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Abstract: In order for mathematical models to make credible contributions, it is essential for them
to be verified and validated. Currently, verification and validation (V&V) of these models does
not meet the expectations of the system biology and systems pharmacology communities. Partially
as a result of this shortfall, systemic V&V of existing models currently requires a lot of time and
effort. In order to facilitate systemic V&V of chosen hypothalamic-pituitary-adrenal (HPA) axis
models, we have developed a computational framework named VeVaPy—taking care to follow the
recommended best practices regarding the development of mathematical models. VeVaPy includes
four functional modules coded in Python, and the source code is publicly available. We demonstrate
that VeVaPy can help us efficiently verify and validate the five HPA axis models we have chosen.
Supplied with new and independent data, VeVaPy outputs objective V&V benchmarks for each
model. We believe that VeVaPy will help future researchers with basic modeling and programming
experience to efficiently verify and validate mathematical models from the fields of systems biology
and systems pharmacology.

Keywords: HPA axis; Major Depressive Disorder; stress test; Python; Verification & Validation;
differential equations model

1. Introduction

The life cycle of a computational model involves development, verification, validation,
and application. Before a model can be confidently applied to help solve a problem, it
must be carefully examined and evaluated. The process of evaluating a model includes
two steps: verification and validation (V&V). According to Thacker et al. [1],

“Verification is the process of determining that a model implementation accurately repre-
sents the developer’s conceptual description of the model and its solution. Validation is
the process of determining the degree to which a model is an accurate representation of
the real world from the perspective of the intended uses of the model.”

In certain fields of mathematical modeling, such as nuclear engineering, model V&V
has been performed following well-defined procedures for decades [2,3]. In the 1980s, for
instance, the International Atomic Energy Association defined standardized benchmarks
for validation of models of reactor cores [2]. In a paper from 1993, Nakagawa applies
the benchmarks to prove the validity of their model of a reactor core [3]. The practice of
creating standardized benchmarks for V&V has persisted in nuclear engineering—as seen
in a paper by Höhne et al. from 2018 [4]. The standardization of V&V procedures is not
limited to nuclear engineering, and can be found in other fields of engineering, as well.
For instance, the American Society of Mechanical Engineers published a set of standards
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for V&V in computational solid mechanics and the American Institute of Aeronautics and
Astronautics also published a set of standards for computational fluid dynamics [5].

However, V&V practices in systems biology and systems pharmacology are still being
improved to meet significant challenges, in part due to the individual variability and
resultant complexity inherent to physiological systems [6,7]. For example, Hicks et al. [8]
present best practices for V&V of neuromusculoskeletal modeling and the basic concepts
presented are applicable for most models in systems biology and systems pharmacology.
For instance, “creation of gold standard datasets” and ensuring that efficient tools for V&V
are available are excellent goals for the physiological modeling research community, in
general. In this work, we have followed these recommendations and tailored some of the
specifics to meet the needs of HPA axis modeling.

In systems biology and systems pharmacology, the ideal model would describe a
physiological system adequately in any situation—including exposing the system to a
variety of inputs, such as stress or pharmaceuticals. In practice, it is difficult to develop a
systems biology or systems pharmacology model that is generalizable to situations even
slightly different from the original research. A practical challenge for many researchers
using mathematical models is to quickly and efficiently determine which model from the
literature is best suited to their current work—or which model could be most effectively
modified to fit their needs. Unfortunately, the lack of useful tools for V&V in the field often
means that developing a new model from the ground up is more efficient than constructing
and testing models from the literature in search of a viable candidate.

1.1. Custom Tools to Facilitate Model V&V

In order to help future researchers carry out V&V efficiently, we have developed a
Python code library, VeVaPy, with several useful modules for this purpose. The level of
difficulty of model V&V represents a significant gap in the field of HPA axis research,
one that we aim to fill with our tools and data. Currently, it requires a high level of
programming expertise to take a model from the literature and reconstruct it for V&V—the
tools available for this purpose (at least for non-stoichiometric models) are not designed
for ease of use by biologists. We concede that our V&V code still requires a degree of
programming know-how at this point, but we believe that it is a significant improvement
over the status quo.

The four modules of the code library are called dataImport (includes several HPA axis
data sets for use in model validation, with ACTH & cortisol concentration data at rest and
under acute stress), DEsolver (more streamlined differential equation solver, works with
ODE or DDE systems), optimize (easily facilitates parameter optimization), and visualize
(generates graphs based on user specifications). We use VeVaPy to demonstrate several case
studies of HPA axis model V&V—similar to the case studies presented by Hicks et al. [8].

1.2. Validation against Novel Data Collected in MDD Patients

For validation of the HPA models we present as case studies, we compare them against
new and independent data collected from Major Depressive Disorder (MDD) patients
undergoing stress tests. MDD is a mental disorder with severe implications for quality of
life. Symptoms include weight loss/gain, hypersomnia or insomnia, slowing of speech
and action, impaired concentration, depressed mood, decreased interest in work/hobbies,
low self-esteem, increased feelings of guilt, and suicidal thoughts [9]. For depression to be
considered MDD, the symptoms must last a minimum of two weeks and cause significant
difficulties functioning at work and interacting socially [9]. There are three main subtypes
of MDD with significant differences in symptoms: melancholic depression is characterized
by weight loss and insomnia, atypical depression is characterized by weight gain and
hypersomnia, and uncategorized depression does not fit neatly into either of those two
subtypes [10]. The differences between subtypes likely extend beyond symptoms, with
some authors hypothesizing that different physiological features are associated with each
subtype of MDD [10,11].
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MDD is linked to multiple types of physiological disruptions, for example, neuroimag-
ing features or sleep EEG disturbances [11]. However, we are primarily interested in
the link between MDD and dysregulation of the hypothalamic-pituitary-adrenal (HPA)
axis. There is a lack of consensus regarding whether MDD subjects generally exhibit HPA
axis dysfunction—melancholic MDD subjects, however, are more likely associated with
increased HPA axis activity and hypercortisolemia [10].

The HPA axis is a neuroendocrine system involved in the body’s stress response. On
exposure to a stressor, the paraventricular nucleus (PVN) of the hypothalamus releases
corticotropin-releasing hormone (CRH). CRH is released not into the systemic circulation,
but into the hypophyseal portal system connecting the hypothalamus directly to the anterior
pituitary [12]. The anterior pituitary releases adrenocorticotropic hormone (ACTH) into
the systemic circulation in response to increased CRH concentration. The main target
of circulating ACTH is stimulation of glucocorticoid production/secretion in the zona
fasciculata of the adrenal cortex [12]. The glucocorticoid synthesized is cortisol in humans
and corticosterone in rodents. During this process, very little CRH enters the systemic
circulation (making collection of CRH concentration data exceedingly difficult), while levels
of ACTH and cortisol are readily detectable in blood.

Cortisol acts on various tissues throughout the body by way of glucocorticoid recep-
tors (GRs)—which are nearly ubiquitous—and mineralocorticoid receptors (MRs). Both
receptor types translocate to the cell nucleus when bound to cortisol and exert their effects
through stimulation or repression of gene transcription. The stress response generated by
cortisol includes immune system suppression, increased gluconeogenesis, and increased
metabolism of fat, protein, and carbohydrates. Another important function occurs in the
hypothalamus and pituitary as cortisol-GR binding decreases the synthesis of CRH and
ACTH, respectively. In this way, cortisol exerts negative feedback on its own production.
However, GR binding in the hippocampus serves to stimulate CRH production, so the
system has both positive and negative feedback mechanisms to consider [13].

