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Abstract: We propose a non-parametric method to cluster mixed data containing both continuous
and discrete random variables. The product space of the continuous and discrete sample space
is transformed into a new product space based on adaptive quantization on the continuous part.
Detection of cluster patterns on the product space is determined locally by using a weighted modified
chi-squared test. Our algorithm does not require any user input since the number of clusters is
determined automatically by data. Simulation studies and real data analysis results show that our
proposed method outperforms the benchmark method, AutoClass, in various settings.
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1. Introduction

Mixed data that contain both continuous and discrete data are abundant in scientific
research, especially in medical or biological studies. An effective clustering method for
mixed data should partition a large complex data set into homogeneous subgroups that
are manageable in statistical inference. Clustering methods thus have a wide range of
applications in almost all scientific studies including financial risk analysis, genetic analysis,
and medical studies. They are essential tools in analyzing large data sets.

Most of the clustering methods in the literature have been mainly focused on either
continuous data or categorical data alone. The K-means algorithm has been widely used in
industrial applications for a long time. Detailed descriptions and discussions can be found
in Kaufman and Rousseeuw (2009) [1]. Non-Euclidean distances such as the Manhattan
distance or Mahoblis distance have also been used. Model-based clustering methods
for continuous data have been proposed in the literature, see for example Banfield and
Raftery (1993) [2]. One of the most prominent methods in parametric clustering based
on a mixture model is proposed by Bradley et al. (1998) [3]. The number of clusters and
outliers can be handled simultaneously by the mixture model. Fraley and Raftery (1998) [4]
propose choosing the number of clusters automatically using the model-based clustering
method. For clustering categorical data, there are far fewer reliable methods. K-modes
algorithm has been proposed by Huang (1998) [5] to extend the K-means to clustering
categorical data. The AutoClass method proposed by Cheeseman and Stutz (1996) [6] is a
well-known method in clustering. The AutoClass takes a data set containing both real and
discrete-valued attributes and automatically computes the number of clusters and group
memberships. This method has been used by NASA and helped to find infra-red stars in
the IRAS Low-Resolution Spectral catalog and discovery classes of proteins (Cheeseman
and Stutz 1996 [6]).

In clustering mixed data, the main difficulty lies in the fact that continuous and
categorical sample spaces are intrinsically different. Although both can be made into
metric spaces, the continuous sample space resides on a differentiable manifold while
the categorical one is defined entirely on a lattice. Attempts have been made in the
literature to combine the two spaces by using a global and general distance function
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(Ahmad and Dey 2007 [7]). This naive approach ignores the fact that the two sample
spaces are topologically incompatible. Another approach is to apply different clustering
algorithms to the continuous and categorical portions separately and combine the results.
This approach, however, would sever the intrinsic connection between the continuous and
categorical parts of one record. Each record is often assigned to different clusters for the
continuous and categorical parts. It is often hard to reconcile this except by expanding the
total number of clustering. Not only does this produce a larger than necessary number
of clusters for the entire data sets, but a true cluster is also often found being split across
many small clusters and renders the results to be very inaccurate. Alternatively, AutoClass
combines information across probability spaces. However, the effectiveness of AutoClass
depends on the validity of the assumed parametric model. Zhang et al. (2006) [8] showed
that both K-modes and AutoClass do not perform very well when applied to benchmark
categorical data sets from the UCI machine learning depository. Therefore, there is a need
for a non-parametric clustering method for mixed data.

We extend the work by Zhang et al. (2006) [8] to cluster mixed data by using adaptive
quantization of the continuous sample space. The quantization process was developed
in the 1950s and it partitions the sample space through a discrete-valued map (Gersho
and Gray 1992) [9]. For univariate cases, quantization is known as vector quantization
and it is the fundamental process for converting analog signals or information into digital
forms (Gersho and Gray, 1992) [9]. It has been used in studying pricing in finance as
well as engineering. Theoretical properties of quantization in probability distributions can
be found in Graf and Luschgy (2000) [10]. The process of clustering mixed data is then
performed on the quantized product space. The key idea is inspired by the fact that any
manifold can be locally modeled by a Euclidian space. Therefore, each neighborhood in
the transformed product space can be locally characterized as a fine grid endowed with
a Hamming Distance. The Hamming Distance is widely used in information and coding
theory (Roman 1992 [11]; Laboulias et al., 2002 [12]). The statistical significance of a detected
cluster is determined by a weighted local Chi-squared test. The advantage of our proposed
method over AutoClass is demonstrated in simulations and by using two benchmark data
sets from the UCI machine learning depository.

