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Abstract: The Curie–Weiss model for quantum measurement describes the dynamical measurement
of a spin- 1

2 by an apparatus consisting of an Ising magnet of many spins 1
2 coupled to a thermal

phonon bath. To measure the z-component s = −l,−l + 1, · · · , l of a spin l, a class of models
is designed along the same lines, which involve 2l order parameters. As required for unbiased
measurement, the Hamiltonian of the magnet, its entropy and the interaction Hamiltonian possess an
invariance under the permutation s→ s + 1 mod 2l + 1. The theory is worked out for the spin-1 case,
where the thermodynamics is analyzed in detail, and, for spins 3

2 , 2, 5
2 , the thermodynamics and the

invariance are presented.
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PACS: 03.65.Ta Foundations of quantum mechanics; measurement theory; 03.65.Yz Decoherence;
open systems; quantum statistical methods; 05.30.-d Quantum statistical mechanics; 05.30.Ch
Quantum ensemble theory

1. Introduction

The interpretation of quantum mechanics has long been shrouded in mystery. The best
working formulation involves the Copenhagen postulates, while various other attempts
are summarized in Ref. [1]. While a plethora of (semi-) philosophical papers have been
written on the subject, the one and only touchstone between the quantum formalism and
the reality in a laboratory lies in quantum measurement, hence this connection has been
the focus of our research in the last decades.

Indeed, while indispensable for introductory classes in quantum mechanics, “Copen-
hagen” skips over the reality of a real apparatus performing a measurement in a laboratory,
and thus bypasses the physics to which it pretends to provide interpretation. It is best seen
as a short cut to the reality of measurement, useful for introductory courses on quantum
mechanics, but lacking rigour at a fundamental level.

What is needed is a complete modelling of the whole system plus apparatus (S+A)
setup, and the dynamics that takes place. The literature on models for measurement was
reviewed by “ABN”, our collaboration with Armen Allahverdyan and Roger Balian, in
our 2013 “Opus Magnum” [2], a paper which we will term “Opus” in the present work.
A typical early example of measurement models is Hepp’s semi-infinite chain of spins
1
2 , which measures the first spin [3]; Bell terms it the Coleman–Hepp model [4]. Gaveau
and Schulman consider a ring of such spins and extend the model to measure an atom
passing near one of the spins of the ferromagnet. If the atom is in the excited state, it
enhances the phonon coupling of that spin to the lattice, so as to create a critical droplet
that flips the overall magnetization [5]. Another model is the few-degrees-of-freedom setup
of an overdamped large oscillator measuring a small one [6,7]. To employ a Bose–Einstein
condensate as a measuring apparatus has been proposed by ABN [8]. There is an entire
amount of literature on the puzzling idea that only the environment is needed to describe
quantum measurements [9–11].
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To back up the popular von Neumann–Wheeler “theory” of quantum measurement,
put forward in von Neumann’s 1932 book on the Hilbert space structure of quantum
mechanics [12,13], no working models are known to us, so that the ensuing “relative
state” [14] or “many worlds interpretation” [15,16] remains at an intuitive level. The
apparatus is supposed to start and remain in a pure state. Our own approach employing
Hamiltonians for the measurement dynamics as elaborated in the next paragraph considers
the apparatus to start in a metastable thermal state and to end up in a stable one. In the
von Neumann-Wheeler philosophy, one would have to slice the initial mixed state in pure
components and identify representative ones as “pure states of the apparatus”. But these
“states” interact with each other during the dynamical phase transition that makes the
pointer indicate the outcome, so that the representative sliced “pure states” at the final time
were extremely improbable initially, which makes the connection unnnatural.

Progress was made in this millenium, when our ABN collaboration introduced the
“Curie–Weiss model for quantum measurement” [17]. Here, for a system S, which is just a
spin- 1

2 that does not evolve in time, the operator ŝz is measured by an apparatus A. The
latter consists of a magnet M and a thermal bath B. M contains N � 1 spins- 1

2 and B is
a harmonic oscillator bath in a thermal state at temperature T. The model appears to be
rich enough to deal with various fundamental issues in quantum measurement. Many
details of the dynamics and subsequently the thermodynamics were worked out in various
followup papers [18–22] and further expanded and summarized in “Opus” [2]. Lecture
notes on the subject were presented [23]. A straightforward interpretation for a class of
such measurements models was provided [24]. A paper on teaching the ensuing insights is
in preparation [25]. A numerical test on a simplified version of the Curie–Weiss model by
Donker et al. reproduced nearly all of its properties [26].

The dynamics of the measurement can be summarized as follows: In a very small time
window after coupling the system S to the apparatus A, there occurs a truncation of the
density matrix (erasing Schrödinger cat terms) due to the first dephasing in the magnet
and then decoherence due to the phonon bath. On a longer time scale, the registration of
the measurement takes place because the coupling of S to A allows the magnet to leave its
initial paramagnetic state and go to the thermodynamically stable state with magnetization
upwards or downwards in the z-direction, which can then be read off.

The interpretation of quantum mechanics ensuing from these models is that the
density matrix describes our best knowledge about the ensemble of identically prepared
systems. The truncation of the density matrix (disappearance of Schrödinger cat terms) is a
dynamical effect, while the Born rule follows in the case of an ideal experiment from the
dynamical conservation of the tested operator. A quantum measurement consists of a large
set of measurement runs on a large set of identically prepared systems. Reading off the
pointer of the apparatus (the final upward or downward magnetization) allows for selecting
the measurement outcomes and to update the predictions for future experimentation.