Concentrations of cortisol and ACTH normally exhibit both circadian and ultradian
oscillations. Circadian refers to the oscillations with a period of roughly 24-h. These
oscillations are largely controlled by the circadian clock in the suprachiasmatic nucleus
(SCN) of the hypothalamus. However, many peripheral tissues contain lesser circadian
clocks, including the adrenal glands [13]. The circadian oscillation of cortisol and ACTH
peaks around 8 AM, decreases until after midnight, and then increases again until the
morning peak. Ultradian oscillations have a period of 60–90 min and represent 12 to 18
episodes of cortisol/ACTH secretion throughout a day, with little to no secretion between
them [14]. Both forms of oscillation likely exist to facilitate more rapid and stronger stress
reactions at certain times of day. It has been shown that responses to noise stress are
reduced during non-secretory periods and increased during secretory periods in rats [13].

If cortisol levels are sustained at high or low levels for too long, the health conse-
quences are typically serious. Hypercortisolism is a chronic elevation of cortisol concentra-
tion, and it is implicated in the development of depression, cardiovascular disease, and
Type 2 diabetes mellitus [13]. Hypocortisolism is a chronic decrease in cortisol concentra-
tion that is associated with impaired memory formation and post-traumatic stress disorder
(PTSD) [13]. Several authors suggest that hypocortisolism is likely caused by increased
negative feedback of cortisol on the HPA axis while hypercortisolism is likely caused by
decreased negative feedback of cortisol on the HPA axis [15,16]. According to Holsboer [16],
the negative feedback caused by cortisol binding GRs is impaired in MDD, likely due to
decreased sensitivity and density of GRs.

Treatment options for MDD patients include evidence-based psychotherapies such
as cognitive behavioral therapy (CBT) and/or antidepressant medications such as selec-
tive serotonin reuptake inhibitors (SSRIs). According to Holsboer [16], in patients with
depression, elevated CRH levels lead to hypercortisolism. SSRI therapy is associated
with normalization of CRH and cortisol concentrations in these patients [16] possibly by
inducing an upregulation of MRs, which are known to inhibit HPA axis activity [17].
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If the hypothesis of Holsboer [16] holds and MDD patients (or at least melancholic
MDD patients) have decreased sensitivity and density of GRs, we should be able to detect
differences in the behavior of the HPA axis under stress when compared with healthy
controls. We would expect to see the concentration of CRH, ACTH, and cortisol rapidly
increase on exposure to a stressor—the same process we would see in a healthy subject.
However, with cortisol at a high concentration, we hypothesize that we would see a slower
return to basal concentrations in MDD patients because diminished GR activity would
result in decreased inhibition of CRH and ACTH secretion. The best way to test this
hypothesis is to take blood samples and measure ACTH and cortisol at short intervals
while MDD patients and healthy controls experience a significant amount of stress. Our
chosen method of producing a stress response in a laboratory setting is the Trier Social
Stress Test (TSST)—see Section 2.3 for a description of TSST procedures.

1.3. Model Validation against Experimental Data

A model that can accurately simulate the HPA axis during a TSST will allow us to
make predictions about differences between MDD patients and healthy controls, so our
validation procedure for the case studies presented herein is based on their ability to match
TSST data. The state of HPA axis modeling in the literature is described in the following
section, and the procedure by which we chose models to use as case studies is described
in Section 2.1. After model selection, we perform our verification procedure (described in
Section 2.2) and our validation procedure.

For validation, we begin by running a parameter optimization algorithm on each
model. This yields the optimal parameters for matching stress test data (optimal parameters
are generated for data sets from seven patients and the mean concentrations of all 58
patients). To compare model data matching objectively and quantitatively for the TSST
data, we compute a cost function for each model on each data set. The result of the cost
function is used by the parameter optimization algorithm to determine the suitability of
parameter sets, comparing many sets to each other until it finds the optimal parameters for
each model on each data set. We also use the cost function to assess the validity of models,
as it indicates how well the model has simulated the experimental situation. Furthermore,
the cost function values allow us to compare models to each other, and this allows us to
objectively determine which model fits our data sets most closely. For a discussion of how
the cost function is computed, see Section 2.4.

1.4. Mathematical Models of the HPA Axis in the Literature

There are many mathematical models of the HPA axis in healthy, MDD, and PTSD
subjects in the literature. These models are predominantly ordinary differential equation
(ODE)-based, although there are also some delay differential equation (DDE)-based mod-
els. They primarily vary in the way circadian oscillations are generated and (if they are
considered at all) how ultradian oscillations arise.

Figure 1 shows a timeline of HPA axis modeling, starting with the first ODE model of
an oscillating biological system by Goodwin in 1965 [18]. This model included a negative
feedback loop to produce oscillating solutions rather than the steady-state solutions seen in
prior models. While not specifically modeling the HPA axis, this was a direct precursor
to the modern form of HPA axis models. The first improvement was made by Veldhuis
et al. in 1989 with an HPA axis model attempting to model the ultradian rhythm of
cortisol [19]. However, this model was a convolution model rather than an ODE model.
In 1994, Gonzalez-Heydrich et al. published an ODE model including equations for CRH,
ACTH, and cortisol [20]. This was the first “modern” model of the HPA axis, and the
basic structure of models has remained largely the same since. The model by Liu et al. in
1999 was an ODE model with five equations, including CRH, ACTH, free cortisol, cortisol
binding globulin (CBG)-bound cortisol, and albumin-bound cortisol—CBG and albumin
are the two main proteins that bind and inactivate cortisol in the blood [21]. It was able to
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produce ultradian oscillations in CRH, ACTH, and cortisol concentrations, but failed to
produce circadian oscillations.
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chronological order: Goodwin [18], Veldhuis et al. [19], Gonzalez-Heydrich et al. [20], Liu et al. [21],
Bairagi et al. [22], Sriram et al. [23], Andersen et al. [24], Malek et al. [25], Bangsgaard & Ottesen [26],
and Somvanshi et al. [27].

The remaining models on the timeline are the five models we reproduce for this
paper, plus the model by Andersen et al. [27] that we have included in the supplemen-
tary materials (due to a lack of valid figures for verification in the model paper). First,
in 2008, Bairagi et al. produced a DDE-based model that included delays between the
production of ACTH/cortisol and their action [22]. The model was able to produce both



Entropy 2022, 24, 1747 6 of 30

ultradian and circadian oscillations but required a pulse generator function representing
the suprachiasmatic nucleus (SCN) of the hypothalamus for the circadian oscillations. In
2012, Sriram et al. published a model with four ODEs, including CRH, ACTH, cortisol,
and GR availability/binding [23]. The inclusion of GR interactions allowed this model to
produce both circadian and ultradian oscillations without external input from the SCN. The
model by Andersen et al. in 2013 was a DDE-based model, and the authors attempted to
produce oscillations by introducing hippocampal GR/MR interactions [24]. However, this
model was unable to produce any oscillations for physiologically reasonable parameter
values. In 2015, Malek et al. published an ODE model of the HPA axis and its interactions
with inflammatory cytokines [25]. The model also ran as an HPA axis-only model by setting
the initial concentrations of the cytokines to zero and was able to produce both types of
oscillations desired, circadian and ultradian (through an external pulse generator function).
Bangsgaard & Ottesen published an ODE model in 2017 that innovated by matching ex-
perimental data from individual patients with a parameter optimization procedure [26].
This allowed the authors to determine differences in parameters between healthy control
subjects and depressed subjects. Finally, in 2020, Somvanshi et al. published another ODE
model of the HPA axis and its interactions with inflammatory cytokines [27]. Their model
differed from that of Malek et al. because it included equations for many other species,
including GRs.

2. Methods

We used several tools to ensure that VeVaPy is easily accessible, well documented,
and user-friendly, for the convenience of future researchers attempting to perform mathe-
matical modeling of the HPA axis. The code for the demonstration models was written in
Jupyter notebooks (https://www.jupyter.org, accessed 23 November 2022), which allows
for Markdown text in between code segments. This allowed us to include a Table of Con-
tents in each notebook for easy navigation, as well as well-formatted and easily readable
instructions for use of the models. These Jupyter notebooks are all publicly available on
Github (https://www.github.com/cparker-uc/VeVaPy, accessed 23 November 2022) and
can be run on any computer with internet access and a web browser through Binder (see
our Github repository for instructions; Binder homepage: https://www.mybinder.org,
accessed 23 November 2022). We present further information about these tools in the
Discussion.