This paper is organized as follows. The method is proposed in Section 2. The clustering
algorithm is presented in Section 3. Simulation results are provided in Section 4.

2. Clustering Methodology

In this section, we introduce quantization of the mixed sample space on which we
adopt the Hamming Distance function to measure the relative positions of two data points.
We also define a distance vector and an optimal separation point which are essential to
measuring spatial patterns as well as the size of any detected clusters. Separation points
are introduced to extract detected cluster patterns.

2.1. Joint Sample Space of Mixed Data

Consider a general data structure for a mixed data set with p nominal categorical
attributes and q continuous attributes. The categorical sample space is defined on Ωp = Rp

while the continuous one is defined on Ωq. The product space for mixed data is then
defined on the product space Ωp ⊗Ωq. The sample size is denoted by n.

The categorical part of mixed data is represented by X = (X j
i ), with i = 1, 2, . . . , n

and j = 1, · · · , p. Furthermore, row and column vectors in the categorical portion are
denoted by X[·]

i and Xj
[·]. The jth categorical attribute is categorized by mj levels defined by

set Aj = (aj1, · · · , ajmj), j = 1, · · · , p.

We denote the continuous part of a mixed sample with size n by Z = (Zk
i ), with

i = 1, 2, . . . , n and k = 1, · · · , q. Furthermore, we denote the row and column vectors in the
categorical portion by Z[·]

i and Zk
[·]. The kth attribute is a continuous random variable.
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2.2. Quantization of Continuous Sample Space

Continuous data and discrete data are fundamentally different. Although the descrip-
tion provided by the continuous portion can be very detailed, it could carry excessive
information that is not important for the clustering purpose. Furthermore, any pattern
derived from the categorical part is based on a much coarse topology than the contin-
uous counterpart. Since it is impossible to define a meaningful and objective manifold
from a coarse data structure, the continuous one then must be mapped into a grid that is
compatible with the relatively coarse topology from the categorical one.

The quantization is achieved in two steps. Firstly for observed realization zj
i , continuous

data are mapped onto the unit interval between 0 to 1 by applying the following formula:

z̃k
i =

zk
i − zk

min

zk
max − zk

min
, k = 1, ..., q; i = 1, ..., n,

where zk
min and zk

max represent the minimum and maximum values of the k column. Sec-
ondly, for the standardized observations, the continuous random variable is then mapped
or quantized into a discrete random variable with M levels in the following way:

Q(z̃k
i ) = m, i f (m− 1)/M ≤ z̃k

i < m/M,

where m = 1, 2, · · · , M, where M can be any positive integer value. Different numeri-
cal values of M could have an impact on the quality of quantization and consequently
the clustering result. A finer quantization grid might not be useful and could be more
computationally intensive than a coarse one.

The number of levels M can be difficult to specify by a user with no prior informa-
tion. Thus, we propose to choose level M adaptively by using F statistics based on the
clustering results.

For any fixed numerical value of M, we perform an ANOVA test by treating each
cluster as a separate group by using the generated clustering memberships. The F-statistic
associated with the ANOVA test is recorded for different values of M. We then set the
optimal numerical value for M by selecting the value that corresponds to the largest F-
statistic computed before. Numerical results of the quantization level will be illustrated in
Section 4.1.

2.3. Distance Vectors on Quantized Product Space

We use Hamming Distance (HD) to measure the relative separation of two categorical
data points. To be more specific, for any two positions in the categorical sample space Ωp,

Q[·]
h = (Q[1]

h , · · · , Q[p]
h ) and Q[·]

i = (Q[1]
i , · · · , Q[p]

i ), the HD between Q[j]
h and Q[j]

i on the jth
attribute is

d(Qj
h, Qj

i) =

{
0 i f Qj

h = Qj
i ,

1 i f Qj
h 6= Qj

i .

Further, we define the distance between the two positions, that is, the summation of the
distance from each pair of the components. Therefore, we have the following:

HD(Q[·]
h , Q[·]

i ) =
p

∑
j=1

d(Qj
h, Qj

i).