The insight that quantum mechanics must be only considered in its laboratory context
was stressed in particular by Bohr, see Max Jammer [27], and is central in the approach
of Auffèves and Grangier [28,29]. Their contexts–systems–modalities (CSM) approach is
complementary to our model based approach. However, the latter proves rather than
postulates the working of the setup and, among others, provides specifications for the
(model) experiment to be close enough to ideal.

The aim of the present paper is to present Hamiltonians for the measurement of ŝz of a
higher spin like l = 1, 3

2 , 2, 5
2 . To have an unbiased apparatus, M must have a Z2l+1 invari-

ance for measuring any of the eigenvalues of ŝz, to be denoted as
s = −l,−l + 1, · · · , l. This is achieved by starting from cosines of the spins of M, while
they allow a simplified connection to low moments of these spins. The manifest invariance
in the cosine-formulation leads to a linear map between the moments.

In Section 2, we propose the formulation for the Hamiltonian of M for general spin-l.
In Section 3, we verify that, for spin- 1

2 , this leads to the known Curie–Weiss model. In
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Section 4, we consider the thermodynamics of the spin-1 situation in detail. In Section 5, we
investigate the thermodynamics for spins 3

2 , 2 and 5
2 . We close with a summary in Section 6.

2. General Spin

We aim to measure the z-component of an arbitrary quantum spin-l with
(l = 1

2 , 1, 3
2 , 2, . . .). The eigenvalues s of the operator ŝz (we indicate operators by a hat) lie

in the spectrum (To simplify the notation, we replace the standard notation for spins by
s→ l and sz → s. For an angular momentum L2 = l(l + 1), the model also applies to the
measurement of L̂z with eigenvalues m→ s. We employ units h̄ = k = 1).

s ∈ specl = {−l,−l + 1, · · · , l − 1, l}. (1)

The measurement will be performed by employing an apparatus with N � 1 vector spins-l
denoted by σ̂(i), i = 1, · · · , N. . They have components σ̂

(i)
a , a = x, y, z, which are coupled

to a thermal harmonic oscillator bath; for the case l = 1
2 , this was worked out [2,17]. The

generalization of such a bath for arbitrary spin-l is straightforward and will be applied to
the spin-1 model in future work.

The eigenvalues σi of each σ̂
(i)
z lie also in the spectrum (1). Since the present work only

considers these z-components, we can discard the operator nature and only deal with the
eigenvalues, which are integer or half-integer numbers.

In order to have an unbiased apparatus, the Hamiltonian of the magnet should have
maximal symmetry and degenerate minima. To construct such a functional, we consider
the spin–spin form

C2 =
1

N2

N

∑
i,j=1

cos
2π(σi − σj)

2l + 1
=

(
1
N

N

∑
i=1

cos
2πσi

2l + 1

)2

+

(
1
N

N

∑
i=1

sin
2πσi

2l + 1

)2

. (2)

The expression in the middle is manifestly invariant under the shift of all σi → σi + σ̃ mod
2l + 1 for any σ̃ ∈ specl . C2 is non-negative and lies between 0 for the paramagnet, and 1
for each of the 2l + 1 ferromagnetic states where all σi take one of the values of (1). Since
the σi in (2) take the finite number of 2l + 1 values, their cosines and sines can be expressed
as polynomials of order 2l in σi, which, summed over i, leads the spin-moments m1, m2,
· · · , m2l , where

mk =
1
N

N

∑
i=1

σk
i , (k = 1, · · · , 2l). (3)

Let, out of the N spins σi, a number Nσ = ∑i δσi , σ be in state σ, with σ ∈ specl and let
xσ = Nσ/N be their fraction. The constraint ∑σ Nσ = N implies ∑σ xσ = 1. The moments
read likewise

mk =
l

∑
σ=−l

xσσk, k = 1, · · · , 2l, m0 =
l

∑
σ=−l

xσ = 1. (4)

Inversion of these relations determines the xσ as linear combinations of the mk. There is no
simple general formula for this. In the next sections, we work out a number of low-l cases.

For the Hamiltonian H = HN/N, we shall follow [17] and adopt the spin–spin and
four-spin terms

H = −1
2

J2C2 −
1
4

J4C2
2 , (5)
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while multi-spin interaction terms such as − 1
6 J6C3

2 −
1
8 J8C4

2 can be added, but they will not

change the overall picture. In a quantum approach, the σi → σ̂
(i)
z and the mk → m̂k will be

operators; the Hamiltonian of the magnet M will be ĤM = HN(m̂k).
The degeneracy of this state is the multinomial coefficient

G =

(
N

N−l N−l+1, · · · , Nl

)
=

N!
(N−l)!(N−l+1)! · · · (Nl)!

=
N!

(Nx−l)!(Nx−l+1)! · · · (Nxl)!
. (6)

The entropy reads SN = log G = NS. With the Stirling formula, it follows that, for large N,

S =
1
N

log G = −
l

∑
σ=−l

xσ log xσ. (7)

The thermodynamic free energy per magnet spin is

F = U − TS = 〈H〉 − T〈S〉. (8)

In order to use the magnet coupled to its bath as an apparatus for a quantum measure-
ment, a coupling to the system S is needed. In the sector of Hilbert space where the tested
quantum operator ŝz has the eigenvalue s, the system–apparatus interaction can likewise
be taken as a sum of spin–spin couplings,

Hs
SA = NIs,

Is = −
g
N

N

∑
i=1

cos
2π(s− σi)

2l + 1
= − g

N

N

∑
i=1

(
cos

2πs
2l + 1

cos
2πσi

2l + 1
+ sin

2πs
2l + 1

sin
2πσi

2l + 1
)
, (9)

where g is the coupling constant. It will be seen that, for given l, it can be expressed as a
linear combination of the moments m1, · · · , m2l .

