals [67]. In addition, an ensemble bagging tree classifier was added, which is
processed by creating numerous decision trees during training and outputs the majority of
these tree choices for classification tasks [68]. The ten-fold cross-validation was employed
in this test and the confusion matrix was plotted in Figure 15a–d. Nevertheless, if we
replace LSE by PE, the accuracy is significantly lower; see Figure 15e–h.
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Figure 15. Confusion matrix. Class0–normal, class1–horizontal misalignment, class2–vertical mis-
alignment. (a–d) LSE, (e–h) PE.
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From Figure 15, bagged trees based on LSE had the highest accuracy at 98%, while
that of PE was 92.3%. Moreover, the accuracies of the LSE-based fine tree, medium tree,
and coarse tree (95.3%, 95.3%, and 88.7%) were higher than those of PE (89.3%, 89.3%, 88%).
In short, as the LSE values (as features) contribute higher accuracies than PE, the proposed
LSE can be an efficient tool for distinguishing multivariate real-world time series.

5. Conclusions

In this paper, we proposed a local structure-based entropy (LSE), which reflects
recurrence conditions in certain scales. It can be regarded as an index of complexity for
multivariate time series. Depending on whether or not the components are normalized,
we suggest two strategies for using LSE: one shows greater discrimination while the other
is more stable but easily ignores the effects of slightly varying components. When the
tolerance is small, LSE values of fractional chaotic time series are significantly lower than
those of stochastic ones. Moreover, the LSE method also has some resilience to noise.
When the SNR is higher than 10 dB, accurate classification is obtained for the task of
differentiating chaotic signals from random ones, but the accuracy declines when SNR
drops. With suitable tolerance, LSE (in certain scales) can be considered a feature of a
dynamical system. Regarding real-world data, it was applied to a financial market index,
indicating that European and American financial markets are more complex and stable
than Chinese markets. Furthermore, we tested LSE on MAFAULDA; it resulted in a higher
accuracy than PE-based classification.

The results are sensitive to the parameters (especially for r), but the optimal range is
provided by the simulation other than the theoretical calculation. Therefore, a more com-
prehensive examination of the parameters and LSE values based on basic information, such
as dimensionality, correlation, and time series length, is required. A distance function that
can eliminate the impact of the correlation can also be utilized to increase the applicability
of LSE.
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Appendix A

Appendix A.1

In NOTE 1, we suggest that the range of tolerance r can be chosen by referring to
the standard normal distribution. In fact, we adopt this strategy in METHOD A. For two
n-dimensional random variables whose components are N(0,1) iid, Proposition A1 shows
the variance of the square of the Euclidean distance is 8n.

http://www02.smt.ufrj.br/~offshore/mfs/page_01.html
http://www02.smt.ufrj.br/~offshore/mfs/page_01.html


Entropy 2022, 24, 1752 17 of 20

Proposition A1. Assume xi ∼ N(0, 1) and yi ∼ N(0, 1) are iid, let SS = Σn
i=1(xi − yi)

2, then
D(SS) = 8n.

Proof. Let zi =
xi−yi√

2
, then zi ∼ N(0, 1).

S = Σn
i=1(

xi−yi√
2
)2 = Σn

i=1(zi)
2 ∼ χ2(n), then D(S) = 2n.

Since S = 1
2 SS, we have D(SS) = D(2S) = 8n, thus σ(SS) = 2

√
2n.

For METHOD A in Section 3, the scale is τ ∈ [5 : 1 : 15]; thus, the set of r, denoted by
R, is defined as

R = [0.05 :
0.5− 0.05

11
: 0.5]×

√
8× n (A1)

R can be regarded as a sequence of threshold values multiplied by a constant. Each element
of this sequence ([· : · : ·] part) is called a coefficient.

The standardization is required for METHOD A, but it can shuffle the positions of
the observed data. To overcome this drawback, METHOD B is introduced. Instead of
standardization, different ranges of r are utilized to fit different time series. These ranges
are selected according to the variance of the observed time series. In fact, R is defined as

R = [0.05 :
0.5− 0.05

11
: 0.5]× Σ (A2)

where Σ is introduced in Proposition A2.

Appendix A.2

Proposition A2. Let x = (xi)i≤n, where xi ∼ N(µi, σ2
i ), be a n-dimensional random variable

and assume its components are independent; x and y are iid. Denote SS = ∑n
i=1(xi − yi)

2, then
Σ = D(SS) = 8 ∑n

i=1 σ4
i .

Proof. Assume X ∼ N(µ, σ2). It is easy to know that E(X2) = σ2 + µ2 and E(X4) =
µ4 + 6µ2σ2 + 3σ4.
Then,

D(X2) = E[(X2)2]− [E(X2)]2

= µ4 + 6µ2σ2 + 3σ4 − (σ2 + µ2)2

= 4µ2σ2 + 2σ4

(A3)

Note that (xi − yi) ∼ N(0, 2σ2
i ), by Equation (A3) we have D[(xi − yi)

2] = 8σ4
i . Then,

D(SS) = D(
n

∑
i=1

(xi − yi)
2)

=
n

∑
i=1

D[(xi − yi)
2]

= 8
n

∑
i=1

σ4
i

(A4)
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