After quantization, the new product space now resides on a high-dimensional grid.
Since for a grid, there is no natural origin. We can define a reference point (S, T) in the
quantized product space with S = (s1, · · · , sp) ∈ Rp and T = (t1, · · · , tq) ∈ Rq. For the
categorical portion, HDC(Xi, S) can take values ranging from 0 to p; and for quantized
continuous data, we have HDQ(Zi, T) can take values ranging from 0 to q.
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We then define the Distance Vector (DV) based on Hamming distance for the categori-
cal and quantized continuous portion, respectively. We define two individual vectors to
record the frequencies of each categorical and quantized continuous distance value accord-
ingly, that is, a (p+ 1)-element vector DVC(S) for the categorical data and a (q+ 1)-element
vector DVQ(T) for the quantized part. To be more specific, DVC is defined as

DVC(S) = (DV[0]
C (S), DV[1]

C (S), · · · , DV[p]
C (S)),

and DVQ is defined as

DVQ(T) = (DV[0]
Q (T), DV[1]

Q (T), · · · , DV[q]
Q (T)).

The jth component in DVC and hth component in DVQ are given as the following:

DV[j]
C (S) =

n

∑
i=1

I [HDC(X
[·]
i , S) = j], j = 0, 1, · · · , p;

DV[h]
Q (T) =

n

∑
i=1

I [HDQ(Q
[·]
i , T) = h], h = 0, 1, · · · , q;

where I(A) is an indicator function that takes value 1 when event A happens and 0
otherwise.

If there is no cluster pattern at all, we would expect a uniform distribution of all
possible cases. Then it is equally likely for a randomly chosen data point to take any
possible position in the joint sample space. The DV vectors under uniform distribution
are referred to as a uniform distance vector (UDV). Thus, a UDV records the expected
frequencies under the null hypothesis that there are no clustering patterns in the data. Let
X be a categorical portion of data and Z be a continuous portion of the data from a sample
of size n, with each observation having an equal probability of locating at any position on
space Ωp ⊗Ωq. The expected value of DV and DV associated with the null hypothesis is
denoted by UDVC, U = (U0, · · · , Up) for categorical data and UDVQ, V = (V0, · · · , Vq) for
continuous data, respectively.

Zhang et al. (2006) [8] provide the exact form of UDVC = n
M1

U∗, where M1 =

∏
p
j=1 mj, j = 1, 2, · · · , p ; mj is the number of states in set Aj for the jth attribute; and

U∗ = (U∗0 , U∗1 , · · · , U∗p) with

U∗0 = 1;
U∗1 = (m1 − 1) + (m2 − 1) + · · ·+ (mp − 1);
U∗2 = ∑

p
i<j(mi − 1)(mj − 1);

...
U∗p = (m1 − 1)(m2 − 1) · · · (mp − 1).

Similarly, we obtain the exact form of the UDVQ for the quantized continuous part
of the data. UDVQ = n

M2
V∗, where M2 = ∏

q
j=1 lj, j = 1, 2, · · · , q ; lj is the the number of

levels of quantization for the jth continuous attribute; and V∗ = (V∗0 , V∗1 , · · · , V∗q ) with

V∗0 = 1;
V∗1 = (l1 − 1) + (l2 − 1) + · · ·+ (lq − 1);
V∗2 = ∑

q
i<j(li − 1)(lj − 1);

...
V∗q = (l1 − 1)(l2 − 1) · · · (lp − 1).
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2.4. Optimal Separation Point

If the initial starting point is chosen to be the center of one particular cluster, then
the frequency of HD should demonstrate a decreasing pattern in a local region as the HD
function records the frequency of data points from the center of the cluster and outwards.
Small local bumps at the beginning part of the HD curve are expected if the initial starting
point deviates slightly from the cluster center. The recorded frequencies might increase
afterward when the function begins to record distances from another cluster. Therefore, the
valley area indicates a natural place to separate one cluster from the rest. Separation points
are, therefore, defined for this identification purpose.