2.1. Model Selection

We selected models for demonstration of VeVaPy by searching PubMed for “HPA Axis
Mathematical Model”, on 26 August 2021. This search yielded 1023 results. We selected all
papers which included language in the abstract suggesting that a mathematical model was
used to study some feature of the HPA axis, a total of 41 papers. Then, an initial screening
analysis was performed on all search results, which eliminated all papers not related to
differential equations modeling of the HPA axis—35 papers remained at this point. We
then performed a more thorough analysis of the remaining papers, and selected all which
met the following set of criteria:

• Included all necessary equations in dimensional form, 16 models selected
• Included all parameter values used for at least one figure
• Not substantially similar to an earlier model
• The model is based on the human HPA axis
• We have excluded our own models

Five models that satisfy all of these criteria are deemed to have high potential for
successful V&V and further tested in our work.

2.2. Model Verification

We modified the general VeVaPy model template for each of the five selected models,
inputting the systems of differential equations, parameter values and bounds, and initial

https://www.jupyter.org
https://www.github.com/cparker-uc/VeVaPy
https://www.mybinder.org
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conditions. To verify that the models were performing as the authors intended, we ran
simulations to recreate figures from the model papers. This process requires the most
modification of the template, because each paper includes very different figures that must
be replicated. While we have developed the visualize module of VeVaPy to create graphs
of variable concentrations over time, we are still working on expanding it to accommodate
different formats (for instance, multiple variables on the same graph, as shown in the third
figure of Malek et al. [28], see Supplementary Figures S5 and S6). The results of this process
are discussed in Section 3.4.

2.3. Data Collection

The data VeVaPy used includes new patient data locally collected and data that are
electronically collected from previous publications. For electronic collection, we used Lab-
Notes software (http://mpf.biol.vt.edu/lab_website/Labnotes.php, accessed 23 November
2022), and the filenames indicate the data sources as follows: Bangsgaard-Ottesen-2017 [26],
Bremner-2007 [28], Carroll-2007 [29], Golier-2007 [30], Yehuda-1996 [15]. These data repre-
sent basal concentrations of cortisol or both cortisol & ACTH measured at short intervals
over 24 h. The other data included in VeVaPy come from patients undergoing TSST as
described below.

The data were collected following clinical research procedures approved by the IRBs of
University of Cincinnati and Cincinnati Children’s Hospital. Briefly, subjects were initially
screened with the Structured Clinical Interview for DSM-IV (SCID) and the Inventory
of Depressive Symptoms clinician-rated version (IDS-C) by a trained clinician. A total
of 88 subjects between the ages of 18 and 65 were selected for the study, with 22 being
healthy controls and the other 66 fulfilling the following criteria: DSM-IV criteria for a
major depressive episode, either meeting the modified criteria listed in Supplementary
Tables S1 and S2 for melancholic or atypical depression, or not falling in any depressive
subtype; a score on the IDS-C of 20 or greater. Several exclusion criteria were also defined,
as listed in Supplementary Table S3. All subjects were given an opportunity to read the
informed consent document and the protocol was verbally explained at the screening visit.
This procedure was approved by IRB review.

Subjects returned at 5:00 PM on the first day of testing and stayed at the General
Clinical Research Center (GCRC) of Cincinnati Children’s Hospital until all testing was
completed at 6:00 PM on the third day. Blood samples were collected at 10-min intervals to
determine basal levels of cortisol and ACTH from 8:00 PM to 9:00 PM on day 1 and 8:00
AM to 9:00 AM on day 2. Subjects also had saliva samples taken every 20 min during these
time intervals to serve as a measure of free cortisol.

A Trier Social Stress Test (TSST) was performed on the second day starting at 5:00
PM. The test involved subjects making an oral presentation to a panel of judges (whom the
subjects were told were scientists specializing in behavior analysis), ostensibly to convince
the judges that they are the most qualified candidate for a job opportunity related to their
interests. Following the oral presentation, there was a question/answer session with the
judges and then the subjects were given a series of mental arithmetic tasks to perform for
the next five minutes. The total time for the presentation, question/answer, and mental
arithmetic tasks was 20 min. Blood samples to determine cortisol and ACTH levels were
drawn 30 min and 15 min before the TSST began, at the beginning of the TSST, 10 min and
20 min into the TSST, and then every 15 min for 90 min after the conclusion of the TSST.
Heart rate was also measured during the TSST, and saliva samples were collected at the
start of the TSST, the end of the TSST, and every 30 min for 90 min after the conclusion of
the TSST. Note that, following the TSST, all subjects were informed that the panel of judges
were not actually scientists and had been instructed to not react or offer positive feedback
during the presentation.

The subjects also underwent a combined dexamethasone-CRH (DEX/CRH) test. This
began with 1.5 mg of dexamethasone administered at 11:00 PM on day two. Saliva and
blood samples were taken at 8:00 AM on day three to determine cortisol, ACTH, and

http://mpf.biol.vt.edu/lab_website/Labnotes.php
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dexamethasone levels (dexamethasone levels to control for differences in dexamethasone
metabolism). At 2:30 PM and 3:00 PM on day three, the subjects once again had blood
drawn to determine basal levels of cortisol and ACTH before the CRH test. Then, at 3:00 PM
on day three, the subjects were administered 100 mcg ovine CRH (oCRH). Blood samples
were taken every 15 min for the first hour and every 30 min for the second and third hours
to determine cortisol and ACTH levels. Saliva samples were collected every 30 min for
three hours following dosing with oCRH. This concluded the procedure, and the subjects
were dismissed.

To facilitate matching the cortisol and ACTH concentration data, we excluded subjects
with any data points missing. There were a total of seven MDD subjects and one control
subject lacking at least one data point, so overall we had 58 subjects to use for modeling
purposes. All subjects used in our modeling for this paper underwent the TSST, and the
subjects included 43 diagnosed with MDD and 15 healthy control subjects. We have not
included any analysis of the DEX/CRH data in this paper, however, this data will be useful
for future analyses using a model modified to allow dosing with dexamethasone and
oCRH.

2.4. Model Validation

Each model was run with a parameter optimization algorithm against a subset of
the patients from the TSST data set and the mean cortisol and ACTH concentrations
between all patients. We did not perform this process against all 58 patients due to the
extreme time and computational power requirements of such an undertaking. We used
the scipy.optimize.differential_evolution package for parameter optimization. The cost
function used for parameter optimization involved creating splines between simulated
points for ACTH and cortisol and computing the mean sum of squared errors between the
splines and the data to be matched. The equation is as follows:

cost =
∑i(dACTH,i − sACTH(ti))

2 + (dCORT,i − sCORT(ti))
2

2

where dACTH,i & dCORT,i are the data points at time ti, and sACTH(ti) & sCORT(ti) are
the spline functions for the simulated ACTH and cortisol, respectively, at time ti. The
splines’ points were normalized to the mean concentration of the respective data set to be
matched, and the data sets were normalized to their mean, as well. This normalization
procedure allowed us to compare cost function values between models, even when the
models operated on different time/concentration scales.

The reason for creating splines between the simulated points when computing the
cost function is to handle a limitation in the ODE solver methods available in Python (and
MATLAB, also, because the same differential equation solver method is commonly used in
both languages). The problem is that the step size of the solver is not fixed, so we cannot
guarantee that we will have a solution at the exact time point in the data being matched.
Although we may get very close, the time steps are very often off by a small amount. The
best solution we have found is to compute splines between each point in our solution array,
and then select the points on the splines to exactly match the time points of data.