When the coupling g is turned on, the total free energy per spin is Fs(m1, · · · , m2l) =
H− TS + Is. At low enough T, it has an absolute minimum when nearly all σi are equal to s.
In a measurement setup, one considers quantum dynamics of the system, starting initially
in the paramagnetic state and evolving to this absolute minimum. In the paramagnet, the
spins are randomly oriented, so the fractions xσ = 1

2l+1 are equal. This leads to the moments

mk =
1

2l + 1

l

∑
σ=−l

σk (paramagnet). (10)

Clearly, the odd moments are zero. The relevant even moments are m2 = 2
3 for l = 1;

m2 = 5
4 for l = 3

2 ; m2 = 2 and m4 = 34
5 for l = 2; and, in the case l = 5

2 , we finally consider
m2 = 35

12 and m4 = 707
48 .

The quantum evolution leads the system from the paramagnet to the lowest free
energy state characterized by s, undergoing a dynamical phase transition and ending
with different parameters m1, · · ·m2l . In a measurement setup, the 2l macroscopic order
parameters Mk = Nmk can be read off, and the “measured” value of s can be deduced
from them.

The Z2l+1 invariance implies that expressions for C2, U, S, F, Is and Fs are invariant
under the simultaneous permutations s → s′ = s + 1 mod 2l + 1 and σi → σ′i = σi + 1
mod 2l + 1 for all i. For any sequence {σ1, · · · , σN}, the numbers Nσ = ∑i δσi , σ and the
fractions xσ = Nσ/N are maintained. (An example for l = 1, N = 4: the sequence
{1,−1, 0, 1} → {−1, 0, 1,−1} has x−1 = x0 = x′0 = x′1 = 1

4 and x1 = x′−1 = 1
2 . Hence,

m1 = −x−1 + x1 = 1
4 and m′1 = x0 − x1 = −x′−1 + x′1 = − 1

4 , while m′2 = m2 = 3
4 ). An

equivalent method is to maintain σ while introducing x′σ = xσ−1 mod 2l+1. For k = 1, · · · 2l,
this gives
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m′k =
l

∑
σ=−l

x′σσk =
l

∑
σ=−l

xσσ′k =
l

∑
σ=−l

xσ(σ + 1 mod 2l + 1)k =
l

∑
σ=−l

xσ(σ + 1)k + xl [(−l)k − (l + 1)k],

which, with m0 = 1, can be written as the linear map between s and the mk,

s′ = s + 1 mod 2l + 1, m′k =
k

∑
n=0

(
k
n

)
mn + [(−l)k − (l + 1)k]xl , (k = 1, · · · , 2l). (11)

When the results for Fs are known for one of the s-values, the results for other 2l cases
can be obtained from that by applying this map 2l times. Indeed, our starting point with
the manifestly invariant cosines in Equations (2) and (9) has straightforwardly led to this
invariance as a map between the moments mk. It assures that the apparatus has no bias for
measuring any particular s ∈ specl value.

3. Recap: The Spin- 1
2 Curie–Weiss Model

We will work out the above models for low values of the spin. We set the stage by
considering the spin- 1

2 situation, a gentle reformulation of the original Curie–Weiss model for
quantum measurement [17]. In units of h̄, the z-component of a spin l = 1

2 has the eigenvalues

s ∈
{
−1

2
,

1
2

}
, (12)

which implies

cos πs = 0, sin πs = 2s. (13)

The magnet has N such spins with each σi ∈ {− 1
2 , 1

2}. According to (2), we consider
the Z2 invariant

C2 =
1

N2

N

∑
i,j=1

cos π(σi − σj). (14)

In terms of the moment,

m1 =
1
N

N

∑
i=1

σi. (15)

which lies in the interval − 1
2 ≤ m1 ≤ 1

2 , C2 equals, using (2) and (13) for each σi
and summing,

C2 = 4m2
1. (16)

C2 = 0 for the paramagnetic state m1 = 0, while C2 = 1 when all σi equal s = ± 1
2 and m1 = s.

From (5), the Hamiltonian is taken as pair and quartet interactions,

HN = NH, H = − J2

2
C2 −

J4

4
C2

2 = −2J2m2
1 − 4J4m4

1. (17)

With xσ = Nσ/N for σ = ± 1
2 , we have from (4)

m1 =
x1/2 − x−1/2

2
, x±1/2 =

1± 2m1

2
. (18)
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From (6) and (7), we obtain the standard result for the entropy at large N

SN = NS, S = −1 + 2m1

2
log

1 + 2m1

2
− 1− 2m1

2
log

1− 2m1

2
. (19)

In order to use the magnet coupled to its bath as an apparatus for a quantum measurement,
a system–apparatus (SA) coupling is needed. It can be chosen as a spin–spin coupling,

H(s)
SA = NIs, Is = −

g
N

N

∑
i=1

cos π(s− σi) = −
g
N

N

∑
i=1

sin πs sin πσi = −4gsm1. (20)

where (13) was employed also for σi. The free energy per spin in the s-sector,
Fs = H − TS + Is, reads

Fs(m1) = −2J2m2
1 − 4J4m4

1 + T
1 + 2m1

2
log

1 + 2m1

2
+ T

1− 2m1

2
log

1− 2m1

2
− 4gsm1. (21)

In accordance with (11), it has the invariance F±1/2(±m1) = F∓1/2(∓m1) required for an
unbiased measurement. At low T, Fs takes its lowest value for m1 ≈ s = ± 1

2 . This state
is reached near the end of the measurement, after which the apparatus is decoupled from
the system by setting g → 0. Equation (20) shows that an amount of energy 4gNsm1 =
2gN|m1| ≈ gN has to be added to M for the decoupling. After a quick relaxation to the
nearby thermodynamic minimum of the g = 0 situation, the pointer, that is, the macroscopic
magnetization M1 = Nm1, can be read off, the sign of which reveals the sought sign of s.