Assume that the categorical data X and quantized continuous data Z are not uni-
formly distributed in the sample space Ωp ⊗Ωq. Let DVC(S) = (DV[0]

C (S), DV[1]
C (S), · · · ,

DV[p]
C (S))T , S ∈ Ωp be the collection of all (p + 1)-element DVC in the space Ωp and

DVQ(T) = (DV[0]
Q (T), DV[1]

Q (T), · · · , DV[q]
Q (T))T , T ∈ Ωq be the collection of all (q + 1)-

element DVQ in the space Ωq, and let U = (U0, U1, · · · , Up)T be the DVC vector and
V = (V0, V1, · · · , Vq)T be the DVQ vector defined in the previous subsection. For a given
distance value jC, jC = 0, 1, · · · , p, for categorical distance values and jQ, jQ = 0, 1, · · · , q,
for quantized continuous distance values, there always exists at least one position (S,T) ∈
Ωp ⊗Ωq, such that the frequency at this distance value is larger than the corresponding
component, Uj of the UDVC vector and Vj of the UDVQ vector.

In order to proceed to a comparison between DVC and UDVC and between DVQ and
UDVC, we introduce a selection criterion for an optimal cut-off r∗. The categorical cut-off
point was defined and proved by Zhang et al. (2006) [8]. Because our quantized continuous
data behaves as categorical data, we extend that concept to a quantized portion of the
data. If the cluster structure is present, the early segment of a DVC and DVQ with respect
to a data center should contain substantially larger frequencies than the corresponding
frequencies of the UDVC vector and UDVQ vector. Therefore, the range corresponding
frequencies of the UDVV vector and UDVQ a vector that is consistently larger than the
UDVC vector and UDVQ vector gives a reasonable indication of the r. This leads to an
optimal r∗C for the categorical portion of data:

r∗C(S) = min
jC>0
{jC|

DV[jC ]
C (S)
UjC

< 1} − 1, S ∈ Ωp.

Similarly, optimal r∗Q for the quantized portion of data be:

r∗Q(T) = min
jQ>1
{jQ|

DV
[jQ ]
Q (T)

VjQ
< 1} − 1, T ∈ Ωq.

The two quantities are used to identify relatively dense regions in the space of mixed
data to help us to extract clusters accurately. Zhang et al. (2006) [8] gave a detailed
explanation of the tuition of radius which is the maximum distance of the data points in
this cluster to its center.

3. Algorithm

There are two key parts of the algorithm. Firstly, we detect whether there exist any
statistically significant clustering patterns. We propose a weighted local Chi-squared test to
determine if the observed distance vectors differ significantly from the uniform distance
vectors associated with no cluster pattern. Secondly, if the patterns are significant, we
further extract the clusters based on the optimal separation strategies described in the
previous section.
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We consider the null hypothesis H0: There is no clustering pattern in the data set. The
weighted local Chi-squared test statistic χ2∗

w (S,T) is defined as:

χ2∗
w (S, T) = ( 1

p + 1
q )[

1
p χ2∗

C (S) + 1
q χ2∗

Q (T)]
= pq

p+q
1
p χ2∗

C (S) + pq
p+q

1
q χ2∗

Q (T)
= q

p+q χ2∗
C (S) + p

p+q χ2∗
Q (T), (S, T) ∈ Ωp⊗q

The weighted local Chi-squared statistic χ2∗
w (S,T) is constructed to address the issue of an

unequal number of variables for the continuous and categorical parts. We expect that a
large number of variables tend to produce a large numerical value for the modified χ2∗

C
and χ2∗

Q . Therefore, each modified Chi-squared statistic is normalized by its corresponding
number of variables for the categorical and continuous parts respectively. To ensure the
total of the two weights to equal to 1, we further divide the sum of two normalized modified
Chi-squares by the total of the two weights which equals 1/p + 1/q.

Where the categorical part χ2∗
C (S) takes form as:

χ2∗
C (S) =

r∗C

∑
j=0

(DV[j]
C (S)−Uj)

2

Uj
+

(∑
r∗C
j=0 DV[j]

C (S)−∑
r∗C
j=0 Uj)

2

∑
p
j=r∗C+1 Uj

, (1)

and the quantized continuous part χ2∗
Q (T) takes the form:

χ2∗
Q (T) =

r∗Q

∑
j=1

(DV[j]
Q (T)−Vj)

2

Vj
+

(∑
r∗Q
j=1 DV[j]

Q (T)−∑
r∗Q
j=1 Vj)

2

∑
q
j=r∗Q+1 Vj

,

where p and q are the numbers of attributes from categorical and continuous data, respec-
tively.