Each model was run against the concentrations averaged over all patients because
it is the best example of how we expect the concentrations to behave (starts low before
the stress test, peaks during and shortly after the test, returns quickly to baseline before
measurement period ends). To illustrate the differences observed in individual patients,
the models were also run against several individual patients (patients 1, 10, 20, 30, 40 & 50).
Of particular interest, we demonstrated the results against patient 1 as an example of the
data sets that fit into neither our understanding of how ACTH and cortisol concentrations
should interact with each other nor how they should behave after exposure to a stressor
(ACTH is decreasing over nearly the entire measurement period, yet cortisol spikes 30 min
after the TSST ends). We also illustrate the model simulation results against patient 40 as a
good example of how the concentrations should behave (with limited individual variation,
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making it distinct from the mean data set). The processes were facilitated by the ability of
VeVaPy to efficiently plug in different data and model, as described below.

We tested using alternative cost functions and optimization algorithms and chose
the mean sum of squared errors for the cost and differential evolution for the algorithm
because they outperformed the other options. The alternative cost functions we tested
involved using the maximum of the maximum distances between the ACTH & cortisol
simulation spline curves and the real-world data, or the mean of the maximum distances
between ACTH & cortisol simulation spline curves and the real-world data. These cost
functions performed slightly worse overall when compared to the mean sum of squared
errors. For alternative optimization algorithms, we tried using scipy.optimize.shgo and
scipy.optimize.basinhopping. These algorithms performed worse than differential evolu-
tion, in general. However, all of these methods can be implemented easily in VeVaPy, by
passing different arguments to the optimize module.

When choosing which parameters to optimize for each model, we considered the
authors’ intentions and tended to optimize only those parameters which were reported
to vary between patient populations, at first. However, to demonstrate the maximum
effectiveness of parameter optimization, we also ran simulations where we optimized every
parameter (simply to determine the optimal data matching from each model). However,
we did not modify the equations for any of the models used for demonstration. The
only changes made from the original model publications is the parameter values we have
optimized.

3. Results

First, we present a simplified description of how VeVaPy functions, leaving all tech-
nical information to Section 3.1. The tool contains a template that can be edited to add
information about the model to be simulated. The information required for VeVaPy to
function with a novel model includes: the system of differential equations constituting the
model, the parameter values (and reasonable bounds on those parameters for optimiza-
tion), and initial conditions for each variable (although these can also be optimized given
reasonable bounds). The tool then uses the enclosed modules to simulate the system and
optionally optimize parameters—the modules will be described in detail in the next section.
The outputs from VeVaPy include the optimized parameters, the quantitative description
of data matching suitability and graphs for visualization of the simulations. Figure 2 shows
the simplified input/output diagram of VeVaPy.
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3.1. Code Diagram and Module Descriptions of VeVaPy

See Figure 3 for a diagram of the Jupyter notebook template used for each of the five
demonstration models. The following section describes each step in the template in turn
(following the numbering seen in the left-hand block of the diagram).
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The VeVaPy template begins with Section 1. Parameter Definitions, where parameters
are defined, along with bounds on each parameter for use in optimization. In this section,
initial conditions (or bounds on initial conditions for optimization), time scale, and integra-
tion time length are also defined. Section 2. Import Real-World Data and Graph calls the
dataImport module using the time scale defined by the user. The module imports all of
the data we have gathered on the HPA axis (both basal data and TSST data) into arrays for
analysis. This makes validation more streamlined and more powerful, as one can access a
wide range of data sets without needing to scour the literature. We have also included code
in the template to plot each data set from dataImport to allow users to easily see differences
between data sets.

In Section 3. Optimization Loop, the parameter optimization is performed by the
optimize module. The user adds the system of equations for their model into the model
function (in the ode_system subfunction). Then, the user calls the run() method of the
optimize module. This sets up and runs the parameter optimization algorithm, which
repeatedly calls the model function, passing a set of parameters each time.

The model function then calls the DEsolver module using the system of equations
defined by the user and the parameter set from the optimization algorithm. DEsolver
allows for solving ODE and DDE systems in a user-friendly fashion. Currently, it is
not straightforward to solve ODE systems in Python when using any solver other than
the default (lsoda from the FORTRAN library odepack), and we are unaware of any
straightforward methods for solving DDE systems. VeVaPy makes both of these possible
for HPA axis models, requiring only a function defining the equations and a single call to
the module.

DEsolver then returns the solution of the system, which is passed by the model
function to the optimization algorithm, in turn. The algorithm then calls the cost function,
passing this solution array. The cost function then calls a cost() method of the optimize
module, depending on which cost function is desired (for instance, sum of standard errors
is SSE_cost). This method takes arrays containing simulated data and the real-world data
to use for validation and returns a single value for cost—representing the suitability of the
parameter set tested. Based on this cost value, the optimization algorithm determines the
most accurate parameter set that it can find, and then this set is saved and the loop repeats.
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After the loop has run as many times as desired, Section 4. Save Optimization Results
to File runs, and all optimized parameter sets and solution arrays are saved to an Excel
file. Finally, in Section 5. Plot Optimized Simulations Against Real-World Data, the VeVaPy
module visualize is used for creating graphs of each variable comparing the simulated
values with the data set used for validation.

Note that when performing verification, the optimization loop is replaced with a
single call to the model function, which then uses DEsolver to solve the system using the
parameter values provided. The template contains code for this purpose, with modification
necessary only to ensure that the graphs generated contain the same information as those
the model is being verified against.

Not only are these modules useful for reproducing HPA axis models from the literature,
but they can also be used for creation of new models of the HPA axis or potentially
generalized to model other systems. Given the extensive experience and knowledge
typically required to create a differential equation-based model of a physiological system,
or even to reproduce one from the literature, we have attempted to make VeVaPy as user-
friendly as possible to allow a broad audience to use it. As explained at the beginning of
Section 2, all five of the models have been written in Jupyter notebooks with thorough
documentation explaining the purpose of each code segment. Furthermore, the use of our
custom library has been demonstrated in these models, and the code for each module in the
library also includes thorough documentation. As a result, the reproduction of an HPA axis
model starting from our template Jupyter notebook will be much more easily accomplished
than starting from scratch.

3.2. Description of Collected Data

The data used for our validation demonstration are described below. As seen in
Figure 4, the mean concentrations of ACTH and cortisol from the MDD patients before,
during and after administration of a TSST follow the expected trend. Levels are steady
and comparable to basal concentrations of MDD patients during the 30 min leading up to
the test. During the 20 min that the subjects were participating in the TSST, levels sharply
increase and then decrease back to baseline over the 90 min following the end of the test.

However, there is a large amount of variation between subjects. Of the six subjects
chosen for matching, the general trend of an increase in ACTH and cortisol concentration
followed by a decrease back to baseline is observable in patients 10, 20, 30, 40, and 50—
although the degree to which concentrations increase and decrease varies widely. As an
illustration of this point, the data for patient 1 and patient 40 are shown in Figure 5A,B,
respectively. Strangely, patient 1 exhibits the largest peak in cortisol concentration at 18:20,
30 min after the conclusion of the TSST. Additionally, the ACTH concentration data for
patient 1 is decreasing over nearly the entire time frame, which does not coincide with the
increasing cortisol concentration. Therefore, it is to be expected that mathematical models
will struggle to match the data from this subject. We expect that the mean concentration
data, along with patients 10, 40, and 50 will be most successfully matched as they most
closely follow the expected trend.
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3.3. Summary of Selected HPA Axis Models

The five models selected following our search of the literature include: Bairagi
et al. [22], Bangsgaard & Ottesen [26], Malek et al. [25], Somvanshi et al. [27], and Sri-
ram et al. [23]. See Table 1 for a summary of the characteristics of each model—including
the number of equations, number of parameters and number of feedback loops (all of
which give some indication of the amount of detail included in the system). Two of the
papers were primarily interested in whether the HPA axis system itself exhibited ultradian
oscillations or whether clock inputs from the brain were necessary, two of the papers used
their models to study the interactions between the HPA axis and inflammatory cytokines,
and the final paper was interested in determining whether PTSD patients exhibited stronger
negative feedback from cortisol on the hypothalamus and pituitary than control patients.