The map (11) reads here m′1 = −m1, so that the paramagnet m1 = 0 is its stable point. This
should be because it is the fully random state, which is statistically invariant under permutation.

All of this is a reformulation of the original spin- 1
2 Curie–Weiss model [17], which

involves the notation s′ = 2s = ±1, σ′i = 2σi = ±1, so that its m′ ≡ 2m1 lies between −1
and +1. The couplings J2,4 in (5) and g in (20) keep their values; for example, the interaction
term −4gsm in (20) lies for s = ± 1

2 and 1
2 ≤ m1 ≤ 1

2 between −g and g, as does −gs′m′

in [17]. This occurs by construction, since in the definitions (14) and (20), one has to adjust
the arguments of the cosines, not their values.

4. The Spin-1 Curie–Weiss Model

We now work out similar steps in the model of Section 2 for spin 1 and analyze
the thermodynamics.

4.1. Formulation of the Model

A spin-1 has discrete z-components s = 0,±1. Since s2k+1 = s and s2k+2 = s2 for k ≥ 1,
the three values of the cosine and sine can be expressed as quadratic or linear polynomials in s,

cos
2πs

3
= 1− 3

2
s2, sin

2πs
3

=

√
3

2
s. (22)

Using this with s→ σi and summing over i leads to introducing the moments

m1 = ν ∑
i

σi, m2 = ν ∑
i

σ2
i , ν ≡ 1

N
. (23)

Let Nσ denote the number of spins with σi = σ for σ = 0,±1. In terms of the fractions
xσ = Nσ/N, it holds that

mk =
l

∑
σ=−l

xσσk, m0 = x−1 + x0 + x1 = 1, m1 = −x−1 + x1, m2 = x−1 + x1. (24)



Entropy 2022, 24, 1746 7 of 16

Their inversion reads

x0 = 1−m2, x±1 =
m2 ±m1

2
. (25)

For these to be nonnegative, the physical values are limited to

−m2 ≤ m1 ≤ m2, 0 ≤ m2 ≤ 1, (26)

The actual values of m1,2 are found as follows from (23). When all σi = 0, m1 = m2 = 0.
When one σi = ±1, m2 = ν and m1 = ±ν, where ν ≡ 1/N; when two of the σi are ±1,
m2 = 2ν and m1 = ±2ν or 0; when 3 are ±1, m2 = 3ν and m1 = ±3ν or ±ν, and so on. Thus,
m2 ranges from 0 to 1 with steps of ν, while m1 ranges from −m2 to m2 with steps of 2ν.

To construct the energy, we consider the Z3 invariant of the spins of the magnet

C2 =
1

N2

N

∑
i,j=1

cos
2π

3
(σi − σj). (27)

Expanding the cosine, employing (22) for the σi and summing yields a polynomial in the
moments m1,2,

C2 = (1− 3
2

m2)
2 +

3
4

m2
1. (28)

For the Hamiltonian, we take as in (5)

HN = NH, H = −1
2

J2C2 −
1
4

J4C2
2 . (29)

The degeneracy of states characterized by m1,2 is the multinomial

G =

(
N

N−1, N0, N1

)
=

N!
(Nx−1)! (Nx0)! (Nx1)!

, (30)

Equation (7) yields the explicit result for the entropy per spin S = SN/N = (log G)/N at
large N,

S = −(1−m2) log(1−m2)−
m2 + m1

2
log

m2 + m1

2
− m2 −m1

2
log

m2 −m1

2
. (31)

The Z3 symmetry of these quantities can be expressed by considering the permutation (11),

m′1 = 1− 1
2

m1 −
3
2

m2, m′2 = 1 +
1
2

m1 −
1
2

m2, (32)

as can be verified in the special case in the second alinea after Equation (10). It follows that
C′2 = (1− 3

2 m′2)
2 + 3

4 m′1
2 = C2 is unchanged. As expected, the weights (25) are permuted,

x′−1 =
m′2 −m′1

2
= x0, x′0 = 1−m′2 = x1, x′1 =

m′2 + m′1
2

= x−1, (33)

so that U, S and F are invariant, as required for unbiased measurement, and implying
that the minima of F are degenerate; see Figure 1. (Due to (6), SN = log G is invariant at
any finite N). Making the shift s → s′ = s + 1 mod 3 a second time, or the inverse shift
s→ s′ = s− 1 mod 3, leads (32) to

m′′1 = −1− 1
2

m1 +
3
2

m2, m′′2 = 1− 1
2

m1 −
1
2

m2. (34)
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Inserting (32) in the right-hand side of m′′1,2 leads to m′′′1,2 = m1,2, the identity map, as
it should.

Figure 1. The free energy F(m1, m2) of the spin-1 magnet with J2 = 0, J4 = 1 at T = 0.2 below
Tc = 0.228165. The physical parameter range is |m1| ≤ m2 ≤ 1. The paramagnetic state at (0, 2

3 ),
indicated by the dot, is metastable with F = −0.219722; the three minima near the edges are
degenerate and stable. The left one is located at m∗1 = 0, m∗2 = 0.00114849, where thermal effects
make m∗2 > 0 and F = −0.2502251 lie below the edge value −0.25. Two other minima lie at the
symmetry points m′1 = 1− 3

2 m∗2 , m′2 = 1− 1
2 m∗2 and m′′1 = −1 + 3

2 m∗2 , m′′2 = 1− 1
2 m∗2 . In this setting,

the magnet can be employed for quantum measurement. In the final state, one reads off M1 = Nm1,
which is close to 0 or ±N, and M2 = Nm2, which is close to 0 or N, well separated from the initial
paramagnetic values M1 = 0, M2 = 2