If the detected pattern passes a statistical test, we then proceed to extract a cluster by
determining the cluster center C and estimating cluster radius R for mixed data. Therefore,
a cluster center C is chosen where the χ2

w has the maximum value. It is chosen to be:

C = arg max
(S,T)

χ2
w.

Zhang et al. (2006) [8] gave the definition of radius which is the maximum distance of
the data points in this cluster to its center. Radius is the distance at which the DV has its
very first local minimum. Therefore, it is defined categorical Radius RC(C) as:

RC(C) = mim
0<j<pC

{j|DV[j]
C (C) < mim(DV[j−1]

C (C), DV[j+1]
C (C))} − 1.

For the quantized continuous part of the data, the optimal cut-off point is used as the
quantized continuous radius RQ(C).

The step-by-step guide to our method is

Step 1. For each position S, we calculate HD in the categorical data; further, we obtain
DVC.

Step 2. Standardize the continuous data and quantize the standardized data at a selected
level. For each position calculate Hamming distance for quantized continuous data
to obtain DVQ.

Step 3. Compare DVC, DVQ with corresponding expected values UDVC and UDVQ.
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Step 4. Determine cut-off points r∗C(S) and r∗Q(T) for categorical and quantized continuous
data respectively; and further calculate the corresponding modified Chi-squared
statistic χ2∗

C (S) and χ2∗
Q (T) and obtain the weighted local chi-square test statistic

χ2∗
w (S,T) =

q
p + q

χ2∗
C (S) +

p
p + q

χ2∗
Q (T).

Step 5. Corresponding to the weighted local Chi-squared test, select the largest test statistic
χ2∗

w (S,T); compare it with critical value χ2∗
(0.05) at the right tail. If the max(χ2∗

w (S,T))

is smaller than χ2∗
(0.05), stop the algorithm; otherwise, continue to step 6.

Step 6. Assign the position that has the largest test statistic χ2∗
w (S,T) as a center. Categorical

data and continuous data share the same center position but with their own data
points.

Step 7. Calculate categorical a radius RC and continuous radius RQ; label all data points
within a radius in the cluster; record corresponding χ2∗

C (S) and χ2∗
Q (T); remove

them from the current data set.
Step 8. Repeat Steps 1 to 6 until no more significant clusters are detected.
Step 9. Prune the membership assignment by calculating the minimum distance from

each data point to center positions; If the membership is assigned differently to
categorical data and continuous data, we further compare their p-values which are
calculated from χ2∗

C (S) and χ2∗
Q (S); Re-assign the membership to the one with the

larger p-value by the one with the smaller p-value.
Step 10.Compute F-test statistic to choose the best-quantized level and corresponding

clustering results as the final results.

4. Results

We conduct simulation studies and real data analysis to examine the performance of
our proposed method. Classification rates and information gains are calculated to compare
the performance of our proposed method with AutoClass.

4.1. Simulation Studies

In this section, we compare our method with AutoClass under various simulation
settings. The simulation results are shown in Tables 1–4. All attributes are generated
independently. The simulation setting is as the following:

1. Set the number of categorical attributes p = 10 and each attribute takes mj levels
which are randomly selected from the set {4, 5, 6}; Set the number of continuous
attributes q = 9.

2. Set the number of clusters KC = KQ = 3 or KC = KQ = 5. The 3 cluster centers Ck are
denoted as Ck = (ck,1, · · · , ck,10), k = 1, · · · , 3. The 5 cluster centers Ck are denoted
as Ck = (ck,1, · · · , ck,10), k = 1, · · · , 3. For categorical centers, ensure the Hamming
distance between any two of the centers is at least great than 5. For the continuous
portion of data, choose a set of cluster means as 2, 8, and 16 for 3 clusters, or 2, 8, 16,
20, and 35 for 5 clusters;

3. Set sample size N = 200 with cluster size n1 = 130, n2 = 45, and n3 = 25; or set
sample size N = 1000 with the cluster size n1 = 500, n2 = 200, n3 = 100, n4 = 100,
and n5 = 100; or set sample size N = 10,000 with the cluster size n1 = 5500, n2 = 3000,
n3 = 1500;