Two of the models [23,27] replace the concentration of cortisol with the concentration
of bound GRs when computing negative feedback—which is logical because cortisol must
bind GRs to exert its negative feedback. In the model by Sriram et al. [23], this allows
for the introduction of a positive feedback loop in the receptor binding equation, which
generates bistability and therefore Hopf bifurcations in the model (which is an indication
that the model can successfully generate ultradian oscillations without needing an external
pulse generator function) [31].

Aside from the differences in handling negative feedback interactions, the other major
difference in the models is the presence or absence of a function modeling external circadian
drive from the SCN. Four of the models include a function for the SCN drive in the equation
for CRH [22,25–27] while the other model does not include any circadian drive input from
outside the HPA axis [23]. The model by Somvanshi et al. [27] also includes a function in
the equation for ACTH to describe the adrenal circadian clock drive.
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Table 1. Overview of Selected Models.

Year Authors Target Number of
Equations

Number of
Parameters

Number of
Feedback
Loops

Unique Features

2008 Bairagi, Chatterjee,
Chattopadhyay

Circadian &
Ultradian Rhythms 3 12 1 Negative Ultradian rhythm

w/o Circadian

2012
Sriram, Rodriguez-
Fernandez,
Doyle

Cortisol Levels in
PTSD 4 20 1 Negative, 1

Positive
Glucocorticoid
Receptor Binding

2015
Malek, Ebadzadeh,
Safabakhsh, Razavi,
Zaringhalam

HPA Axis
Relationship to
Inflammatory
Cytokines

5 32 0
Equations for
TNF-alpha, IL-6
and endotoxin

2017 Bangsgaard,
Ottesen

Comparing
Differences in
Optimal
Parameters
between
Individuals

3 17 1 Negative

Used Parameter
Optimization on
Model to Compare
Individuals

2020

Somvanshi, Mellon,
Yehuda, Flory,
Bierer, Makotkine,
Marmar, Jett, Doyle

Relation of HPA
Axis to
Inflammation in
Subjects with PTSD

17 92 1 Negative, 1
Positive

More Detailed
Glucocorticoid
Receptor and
Inflammatory
Cytokine Dynamics

3.4. Verification of Selected Models with VeVaPy

To verify that each model performs as the authors intended, we reproduced a figure
from each original paper. All of the model papers contain at least one figure in which
cortisol concentration over time is shown—these are the figures we have reproduced.
Figure reproductions and the original figures are included in Supplementary Figures S1–S7.

In order to generate the figures, the VeVaPy template is edited to include the system
of model equations, the parameter values and initial conditions defined in the model
publication, and the time over which to integrate. The VeVaPy module DEsolver then
solves the system and returns a solution array to visualize, which generates figures that are
comparable to the publications. The module visualize allows users to define the variables
to plot and the ranges over which to plot them. For each variable, a graph is produced
showing the concentration values over the requested time range. The graphs can contain
both simulation results and real-world data, but only one variable can currently be shown
per graph. As mentioned in Section 2.2, this cannot accommodate all figures for verification
currently (such as those in Malek et al. [28]). However, many verifications can be performed
easily.

3.5. Validation of Selected Models with VeVaPy

Our demonstration of a validation procedure using novel TSST data and models from
the literature illustrates how VeVaPy makes this process more streamlined. We started
validation with VeVaPy by using parameter values found in the original publications of the
selected models (see the model files on GitHub for details).

With the authors’ published parameters and the data from patient 40, we see in Figure 6
that the original parameter values provided in Sriram et al. and data from this patient do
not agree. When a new experimental procedure is used to collect data, it is likely that there
will be no models specifically designed to simulate the experiment. This partially explains
why the V&V process is more challenging in systems physiology. Since the data for model
construction and data for model validation are often collected in different contexts, more
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than one set of parameter values are needed for proper estimation of the model’s capacity
to explain new data.
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To maximize this capacity, VeVaPy includes a package for parameter optimization. 
This ensures that when the published parameters are inaccurate for the current experi-
mental conditions, we can determine whether a change in parameters can yield a more 
accurate simulation. This is easily facilitated by VeVaPy, with several parameter optimi-
zation algorithms and cost function options easily available. 
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when matching the data from patient 40, with an average cost function value over five 
iterations of the parameter optimization algorithm of 0.05827298.  

Figure 6. Sriram et al. [23] model without parameter optimization vs. Trier social stress test (TSST)
data from patient 40. Graphs include model simulations of corticotropin-releasing hormone (CRH)
concentration (upper left, blue), adrenocorticotropic hormone (ACTH) concentration (upper right,
blue), cortisol concentration (lower right, blue) and bound glucocorticoid receptor (GR) concentration
(lower left, blue) against ACTH concentration (upper right, orange) and cortisol concentration (lower
right, orange) from patient 40. The blue lines represent the average of 5 iterations of the parameter
optimization algorithm.

To maximize this capacity, VeVaPy includes a package for parameter optimization. This
ensures that when the published parameters are inaccurate for the current experimental
conditions, we can determine whether a change in parameters can yield a more accurate
simulation. This is easily facilitated by VeVaPy, with several parameter optimization
algorithms and cost function options easily available.

The optimized parameters for Sriram et al. improved the matching between the model
and data from patient 40, as seen in Figure 7. The model fits exceptionally well when
matching the data from patient 40, with an average cost function value over five iterations
of the parameter optimization algorithm of 0.05827298.

We see similar results when running the model by Bangsgaard et al. in VeVaPy against
the data from patient 40. The initial results using the authors’ published parameters are
shown in Figure 8, and as expected the simulation does a very poor job matching the
experimental data.
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The blue lines represent the average of 5 iterations of the parameter optimization algorithm.
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Figure 8. Bangsgaard et al. [26] model without parameter optimization vs. Trier social stress test
(TSST) data from patient 40. Graphs include model simulations of corticotropin-releasing hormone
(CRH) concentration (left, blue), adrenocorticotropic hormone (ACTH) concentration (upper right,
blue) and cortisol concentration (lower right, blue) against ACTH concentration (upper right, orange)
and cortisol concentration (lower right, orange) from the patient 40. The blue lines represent the
average of 5 iterations of the parameter optimization algorithm.
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After running the Bangsgaard model with VeVaPy’s parameter optimization function,
we see significantly improved fit when matching the data from patient 40. As shown in
Figure 9, the model performs nearly as well as the Sriram model in this instance.
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For the remaining three models, the results of parameter optimization are not nearly 
as positive, but optimization still yielded slight improvements in fit. Figure 10 shows the 
models with and without parameter optimization against patient 40 (as with the models 
by Sriram et al. [23] and Bangsgaard & Ottesen [26] above). This process clearly demon-
strates that even with parameter optimization, models are often not suitable for problems 
outside of their initial intended use. 

Figure 9. Bangsgaard et al. [26] model vs. Trier social stress test (TSST) data from patient 40. Graphs
include model simulations of corticotropin-releasing hormone (CRH) concentration (left, blue),
adrenocorticotropic hormone (ACTH) concentration (upper right, blue) and cortisol concentration
(lower right, blue) against ACTH concentration (upper right, orange) and cortisol concentration
(lower right, orange) from the patient 40. The blue lines represent the average of 5 iterations of the
parameter optimization algorithm.

For the remaining three models, the results of parameter optimization are not nearly
as positive, but optimization still yielded slight improvements in fit. Figure 10 shows the
models with and without parameter optimization against patient 40 (as with the models by
Sriram et al. [23] and Bangsgaard & Ottesen [26] above). This process clearly demonstrates
that even with parameter optimization, models are often not suitable for problems outside
of their initial intended use.
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Figure 10. Further examples of models with and without parameter optimization. Simulated
concentrations are in blue, patient 40 data is in orange. The left column of graphs shows the models
running simulations with the parameters from the publication, while the right column of graphs
shows the models running simulations with optimized parameters. Demonstrated models are (A)
Bairagi et al. [22], (B) Malek et al. [25], (C) Somvanshi et al. [27].