3 N.

The thermodynamic free energy is

FN = NF, F = −1
2

J2C2 −
1
4

J4C2
2 − TS. (35)

The ferromagnetic states m1 = m2 = 0 and m1 = ±1, m2 = 1 have C2 = 1 and S = 0. The
paramagnet (m1 = 0, m2 = 2

3 ) has energy zero and maximal entropy per spin, S = log 3.
For T low enough, one can use the model as a measuring apparatus that starts in the

metastable paramagnetic state and ends up in one of the three degenerate stable states.
To measure the z-component s = 0,±1 of a spin-1, we assume that the tested spin S has
a spin–spin coupling with all spins of the apparatus. For the SA coupling (9), we obtain,
using (22) for s and the σi,

H(s)
SA = NIs, Is = −

g
N

N

∑
i=1

cos
2π

3
(s− σi) = −g

[
(1− 3

2
s2)(1− 3

2
m2) +

3
4

s m1
]
. (36)

It is invariant for s→ s′ = s + 1 mod 3 and likewise for the σi, the latter being equivalent
to m1,2 → m′1,2 as given in (32), which, with the invariance of HN and SN , assures absence
of bias in the measurement.

4.2. The Paramagnetic State

The paramagnetic state has m1 = 0, m2 = 2
3 . It is invariant under the map (32), as

expected, since it refers to the completely random state. One may verify the total weight
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of this state for large N in the Stirling approximation, which leads to small Gaussian
deviations δm1 = m1 − 0 and δm2 = m2 − 2

3 ,

1
3N

1

∑
m2=0

m2

∑
m1=−m2

G ≈ 1
3N

∫ ∞

−∞

dδm2

ν

∫ ∞

−∞

dδm1

2ν

3N+3/2

2πN
e−(3N/4)δm2

1−(9N/4)δm2
2 = 1. (37)

Expansion brings likewise C2 ≈ 3
4 (δm2

1 + 3δm2
2), which yields

F = −T log 3 +
3
4
(T − J2

2
)(δm2

1 + 3δm2
2) +O(δm4

1, δm2
1δm2

2, δm4
2). (38)

At high T, the paramagnetic state is the only stable state. At lower T, it remains locally
stable for T > 1

2 J2; in the case of J2 ≤ 0, it is locally stable at all T. In the measurement
setup, this local stability is required to let the apparatus lie in the metastable paramagnetic
state (“ready state”) until the measurement is started.

4.3. The Equilibrium States of the Magnet

The free energy F(m1, m2) is given by (28) and (35). For the case J2 = 0, J4 = 1 and
T = 0.4, it is depicted in Figure 1. It has three minima, of which one occurs at m1 = 0 and
small m2. At m1 = 0, one has

F = − J2

2
(1− 3

2
m2)

2 − J4

4
(1− 3

2
m2)

4 + T(1−m2) log(1−m2) + Tm2 log
m2

2
. (39)

Its mean field equation reads

m2 =
2

eh/T + 2
, h ≡ 3J2(1−

3
2

m2) + 3J4(1−
3
2

m2)
3. (40)

The paramagnetic state having m2 = 2
3 and h = 0 is the only stable state at high T. In

case J2 = 0, there appears a metastable (ms) state m1 = 0, m2 > 0 when ∂m2 F = ∂2
m2

F = 0
develops a solution at

Tms = 0.328257 J4, mms
2 = 0.0634132. (41)

Below the critical temperature Tc, this state attains the absolute minimum of the free energy,

Tc = 0.228165 J4, mc
2 = 0.00304442. (42)

Let, for general T < Tc, F has an absolute minimum at m∗1 = 0 and small m∗2 ; for T = 0.2J4
as in Figure 1, m∗2 = 0.00114849. The Z3 symmetry ensures that this minimum is degenerate
with the pair of minima at the symmetry points (m′1, m′2) = (1 − 3

2 m∗2 , 1 − 1
2 m∗2) and

(m′′1 , m′′2 ) = (−1 + 3
2 m∗2 , 1− 1

2 m∗2). With m∗2 being small, the minima lie close to the edge
values (m1, m2) = (0, 0), (1, 1) and (−1, 1), respectively, where the magnet is polarized
with nearly all σi equal 0, 1 and −1, respectively.

When J2 6= 0, it may be negative, but 1
2 J2 > − 1

4 J4 + T log 3− Tm∗2 +O(m∗ 2
2 ) is needed

for the minimum at m∗2 to have a lower free energy than the paramagnet and thus be the
absolute minimum.

4.4. The Thermodynamic Equilibrium State of M Coupled to S

The total free energy per particle Fs = U − TS + Is has an absolute minimum for
each s, which is most easily analyzed for low T. For s = 0, it is optimal to have m1 = 0,
m2 ≈ 0, which occurs when nearly all σi are 0; for s = ±1, it is optimal to have m1 ≈ s,
m2 ≈ 1, which occurs at low T when nearly all σi are equal to s. This correlation between
the apparatus spins σi and tested spin s allows for employing the setup as an apparatus
that measures s by reading off the macroscopic order parameters M1,2 = Nm1,2 of the
magnet. Hereto, one sets g from 0 to a large enough positive value at an initial time ti
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of the measurement and puts it back to zero near the final time t f . In the first stage, the
magnet goes at given s to the state with lowest Fs; after cutting g, there occurs a small
rearrangement to the nearby stable state of F. Then, the macroscopic order parameters M1,2
can be read off, which determine s.