4. For categorical data, in the kth cluster with center Ck, generate nk 10-attributes vectors
independently. More specifically, generate for each attribute from a multinomial dis-
tribution with a center probability of 0.7 and the rest probabilities are identically equal
to 0.3/(mj − 1); For continuous data, nk 9-attributes vectors are 9 independent normal
random variables with µ = Ck and σ2 ranging from 0.25, 0.5 and 1, respectively.
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In our numerical results, the average classification rate (CR) and information gain
(IG) rate with their corresponding standard deviations are used to evaluate the method’s
performance. The CR measures the accuracy of an algorithm to assign data points to correct
clusters. With given K clusters, the CR is defined by

CR(K) =
K

∑
k=1

ñk
n

,

where n is the total number of data points and ñk is the number of data points that have
been correctly assigned to cluster k by an algorithm. Obviously, 0 ≤ CR(K) ≤ 1, and a
larger CR(K) value indicates better performance of clustering. The information gain is an
alternative criterion for assessing the performance of the clustering algorithm. It is the
so-called cluster purity proposed by Bradley et al. (1998) [3]. Cluster purity essentially
measures the information gain, which is the difference between the total entropy and
weighted entropy for a given data partition, namely

in f ormation gain(IG(K)) = total entropy− weighted entropy(K),

where the weighted entropy is calculated by

weighted entropy(K) =
K

∑
k=1

nk
n
× cluster entropy(k),

with

cluster entropy = −
L

∑
l=1

ñk
l

nk
log2

{
ñk

l
nk

}
,

where ñk
l is the number of data points with true label l in cluster k, nk is the number of data

points known in cluster k, and L is the known number of classes. In this chapter, we take
a ratio of IG(K)/total entropy, named information gain rate (IGR), which is similar to the
classification rate between 0 to 1. It is necessary to point out that in some situations, the
information gained may lead to misleading. For example, in our simulation studies, IG
may be equal to 1 which means perfect clustering. However, indeed, it splits each true
cluster into two clusters which is a wrong classification. This misleading situation happens
in Tables 1 and 2.

Table 1 shows the selection of quantization levels for a continuous portion of the data.
As mentioned in Section 2.2, we use the largest F values to choose the selected quantization
level which gives the best classification rate. Tables 2–4 provide results from simulated
data with various settings of different sample sizes, number of clusters, and cluster sizes.
The number of replications is 500 for Tables 2 and 3, and 100 for Table 4. Table 2 is obtained
by analyzing simulated data with a sample size of 200 with 3 clusters of the sizes of 130, 45,
and 25. Simulated data for Table 3 has a sample size of 1000 and the number of clusters is 5,
and each cluster size is 500, 200, 100, 100, and 100, respectively. Table 4 provides results
from simulated data having a sample size of 10,000 with 3 clusters and each cluster size of
5500, 3000, and 1500, respectively.

As shown by Tables 2–4, our proposed algorithm consistently has a higher classifi-
cation rate in comparison with that from AutoClass in all three different settings. For the
three chosen settings, the mean classification rates, and information gain rates of the two
algorithms are getting closer to each other and could even be identical. Table 3 shows
us that our algorithm has higher IG rates compared to AutoClass. In Tables 2 and 4, our
algorithm has IG rates varying from 0.8923 to 0.93333. Although AutoClass could achieve
one in some cases, this does not imply a perfect clustering because AutoClass tends to split
each true cluster into unnecessary more clusters. Hence, overall, all tables show us that our
algorithm has better performance in terms of CR and IGR by comparing it to AutoClass.



Entropy 2022, 24, 1749 9 of 12

Table 1. Quantization levels. The means of F statistics, CR, and IG are obtained based on 500
replications.