For each model, we have computed the average cost function value for five iterations
of the parameter optimization algorithm on each of the seven data sets tested. We then took
the average of these seven average cost function values to obtain a single value representing
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the overall suitability of each model when matching our TSST data. The overall average
cost function values given by VeVaPy for each model are shown in Table 2, alongside the
best cost function value on a single patient, and the cost function values of the models
without parameter optimization. It should be noted that the model by Bairagi et al. [22]
required a large amount of computational power, and as such, we were only able to run
one iteration of the parameter optimization algorithm for each data set. Each iteration of
the model ran for approximately 36 h, which was more than 10 times longer than any of
the other models we tested.

Table 2. Model Ranking Based on Cost Function Value.

Model

Overall Cost Function
Value ± Standard
Deviation (After
Parameter
Optimization)

Best Cost Function
Value for a Single
Patient (Patient ID)

Overall Cost Function
Value (Authors’
Parameters, No
Optimization)

Best Cost Function
Value for Single
Patient (Patient ID)
(Authors’ Parameters,
No Optimization)

Sriram et al. (2012) [23] 0.33 ± 0.19 0.058 (Patient 40) 26.03 ± 16.39 5.11 (Patient 50)

Bangsgaard & Ottesen
(2017) [26] 0.58 ± 0.46 0.12 (Patient 40) 3.63 ± 1.03 2.14 (Patient 10)

Somvanshi et al. (2020)
[27] 2.59 ± 0.94 1.10 (Patient 20) 6.61 ± 0.90 5.43 (Patient 20)

Malek et al. (2015) [25] 6.78 ± 7.78 1.17 (Patient 30) 11.95 ± 0.40 11.31 (Patient 20)

Bairagi et al. (2008) [22] 64.86 ± 38.85 35.84 (Patient 1) 656.26 ± 280.47 343.34 (Patient 1)

Based on the overall cost function value of each model with optimized parameters
versus the authors’ published parameters, we can clearly see that our procedure is yielding
significant improvements in data matching. Further, between the models tested, we see
widely varying levels of suitability after parameter optimization. The models by Sriram
et al. [23] and Bangsgaard et al. [26] far outperform the others. The normalization performed
when computing costs allows for comparison between models without needing to convert
time/concentration scales beforehand—we have reported results from each model without
converting all models to the same scales to demonstrate this.

3.6. VeVaPy Facilitates Efficient Validation against Individual Patients

With VeVaPy, we efficiently compared data from seven individual patient data sets
against five models with five iterations per patient, and one model with a single iteration
per patient, for a total of 182 runs of the parameter optimization. The main time-consuming
step is the repeated integration of these models necessary for parameter optimization—
especially for very complex models or those with systems of DDEs. However, VeVaPy
makes it straightforward to “plug and play” individual models and data. The results of
model validation against the MDD patient mean data set are shown for all five models in
Figure 11.
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needing to make changes to the code. 

  

Figure 11. Model validation figures for all five demonstration models against the mean of all MDD
patients in the Nelson TSST data. Models depicted are: (A) Bairagi et al. [22], (B) Bangsgaard &
Ottesen [26], (C) Malek et al. [25], (D) Somvanshi et al. [27], (E) Sriram et al. [23].

VeVaPy is designed to facilitate this process by requiring specification of the validation
data set in a single location. The tool then runs the algorithm and outputs the results to
an Excel file for further analysis. There is also the option in VeVaPy to loop over multiple
patients in a data set, running the parameter optimization on each individual indicated
by the user. This makes it very efficient to run many different validation tests, without
needing to make changes to the code.
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3.7. Assessing Model Generalizability

After optimizing parameters against a data set, VeVaPy can easily test the resulting
parameter set against other data sets to determine whether a model can be generalized
to other situations. The optimized parameters are loaded from the file where they were
saved when generated and the procedure for performing a simulation without optimization
is followed. In order to demonstrate this process, we have used several of the optimal
parameter sets from the model by Sriram et al. [23] to run simulations against all individual
patients from the TSST data set Figure 12 highlights some of the more interesting results
from this process.
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Figure 12. Results of Using Optimized Parameters in Generalized Cases. (A) The optimized parameter
sets have some cases where they perform reasonably well (especially against patients from the same
group). (B) Some of the parameter sets match certain patients very poorly, such as the parameters
optimized against the mean of all MDD patients against patient 39 (MDD/neither subtype). (C) Many
of the simulations matched either ACTH or cortisol but did not match the other. Parameters optimized
against patient 40 (MDD/neither subtype) match the general cortisol concentration trend from patient
13 (MDD/atypical), but the simulated ACTH concentration is extremely high. (D) Similar to C, but
with simulated cortisol concentration not matching while simulated ACTH concentration follows the
correct general trend. Simulation run with parameters optimized against patient 50 (MDD/atypical),
shown with data from patient 6 (MDD/atypical).
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The results of these simulations vary widely, likely due to the variation observed
between individual patients. Some parameter sets did yield better cost function values
when matching individual patients within the same group. For instance, using parameters
from optimization against all control patients gave an average cost function value of
6.007 against control patients and a value of 9.064 against MDD patients. Likewise, using
parameters from optimization against patient 40 (MDD/neither subtype) gave an average
cost function value of 2.899 against control patients and a value of 2.380 against MDD
patients. However, using parameters from optimization against all MDD patients gave an
average cost function value of 4.195 against control patients and a value of 4.421 against
MDD patients. This demonstrates that while some optimized parameters are slightly
generalizable to other patients or group mean concentrations, the cost function values are
much higher than we would like in all of these situations. A deeper analysis of this issue
falls outside of the scope of this paper, but we intend to examine this behavior more fully
in a subsequent paper.

3.8. VeVaPy Runtimes

We have recorded the time required to run a variety of simulations with each demon-
stration model. These data are summarized in Table 3 below. Running simulations without
parameter optimization requires only milliseconds for all five models. However, optimizing
parameters for any of the models requires a significant investment in time and computing
power. The models vary widely in this regard, though, with a gap of 96.5 min between the
fastest model and slowest model.

Table 3. Simulation Runtimes with VeVaPy by Model.

Model Without Optimization
(Milliseconds)

With Optimization
(Minutes)

Bairagi et al. [22] 483 101.625

Bangsgaard & Ottesen [26] 51.1 27.170

Malek et al. [25] 57.5 26.794

Somvanshi et al. [27] 5.1 5.128

Sriram et al. [23] 1.76 7.159

The simulations performed for the average runtimes without parameter optimization
used several optimal parameter sets that were generated during the course of model
validation. We ran 100 simulations with each model, and the average runtime of these
100 simulations is reported. For the runtimes with parameter optimization, we report the
average time for a single iteration of the optimization algorithm for each model against two
data sets from the TSST data: mean of all control patients and mean of all MDD patients.
Each of these optimization runs consisted of five iterations of the differential evolution
optimization algorithm using a population size of 10. Population size determines how
many parameter sets are “evolved” and checked for improvement at each step of the
optimization, so lower population sizes will yield faster runtimes with less accuracy at
finding the minimum cost value.

One major factor increasing the runtime for the models by Malek et al. [25] and Bairagi
et al. [22] is the presence of delayed variables. This requires extra computation at each step
of integration in order to look up the value of the variable in a previous time step, which
becomes a significant time cost when it is being performed thousands of times per iteration
of the optimization algorithm. This is an area where there is likely room for improvement
in the VeVaPy framework—and one which we will be working on in the future.