At large enough g and proper low T, Fs(m1, m2) has one absolute minimum for each s;
see Figure 2 for the case s = 1. It suffices to know Fs for one of the cases, say s = 1. The
profiles for s = −1, 0 read, in the notations of (32) and (34), F−1(m1, m2) = F1(m′1, m′2) and
F0(m1, m2) = F1(m′′1 , m′′2 ).

Figure 2. The free energy Fs(m1, m2) of the spin-1 magnet with J2 = 0, J4 = 1 at T = 0.2 coupled to
the spin-1 with strength g = 0.15 in the sector s = 0. The coupling acts as a magnetic field, leading the
magnet from its initial paramagnetic state at (0, 2

3 ), indicated by the dot, to the absolute minimum of F0

at m∗1 = 0 and small m∗2 . For s = ±1, Fs is related by the maps (32), (34), viz. F1(m1, m2) = F0(m′1, m′2)
and F−1(m1, m2) = F0(m′′1 , m′′2 ).

The free energy at m1 = 0 is relevant in the case s = 0. With the SA interaction I0
included, it reads

F0 = − J2

2
(1− 3

2
m2)

2 − J4

4
(1− 3

2
m2)

4 + T(1−m2) log(1−m2) + Tm2 log
m2

2
− g(1− 3

2
m2). (43)

Its mean field Equation (40) now includes g,

m2 =
2

eh/T + 2
, h = 3J2(1−

3
2

m2) + 3J4(1−
3
2

m2)
3 +

3
2

g. (44)

The paramagnet m2 = 2
3 is not a solution at g 6= 0. When J2 = 0 and T = 0.4J4, a coupling

g > gc = 0.170642 J4 is needed to suppress the barrier around m2 = 0.4352046 between
the paramagnetic and F0 state, so that the ferromagnetic pointer state can be reached
dynamically by “sliding off the hill”.

For small T, which can be used when J2 is small or negative but T > 1
2 J2, m2 is

exponentially small,

m2 ≈ 2e−3(J2+J4+g)/2T . (45)

The free energy, equal to

F0 = −1
2

J2 −
1
4

J4 − Tm2 +O(m2
2), (46)
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lies slightly below the corner value at m1 = m2 = 0 and well below the paramagnetic
F = −T log 3. The free energy Fs for the case s = 1 is plotted in Figure 1 as a function of
m1,2. For m1 = 0 it is plotted as function of m2 in Figure 3, both for g = 0 and g 6= 0.

The stability of a extremal state with m∗1 = 0 and finite m∗2 is set by

∂2
m1

F =
T

m∗2
− 3

4
J2 −

3
4

J4(1−
3
2

m∗2)
2, ∂2

m2
F =

T
m∗2(1−m∗2)

− 9
4

J2 −
27
4

J4(1−
3
2

m∗2)
2, (47)

while ∂m1 ∂m2 F = 0. For small T, one has m∗2 � 1, so these are approximately equal to
T/m∗2 , making this point is stable. There are two related stable points: The minimum of
F at m∗1 = 0, m∗2 > 0 is degenerate with m∗1

′ = ±(1− 3
2 m∗2), m∗2

′ = 1− 1
2 m∗2 . In all cases,

m∗1 ≈ s = 0,±1 and m∗2 ≈ s2 = 0, 1.

g=0

g=0.15

0.2 0.4 0.6 0.8 1.0
m2

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10
F

F (0, m2) for J2 = 0, J4 = 1, T = 0.2

Figure 3. The free energy Fs(m1 = 0, m2) of the spin 1 magnet with parameters as in Figures 1 and 2:
J2 = 0, J4 = 1 at T = 0.2, (not) coupled to a spin 1 with strength g = 0.15 in the sector s = 0. The
coupling acts as a magnetic field, leading the magnet from its initial paramagnetic state indicated by
the dot, to the absolute minimum at m∗1 = 0 and small m∗2 .

4.5. Spin 1 Effectively Behaving as Spin 1
2

If m2 = 1, the value x0 = 0 shows that σ = 0 states are empty, so that only the σ = ±1
states participate, effectively a spin 1

2 system. This can be achieved by a strong repulsive
magnetic field in the 0-direction, expressed by the Hamiltonian ∆HN = H0 ∑N

n=1(1− σ2
n) =

NH0x0 with H0 � J2,4.

4.6. An Apparatus That Measures Only Two Values of sz of a Spin 1

Suppose that we couple the l = 1 spin S to an apparatus with spins σi = ± 1
2 , which

have |m1| ≤ 1
2 and m2 = 1

4 . Let the interaction Hamiltonian not be set by (36) but by

Is = −
g
N

N

∑
i=1

cos
2π

3
(s− 2σi) =

g
2
(1− 3

2
s2)− 3

2
gsm1. (48)

In each sector s = 0,±1, the first term is a constant that can be dropped. For s = ±1,
registration takes place as in the spin- 1

2 CW model of Section 2, where the sign of the final
total magnetization M1 = Nm1 is set by the sign of s. In the sector s = 0, there is no
coupling between system and apparatus, hence no dynamics takes place: the apparatus
does not act; not even a truncation of the density matrix occurs.

Setting s → −δs,−1 + δs,0 in Equation (48) brings a model for measuring only the
s = −1 and s = 0 values of sz = 0,±1, while s → −δs,0 + δs,1 leads to a model for
measuring s = 0 and s = 1.