Discretized Levels Mean (F) Mean (CR) Mean (IGR)

5 630.1573 0.8302 0.7130
6 1523.4557 0.8455 0.7667
7 1722.3260 0.8227 0.6960
8 3223.9477 0.8635 0.7729
9 3916.3388 0.8816 0.7958
10 3708.5293 0.8682 0.7689
11 6444.7055 0.9085 0.8573
12 4778.9851 0.8893 0.8114
13 4912.8477 0.8907 0.8116
14 4262.3990 0.8907 0.8135
15 4000.3948 0.8879 0.8095
16 4234.9993 0.8863 0.7992
17 3549.8632 0.8787 0.7853
18 4042.0805 0.8785 0.7833
19 3657.4556 0.8768 0.7785
20 4303.8698 0.8872 0.8010

Table 2. Average CR and IGR with corresponding standard deviation for each method based on the
simulated data of sample size 200 with 3 clusters; each cluster has sizes 130, 45, and 25, respectively.
The mean values for each cluster are 2, 8, and 16 respectively. With the same set of means, the different
variances, 0.25, 0.5, and 1 are compared. The number of replications is 500.

AutoClass Ours AutoClass Ours AutoClass Ours
(Var = 0.25) (Var = 0.5) (Var = 1)

CR Mean 0.6424 0.9556 0.6335 0.9292 0.6325 0.9370
CR Std 0.0021 0.0035 0.0015 0.0069 0.0015 0.0060

IGR Mean 1.0000 0.8923 1.0000 0.9085 1.0000 0.9148
IGR Std <0.0001 0.0148 <0.0001 0.0094 <0.0001 0.0070

Table 3. Average CR and IGR with corresponding standard deviation for each method based on the
simulated data of the sample size 1000 with 5 clusters; each cluster has sizes 500, 200, 100, 100, and
100, respectively. The mean values for each cluster are 2, 8, 16,20, and 35, respectively. With the same
set of means, the different variances, 0.25, 0.5, and 1 are compared. The number of replications is 500.

AutoClass Our AutoClass Ours AutoClass Ours
(Var = 0.25) (Var = 0.5) (Var = 1)

CR Mean 0.5638 0.8747 0.5598 0.8792 0.5615 0.8777
CR Std 0.0016 0.0185 0.0015 0.0179 0.0014 0.0189

IGR Mean 0.7337 0.9228 0.7338 0.9174 0.7338 0.9235
IGR Std <0.0001 0.0021 <0.0001 0.0049 <0.0001 0.0037

Table 4. Average CR and IGR with corresponding standard deviation for each method based on
the simulated data of sample size 10,000 with 3 clusters; each cluster has sizes 5500, 3000, and 1500,
respectively. Continuous data are from a multivariate t-distribution with degree freedom 5, 15, and
30, respectively. With the same set of means, the different variances, 0.25, 0.5, and 1 are compared.
The number of replications is 100.

AutoClass Our AutoClass Ours AutoClass Ours
(Var = 0.25) (Var = 0.5) (Var = 1)

CR Mean 0.8120 0.9689 0.8231 0.9689 0.8202 0.9641
CR Std 0.0019 0.0031 0.0023 0.0031 0.0033 0.0034

IGR Mean 1.0000 0.9333 1.0000 0.9333 1.0000 0.9323
IGR Std <0.0001 0.0067 <0.0001 0.0067 <0.0001 0.0048
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4.2. Real Data Analysis

We apply our method on to three real data sets. The first two data sets can be down-
loaded from the Machine Learning Repository website. One is Heart Data Set and the other
one is the Australian Credit Approval Data Set. The third data set is collected by the RAND
center at the University of Michigan.

Heart Data and Australian Credit Approval Data are downloaded from the Machine
Learning Depository at the University of California at Irvine. Heart data contains 7 categor-
ical, 6 continuous attributes, and 270 observations. The data provided the memberships
for each observation. There are 2 clusters, absence, and presence. The cluster sizes are 120
and 150, respectively. In the Australian Credit Approval Data Set, there are 8 categorical
attributes and 6 continuous attributes. The data set contains two clusters positive or neg-
ative with the corresponding cluster sizes 307 and 383. We compared our method with
AutoClass. Table 5 shows the results from these two real data sets. From the table, we can
tell that our method correctly identified the number of clusters for both data sets, while,
AutoClass could not detect correct cluster numbers. In addition, our method has a higher
classification rate compared to AutoClass. Our method has a classification rate of 81.48%
for Heart data and 73.62% for Credit data. However, AutoClass has 44.44% and 52.71%.

Table 5. Two Real Data Results from two comparison methods. Heart data have 2 clusters with a
sample size of 270 and Australian data has 2 clusters with a sample size of 690.