4. Discussion

In this work, we have shown how we have created a Python based package, VeVaPy,
that can be used to efficiently verify and validate HPA axis models. We have thoroughly
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documented the code behind VeVaPy and published it freely on GitHub, in line with the
recommended best-practices for model publication. We hope that others will find VeVaPy
useful, and it can help future researchers spend less time and effort performing V&V when
developing their own models or checking model papers in the literature.

In order to test and demonstrate VeVaPy, we verified five HPA axis models from the
literature and validated them against novel TSST data from MDD patients. The models
were ranked based on their average cost function value when running the differential
evolution parameter optimization algorithm on each model against several TSST data
sets. All five models are included in the VeVaPy repository and ready for use—though
the validation results indicate that the models by Sriram et al. [23] and Bangsgaard &
Ottesen [26] would be the strongest candidates for repurposing to explain the TSST data.

Consistent with many others in the scientific community, we have found that verifica-
tion of published models was challenging [32–35]. As we will elaborate on below, we have
encountered two main difficulties during the course of this research: data sets not provided
alongside models, and non-standardized model development and publishing practices.

The first difficulty arises due to a lack of easily accessible data published in machine-
readable formats. While many papers in the HPA axis modeling literature use cortisol
concentration data to validate their models, they seldom include a supplementary file with
a spreadsheet of the data used. Often, the papers cited by these modeling publications
as the source of the data used do not include spreadsheets of the data either. It is often
very difficult or even impossible to reach the authors of papers with useful data, especially
when the papers are not from the last few years.

To prevent future researchers from experiencing this challenge, we have begun the
process of curating data sets from the literature and packaging them with VeVaPy. Currently,
as described in Section 2.3, we have four data sets containing cortisol data sampled at short
intervals from patients at rest over 24 h (two of the data sets also contain ACTH data over
the same time period). These data are useful for validation of models intended to describe
the HPA axis at rest. While the number of patients per data set is rather small (n = 29–47),
and the sets only contain mean concentration data, they provide a basic level of confidence
that a model is valid among various patient populations. Further, for validation of models
intended to simulate the HPA axis under stress, the TSST data contained in VeVaPy is
unique in the literature, as far as we are aware.

The second difficulty we faced—non-standardized model development and publish-
ing practices—warrants a more in-depth discussion. As mentioned briefly in Section 2.1,
there were many more models published in the literature than the five we have repro-
duced here. Unfortunately, however, the majority of differential equation based HPA
axis models published in the literature are non-reproducible for a variety of reasons. The
problem is primarily due to a lack of information, rather than dishonesty or poor model
design/performance. Very few models are published with the full code used by the authors,
and others do not include necessary basic information such as the initial conditions used
for each simulation, or a full list of parameter values used.

It is encouraging that both some grant agencies and some journals have acknowledged
this challenge. In a statement by the director of the NIH published in 2014 [36], the
root causes of the crisis (including over-emphasis on high-impact journal publications
by hiring and tenure committees or the withholding of information about experimental
procedures to retain a competitive edge) were discussed along with the steps the NIH was
considering to address the crisis (including changes to the way grants are awarded to allow
for more reproduction of published work to take place). Meanwhile, other researchers
have suggested that journals must enact and enforce reproducibility standards to solve
the crisis [37,38]. Some journals have taken steps in the right direction—notably, Science
implemented a reproducibility policy in February 2011. According to Stodden et al. [39],
the policy of Science has been successful to a degree but has not been enforced strictly
enough. The rate of data availability improved from 52% to 75%, but the rate of code
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availability only improved from 43% to 54% [39]. However, most suggestions for making
computational research more reproducible focus on individual researchers.

A survey of 1576 scientists showed favorable attitudes towards all suggested practices
for improving reproducibility included in the survey (practices such as better mentorship,
more robust experimental design, and journal checklists) [40]. A concern expressed by some
researchers surveyed was the amount of added time and effort to ensure that an experiment
is reproducible. However, as stated by Waltemath & Wolkenhauer [41], “irreproducibility
hinders researchers and the scientific community by wasting time and money.” Following
best practices for reproducibility in computational research from the start of model devel-
opment can decrease the overall amount of work required for reproducibility and in the
long term it will save the community significant time and effort.

To ensure that VeVaPy is user friendly and easily extensible, we have followed the
suggested best practices in the literature to the best of our ability—and we will review
and summarize them here. We hope that by proposing (and following ourselves) these
best practices, future computational biological scientists will not struggle with some of the
challenges we have. The Physiologically Based Kinetic (PBK) Model Reporting Template
presented by the Organisation for Economic Co-operation and Development (OECD) [32]
is a good compilation of general best practices for model reproducibility. The template is
presented in Table 4 below, and Table 5 contains our curated list of best practices suggested
in the literature by various authors [32–35,37,38,41–52].

Table 4. OECD Model Reporting Template [32].

PBK Model Reporting Template Sections

A. Name of model

B. Model author and contact details

C. Summary of model characterization, development, validation and regulatory applicability

D. Model characterization

1. Scope and purpose of the model
2. Model conceptualization (model structure, mathematical formulation)
3. Model parameterization (parameter estimation and analysis)
4. Computer implementation (solving the equations)
5. Model performance
6. Model documentation

E. Identification of uncertainties (report for each item in D.)

F. Model implementation details (software used, availability of code)

G. Peer engagement (report extent of review by peers during development)

H. Parameter tables (report all relevant inputs to the model for any simulations described)

I. References and background information

Note that the version of the OECD PBK Model Reporting Template published in [32]
includes more thorough guidance about what to include in each section. Completing this
template guarantees that a model will be published in accordance with our general best
practices (see Table 5), assuming the authors also provide the full code of their model as
the template suggests. See the Supplementary Material for complete information on the
five models covered in this paper.
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Table 5. Proposed Best Practices for Model Publication.

Proposed Best Practices Comments/Justification

All models should be published with all code
used by the authors

This is essential to ensure models can be
exactly reproduced without undue struggle

Model code must include proper
documentation

Without documentation regarding how to run
a model, such as thorough comments
throughout the code or a readme file, it is often
difficult to dissect complex code and determine
how it is meant to work

Exact scope of the model should be made clear

It is important that the audience knows when it
is appropriate to use the model, lest they form
false assumptions based on use of the model in
a context it was not designed to simulate

All input data (parameters, initial conditions,
etc.) must be provided and justified

Too often models are published without a clear
list of parameter and initial condition values,
making them non-reproducible. Other times,
the sources for parameter and initial condition
values are not provided, leaving their validity
in question.

We can categorize best practices suggestions based on which aspect of an experiment
they address. The categories include experimental design, performing experiments and
collecting data, analysis of data, and reporting data/results. The paper by Munafò et al. [45]
presents general suggestions which are applicable to many areas of science, and which
address all of the aforementioned categories. These suggestions include protecting against
cognitive bias during experimental design and data collection (e.g., using blinding), includ-
ing independent researchers with no personal stake in all steps of an experiment, study
pre-registration, improving statistical analysis training, improving the quality of reporting,
and promoting transparency and open science.

Due to the nature of computational research, the suggestions regarding experimental
design and data collection are often not relevant. As such, the literature about reproducibil-
ity in computational science mostly focuses on the last category listed above: reporting
data/results. The suggestions in this category vary in their specificity from general state-
ments (see the suggestions listed in Table 5) to specific software recommendations (e.g., use
Git for version control).

We have also made a list of suggested best practices and the software we recommend
for implementing them (see Table 6). These suggestions come from several literature sources
and our own experience with modeling software [33,41,42,46–50,52]. The following best
practices and the suggested software for implementation will be discussed: fully document
the process of model development including all simulation inputs and algorithms, share
model code and the associated documentation in public repositories like Github, ensure
that model code can be run on as many computers as possible, and make model code easy
to understand.
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Table 6. Best practices and suggested software for their implementation.