5. Higher Spin Models

Proceeding in a similar way as for spin 1
2 and 1, we consider the cases of spin l = 3

2 , 2 and 5
2 .
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5.1. Spin 3/2

The z-component of a spin l = 3
2 can take the values

s ∈
{
−3

2
,−1

2
,

1
2

,
3
2

}
. (49)

This implies

eπis/2 =

{
−1− i√

2
,

1− i√
2

,
1 + i√

2
,

1− i√
2

}
, (50)

which may be expressed by the at most cubic polynomials

cos
πs
2

=
5− 4s2

4
√

2
, sin

πs
2

=
13s− 4s3

6
√

2
. (51)

The magnet has N such spins σi. We consider the Z4 invariant

C2 =
1

N2

N

∑
i,j=1

cos
π

2
(σi − σj). (52)

Expression in the magnetic moments takes the form

C2 =
(5− 4m2)

2

32
+

(13m1 − 4m3)
2

72
. (53)

with the standard definitions

mk =
1
N

N

∑
i=1

σk
i , k = 1, 2, 3. (54)

C2 = 1 when all σi equal any of the s values, in which mk = sk, as it should.
In the paramagnet, one has random σi, each taking one of the s values with probability 1

4 ,

mk →
1
4

3/2

∑
σ=−3/2

σk, m1, m3 → 0, m2 →
5
4

. (55)

The multinomial

G =

(
N

N− 3
2
, N− 1

2
, N1

2
, N3

2

)
, Nσ = Nxσ, (56)

leads for large N to the entropy per particle

S = −x− 3
2

log x− 3
2
− x− 1

2
log x− 1

2
− x 1

2
log x 1

2
− x 3

2
log x 3

2
. (57)

The spin moments are

mk =
l

∑
σ=−l

xσσk =
1
2k

[
x1/2 + (−1)kx−1/2

]
+

3k

2k

[
x3/2 + (−1)kx−3/2

]
. (58)

Inversion of the k = 1, 2, 3 expressions brings

x± 1
2
=

9± 18m1 − 4m2 ∓ 8m3

16
, x± 3

2
=
−3∓ 2m1 + 12m2 ± 8m3

48
. (59)
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They must all be nonnegative, which confines the allowable mk. This implies |2m1− 8m3| ≤
12(m2− 1

4 ) and |18m1− 6m3| ≤ 4( 9
4 −m2). The combinations x−3/2 + x3/2 ≥ 0 and x−1/2 +

x1/2 ≥ 0 impose 1
4 ≤ m2 ≤ 9

4 , in accordance with its definition m2 = ∑3/2
σ=−3/2 xσσ2. The

combinations 3x−3/2 + x−1/2 and 3x3/2 + x1/2 yield |m1| ≤ 1
2 m2 +

3
8 , while 27x−3/2 + x−1/2

and 27x3/2 + x1/2 yield |m3| ≤ 13
8 m2 − 9

32 .
In Fs = U − TS + Is, the coupling to S is chosen as in (9),

Is = −
g
N

N

∑
i=1

cos
π(s− σi)

2
= −g

[
(5− 4s2)(5− 4m2)

32
+

(13s− 4s3)(13m1 − 4m3)

72

]
. (60)

Again, it leads to the lowest value HSA = −gN, when mk = sk for all σi = s for all four
s-values in the spectrum (49). Due to thermal effects, the optimal mk will slightly deviate
from these values.

The permutation s → s′ = s + 1 mod 4 and σi → σ′i = σi + 1 mod 4 leads to (11) in
the form

{m′1, m′2, m′3} = {
5
4
+

7
6

m1 −m2 −
2
3

m3,
5
4
+

13
6

m1 −
2
3

m3,
35
16

+
91
24

m1 −
7
4

m2 −
13
6

m3}. (61)

This leaves S, C2, and Is and hence U, F and Fs, invariant.
The paramagnetic state (55) is invariant under the map, as it should for the completely

random state.

5.2. Spin 2

The z-component of a spin 2 takes one of the values

s ∈ {−2,−1, 0, 1, 2}. (62)

It is handy to define

co(m2, m4) = 1− 75− 17
√

5
48

m2 +
5(3−

√
5)

48
m4,

si(m1, m3) =
m1

24

√
2(325 + 31

√
5)− m3

24

√
10(5−

√
5), (63)

which arise from the properties

cos
2πs

5
= co(s2, s4), sin

2πs
5

= si(s, s3). (64)

From Equation (2), it follows that

C2 = co2(m2, m4) + si2(m1, m3). (65)

In the paramagnet, one has random σi, so that

mk →
1
5

2

∑
s=−2

sk (66)

which amounts to m1 = m3 = 0, m2 = 2, m4 = 34/5, confirming that C2 vanishes. The
moments read

mk = (−2)kx−2 + (−1)kx−1 + x1 + 2kx2 (k = 1, 2, 3, 4). (67)

The xk follow as

x0 =
4− 5m2 + m4

4
, x±1 =

±4m1 + 4m2 ∓m3 −m4

6
, x±2 =

∓ 2m1 −m2 ± 2m3 + m4

24
, (68)
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and fix the entropy by (7). The ferromagnetic state mk = sk indeed has xσ = δσ,s and S = 0.
The possible values of mk follow from mk = (1/N)∑i σk

i , which make the xσ nonnegative.
The degeneracy (6) leads for large N to the entropy

S =
SN
N

= −x−2 log x−2 − x−1 log x−1 − x0 log x0 − x1 log x1 − x2 log x2. (69)

The SA coupling (9) reads explicitly

H(s)
SA = NIs, Is = −g

[
co(s2, s4)co(m2, m4) + si(s, s3)si(m1, m3)

]
(70)

The map (11) takes the form

m′1 = 1 +
17m1

12
+

5m2

24
− 5m3

12
− 5m4

24
, m′2 = 1 +

29m1

12
+

29m2

24
− 5m3

12
− 5m4

24
,

m′3 = 1 +
71m1

12
+

107m2

24
− 23m3

12
− 35m4

24
, m′4 = 1 +

113m1

12
+

209m2

24
− 17m3

12
− 41m4

24
. (71)

It leaves C2 of Equation (65) invariant as well as (69), and, with s→ s′ = s + 1 mod 5, also
the Is of Equation (70). The paramagnet is the stable point of this map.