Heart Australian
AutoClass Ours AutoClass Ours

CR 0.4444 0.8148 0.5217 0.7362
IGR 0.2754 0.6975 0.2761 0.8314

Number of clusters 5 2 7 2

We apply our proposed method to the health and retirement study (HRS) data set.
Information about health, financial situation, family structure, and health factors was
collected by the RAND center at the University of Michigan. We focus on the analysis
of the status of depression depicted in the data set. Depression among children and
adolescents is common but frequently unrecognized. The clinical spectrum of depression
can range from simple sadness to major depressive disorders. A depression diagnosis
is often difficult to make because clinical depression can manifest in so many different
ways. Observable or behavioral symptoms of clinical depression may be minimal despite
a person’s mental turmoil. The general population can then be partitioned naturally into
two groups: depressed individuals and not depression people. We choose this scenario
as the third test case for our clustering algorithm and compare its performance of ours
with AutoClass.

We perform clustering based on six health factors: Smoking, Restless Sleep, High
Blood Pressure, Frequent Vigorous Physical Activity, Difficulty in Walking, and Age (in
months). Depression status is recorded as a binary response variable with 16, 250 depressed
and 2, 608 non-depressed individuals; Categorical variables, Smoking, and Restless-sleep,
take binary values; Difficulty-in-Walking, takes values 0, 1, 2, or 9; Frequent Vigorous
Physical Activity has values 1, 2, 3, 4, or 5; High Blood Pressure takes values 0, 1, 3, or 4;
continuous variable, Age(in month), has a range from 224 to 1, 232 with a mean value of
801. For each individual, we include only for which all of the factors were recorded. In total,
there are 18, 858 people included in the analysis. Our clustering method correctly identified
two clusters. AutoClass, however, detects nine clusters. Tables 6 and 7 report the confusion
matrix obtained by our method and AutoClass, respectively. In the Non-depressed group,
our method correctly detected 86.75% of non-depressed individuals. In the depressed
group, 30.98% of individuals are correctly detected. Since AutoClass finds 9 clusters, it is
not feasible to make a fair comparison. Therefore, we describe the nine clusters declared by
the AutoClass for the sake of completeness. Table 7 listed AutoClass clustered nine groups
and the number of true depression and non-depression patients in each group. Since the
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depressed group is much smaller than the non-depression group, the information gain
is a not suitable measure since the percentage of the depressed group is always small in
comparison with the non-pressed group. The information gain for both our method and
AutoClass is small and deemed not informative.

Table 6. Confusion Matrix for our method.

Our Method
Non-Depressed Depressed Total

True Non-depressed 14,097 2153 16,250
Depressed 1800 808 2608

Total 15,897 2961 18,858

Table 7. Confusion Matrix for AutoClass.

AutoClass
Clst1 Clst2 Clst3 Clst4 Clst5 Clst6 Clst7 Clst8 Clst9 Total

True Non-depressed 3117 2362 1457 2039 1749 2032 1915 1201 378 16,250
Depressed 216 217 781 335 461 158 144 223 73 2608

Total 3333 2579 2238 2374 2210 2190 2059 1424 451 18,858

5. Discussion

We have proposed a clustering method that uses statistical distances and tests. Numer-
ical results show that the proposed method outperforms the AutoClass algorithm based on
classification rate and entropy measure. The proposed method does not em- ploy a global
distance function or a parametric model. For future work, we could consider extending the
proposed method to cluster spatial and temporal data.

6. Conclusions

Mixed data are prolific in scientific research such as business, engineering, life sciences,
etc. It is imperative to develop a method that can cluster mixed data in order to discover true
and significant underlying structures of a data set and classify observations into different
subsets. We propose a non-parametric method that uses a local weighted chi-squared
statistic to determine underlying clusters. The proposed algorithm does not require any
model assumption for attributes or any expensive numerical optimization procedures.
Because the proposed algorithm extracts clusters sequentially with one cluster at each
iteration, it does not need any convergence criterion. The algorithm is terminated when
all data points have been used and no more cluster centers can be detected. Consequently,
our algorithm automatically produces the number of clusters, and the resulting partition
is unique. When compared with the benchmark clustering algorithm for mixed data,
AutoClass, we find that our algorithm outperforms AutoClass in various settings and
produces similar accuracy in other settings.
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