Best Practice Suggestion Software for Implementation

Fully document the process of model
development including all simulation inputs
and algorithms

• Jupyter Notebooks
(https://www.jupyter.org, accessed 23
November 2022)

• R Notebooks
(https://rmarkdown.rstudio.com,
accessed 23 November 2022)

Share model code and the associated
documentation publicly

• GitHub (https://www.github.com,
accessed 23 November 2022)

• BioModels
(https://www.ebi.ac.uk/biomodels,
accessed 23 November 2022)

Ensure that model code can be run on as many
computers as possible

• VMWare Virtual Machine
(https://www.vmware.com, accessed 23
November 2022)

• Docker (https://www.docker.com,
accessed 23 November 2022)

• Binder (https://www.mybinder.org,
accessed 23 November 2022)

Make model code easy to understand

• Systems Biology Markup Language
(SBML, https://synonym.caltech.edu,
accessed 23 November 2022)

• CellML (https://www.cellml.org,
accessed 23 November 2022)

In our experience and that of Kim et al. [42], documentation of the model development
process including all simulation inputs and algorithms is most easily accomplished using
computational notebooks and version-control systems. The code included with this paper is
written in Python using Jupyter notebooks, as explained in Section 2.2. The version-control
system we utilized is called Git, which allows for users to save all versions of a program
from its creation. This allows for easily stepping back through versions to see when a
change was made or to determine when an error was introduced. Through using these
tools in tandem, we have fully documented the development process of VeVaPy.

Using Git for version-control makes it simple to deposit model code in a public,
version-controlled repository—GitHub is a website which allows for any Git repository
to be uploaded to the Internet and (optionally) made public. This is the option that we
have chosen to use, and VeVaPy can all be found at https://www.github.com/cparker-
uc/VeVaPy (accessed 23 November 2022). However, there are also specific repositories for
various types of models. Porubsky et al. [52] recommend BioModels (https://www.ebi.ac.
uk/biomodels/, accessed 23 November 2022), a database for biological models that has a
curation process which verifies whether uploaded models are reproducible.

Due to the difficulties in ensuring that future users have all requisite software installed
in the correct versions, even when all code is included with a publication or deposited
in an open repository it can prove difficult to run—especially when the code is not from
the past couple of years. To ensure that model code can be run on as many computers as
possible, Porubsky et al. [52], Sandve et al. [46], Waltemath & Wolkenhauer [41], and Rule
et al. [49] suggest using either a virtual machine image or a web-based virtual machine
such as Docker (https://www.docker.com, accessed 23 November 2022). Using a virtual
machine, one can be sure that all necessary software, data, and model code will be available
and able to run in any computing environment. We have instead opted for Binder (https:
//www.mybinder.org, accessed 23 November 2022) which allows users to run Jupyter
notebooks in a web browser without needing to have the necessary software installed on
their local machine.

https://www.jupyter.org
https://rmarkdown.rstudio.com
https://www.github.com
https://www.ebi.ac.uk/biomodels
https://www.vmware.com
https://www.docker.com
https://www.mybinder.org
https://synonym.caltech.edu
https://www.cellml.org
https://www.github.com/cparker-uc/VeVaPy
https://www.github.com/cparker-uc/VeVaPy
https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/
https://www.docker.com
https://www.mybinder.org
https://www.mybinder.org
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The final suggestion we will discuss is making model code easy to understand. This
can be achieved with thorough documentation, use of compartmentalization and functional
programming, descriptive variable names, and using computational notebooks. However,
for certain forms of model, there are standardized markup languages which are widely
recommended in the literature, and which make model code easier for users to under-
stand [33,41,48,50,52]. For systems biology, these include the systems biology markup
language (SBML) and CellML. Unfortunately, as discussed in Medley et al. [38], these
languages are limited in scope and do not support all forms of systems biology modeling.
For instance, the models covered in this paper are currently unable to be adapted to SBML
or CellML. However, we felt that it was important to mention these languages as they offer
significant upsides for those models which they support.

VeVaPy followed biological modeling best practices as discussed above (Table 5), and
this has made the five models reproduced for this research and our code, VeVaPy, very
useful for many HPA axis modeling applications. To summarize, we have made the follow-
ing efforts: the code for our VeVaPy package includes thorough documentation, including
instructions for use; the demonstration models were implemented using Jupyter notebooks
for improved readability and easier documentation; we have tracked the development
process with the Git version control system and published it on GitHub, a freely accessible
code repository; and we have provided instructions for accessing VeVaPy through Binder
to facilitate its use on any Internet-connected computer.

We intend to follow up on the models used here for demonstration and to repurpose
the model by Sriram et al. [23] to specifically match data that includes acute stressors
(such as the TSST data used above). The most apparent modification to be made involves
replacing the variable for stress input to a function for stress input that can change over
the course of the simulation. This will allow for the introduction of an acute stressor (like
a TSST) and then the cessation of the stressor afterwards. Another modification that we
will test is the addition of delays between the release of ACTH and its action in the adrenal
glands and between the production of cortisol and its feedback in the hypothalamus and
pituitary. There are many possible routes that our modifications may take due to the
many physiological processes not yet accounted for in the literature models (GRs in the
hippocampus, fast vs. slow cortisol feedback, etc.). Using a model specifically designed
to simulate stress tests will allow us to better understand the behavior of the HPA axis
under acute stress—and the differences in this behavior between MDD, PTSD, and healthy
control subjects.

Although we are hopeful that future published models will be more easily reproducible
and include all data used by the authors for validation, we believe that the reproducibility
problems discussed above can be eased to a degree by the development of robust tools
for model V&V. We have begun the development of such tools in the field of HPA axis
modeling. Although VeVaPy currently requires some programming knowledge to adapt
beyond the five included models, we intend to further develop it into a graphical user
interface for easily creating systems biology and systems pharmacology models. This
will hopefully allow biologists with no experience in modeling to use our tools on many
published mathematical models and improve the reach, and therefore the power to make
an impact, of mathematical modeling in general. It is our firmly held belief that the
development of tools to facilitate V&V of mathematical models, such as VeVaPy, will speed
the pace of research and ensure that identification of valid models in the literature takes
significantly less effort.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e24121747/s1, Figure S1: Sriram Figure 3 Reproduction, Figure S2:
Sriram Figure 4 Reproduction, Figure S3: Bangsgaard Figure 5 Reproduction, Figure S4: Somvanshi
Figure 4 Reproduction, Figure S5: Malek Figure 3a Reproduction, Figure S6: Malek Figure 3b
Reproduction, Figure S7: Bairagi Figure 2 Reproduction, Figure S8: Nelson TSST Data, Figure S9:
Sriram et al. (2012) Nelson Data Comparisons, Figure S10: Bangsgaard & Ottesen (2017) Nelson Data
Comparisons, Figure S11: Andersen, Vinther & Ottesen (2013) Nelson Data Comparisons, Figure
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S12: Somvanshi et al. (2020) Nelson Data Comparisons, Figure S13: Malek et al. (2015) Nelson Data
Comparisons, Figure S14: Bairagi et al. (2008) Nelson Data Comparisons, Table S1: Revised DSM-IV
criteria for melancholic subtype [53], Table S2: Revised DSM-IV for atypical subtype [53], Table S3:
Exclusion criteria [53], Table S4: PBK Model Reporting Template Completed for Model by Andersen
et al. (2013), Table S5: PBK Model Reporting Template Completed for Model by Bairagi et al. (2008),
Table S6: PBK Model Reporting Template Completed for Model by Bangsgaard & Ottesen (2017),
Table S7: PBK Model Reporting Template Completed for Model by Malek et al. (2015), Table S8: PBK
Model Reporting Template Completed for Model by Somvanshi et al. (2020), Table S9: PBK Model
Reporting Template Completed for Model by Sriram et al. (2012), Table S10: TSST ACTH Data, Table
S11: TSST CORT Data. References [22–27,29,53–59] are cited in the supplementary materials.
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