5.3. Spin 5
2

Finally, we consider l = 5
2 , where

s ∈
{
−5

2
,−3

2
,−1

2
,

1
2

,
3
2

,
5
2

}
. (72)

Here, we define

co(m2, m4) =
1√
3

(
441
256
− 29

32
m2 +

m4

16

)
, si(m1, m3, m5) =

2009m1

1920
− 3m3

16
+

m5

120
. (73)

which are introduced to satisfy

cos
πs
3

= co(s2, s4), sin
πs
3

= si(s, s3, s5). (74)

This leads to

C2 = co2(m2, m4) + si2(m1, m3, m5), U = − J2

2
C2 −

J4

4
C2

2 . (75)

and, from (9),

Is = −g
[
co(s2, s4) co(m2, m4) + si(s, s3, s5) si(m1, m3, m5)

]
(76)

The entropy per spin reads at large N

S = −x− 5
2

log x− 5
2
− x− 3

2
log x− 3

2
− x− 1

2
log x− 1

2
− x 1

2
log x 1

2
− x 3

2
log x 3

2
− x 5

2
log x 5

2
. (77)

The weights take the form

x±1/2 =
75
128
± 75m1

64
− 17m2

48
∓ 17m3

24
+

m4

24
± m5

12
,

x±3/2 = − 25
256
∓ 25m1

384
+

13m2

32
± 13m3

48
− m4

16
∓ m5

24
, (78)

x±5/2 =
3

256
± 3m1

640
− 5m2

96
∓ m3

48
+

m4

48
± m5

120
.
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They must be nonnegative, which sets the physical ranges of the mk, next to |mk| ≤ (5/2)k for
k = 1, 3, 5 and 1/2k ≤ mk ≤ (5/2)k for k = 2, 4 from their definitions mk = ∑σ xσσk = ν ∑i σk

i .
The map (11) reads

m1
′ =

119
128

+
311
320

m1 +
5

16
m2 +

1
8

m3 −
1
8

m4 −
1
20

m5,

m2
′ =

119
128

+
631
320

m1 +
21
16

m2 +
1
8

m3 −
1
8

m4 −
1
20

m5,

m3
′ =

161
512

+
3489
1280

m1 +
387
64

m2 +
71
32

m3 −
39
32

m4 −
39
80

m5, (79)

m4
′ = − 77

256
+

2227
640

m1 +
377
32

m2 +
101
16

m3 −
21
16

m4 −
37
40

m5,

m5
′ = −12901

2048
+

10651
5120

m1 +
10865

256
m2 +

2941
128

m3 −
1021
128

m4 −
1341
320

m5.

It leaves C2 of Equation (75) invariant, and, with s → s′ = s + 1 mod 6, also Is of
Equation (76). The stable point of the map is the paramagnet described by m1 = m3 = m5 = 0,
m2 = 35

12 and m4 = 707
48 .

6. Summary

Interpretation of quantum mechanics should be based on its touchstone with reality,
that is, on the action of an idealized apparatus that performs a large set of measurements
on a large set of identically prepared systems. For measurement of the z-component
of spins- 1

2 , a rich enough model was formulated, the Curie–Weiss model for quantum
measurement [17], where the apparatus consists of an Ising magnet M having itself N � 1
spins- 1

2 , coupled to thermal harmonic oscillator bath. Details of the dynamical solution
were summarized and further worked out in “Opus” [2]. In order to have an unbiased
measurement, it is required that the Hamiltonian is symmetric under reversal of all spins
of M, and that the interaction Hamiltonian is symmetric under their reversal and reversal
of the tested spin.

The purpose of this paper is to construct models to measure the z-component of a
quantum spin or angular momentum l ≥ 1, which takes the values s = −l,−l + 1, · · · , l.
In order to have an unbiased setup, a Z2l+1 invariance is required. This is achieved by
starting from cosines and sines of 2πs/(2l + 1), for the tested spin and the N spins of the
magnet, which are manifestly invariant under the shift s→ s + 1 mod 2l + 1. Shapes for
the energy functional and the interaction energy are proposed, which are invariant under
the shift, and so is the corresponding entropy. Since s takes discrete values, the cosines and
sines can be expressed in powers sk, k,= 1 · · · , 2l. For the magnet, each of them leads to an
order parameter, the first being the magnetization. The Z2l+1 symmetry now gets coded
in a linear map between the order parameters. The general form of the Hamiltonian, the
free energy, and the map is worked out for spin 1

2 , 1, 3
2 , 2 and 5

2 . For the spin 1-case, the
thermodynamics are discussed in detail.

To deal with the measurement dynamics, the x, y, z components of each quantum spin
of the magnet can be coupled to a harmonic oscillator bath such as in the spin- 1

2 case, which
yields the dynamical equations in the early truncation and the subsequent registration
periods. This subject is presently under study.

In conclusion, the purpose of this work was to support the previous ABN works for
interpretation of quantum mechanics based on the dynamics of quantum measurement of a
spin 1

2 . This goal is achieved by constructing models for spin 1 and larger that can likewise
be investigated dynamically. Since it is clear from the ABN works that the measurement
dynamics is set by its thermodynamics, it can already be expected that the new models
will exhibit similar dynamics. We have demonstrated that the thermodynamics of the
new models are similar in structure to the spin 1

2 case, be it at the cost of additional order
parameters. The agreement in structure and thermodynamics between the well documented
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spin 1
2 model for quantum measurement and the present models for larger spin support

the ABN interpretation of quantum mechanics that was put forward previously.
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