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Abstract: This study considers a new decomposition of an extended divergence on a foliation by
deformed probability simplexes from the information geometry perspective. In particular, we treat
the case where each deformed probability simplex corresponds to a set of q-escort distributions. For
the foliation, different q-parameters and the corresponding α-parameters of dualistic structures are
defined on each of the various leaves. We propose the divergence decomposition theorem that guides
the proximity of q-escort distributions with different q-parameters and compare the new theorem to
the previous theorem of the standard divergence on a Hessian manifold with a fixed α-parameter.
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1. Introduction

In the field of nonextensive statistics, q-normal distributions and the generalization,
q-exponential families, play an important role [1–3]. Since Ohara first pointed out the
correspondence between the q-parameter of nonextensive statistics and the α-parameter of
information geometry [4,5], the information geometric structure of q-exponential families
has been investigated [6–14].

On a set of probability distributions, divergences are usually defined for a fixed α-
parameter of the dualistic structure. Using those results, we defined an extended divergence
on a foliation by sets of probability distributions, setting different α-parameters on each
leaf. In particular, we treated a foliation by deformed probability simplexes [15].

In this paper, we also study deformed probability simplexes corresponding to sets of
escort distributions with q-parameters, which satisfy q = (1− α)/2 for α-parameters of
information geometry. We clarify the relationship among affine spaces, affine immersions
and the extended divergence more than in our previous paper. A comparison with the
extended divergence and the duo Bregman divergence used in machine learning is also
described [16].

First, we explain the dualistic structures, α-divergences, and the Tsallis relative entropy
on the probability simplex, using the concept of affine geometry and information geometry.
The relationship between an α-parameter and the Tsallis q-parameter is stated. Next,
we describe the dualistic structures and the divergences generated by affine immersions
on the deformed probability simplexes corresponding to sets of escort distributions. It
also includes topics about Hessian manifolds and their level surfaces. We then define an
extended divergence on a foliation by deformed probability simplexes. Finally, we propose
a new decomposition of an extended divergence on the foliation.

2. The Tsallis Relative Entropy and the Kullback–Leibler Divergence on the
Probability Simplex

In this section, we explain dualistic structures, α-divergences, and the Tsallis relative
entropy on the probability simplex [4,5,12].
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Let An+1 be an (n + 1)-dimensional real affine space and {x1, . . . , xn+1} be the canon-
ical affine coordinate system on An+1, i.e., D̃dx = 0, where D̃ is the canonical flat affine
connection on An+1. Let Sn be a simplex in An+1

+ defined by

Sn =
{

p | p ∈ An+1
+ ,

n+1

∑
i=1

xi(p) = 1
}

. (1)

If x1(p), . . . , xn+1(p) are regarded as probabilities of n + 1 states, Sn is called the n-
dimensional probability simplex. Let { p̄1, . . . , p̄n} be an affine coordinate system on Sn

defined by p̄i(p) = xi(p)− xn+1(p) for i = 1, . . . , n, and

{∂1, . . . , ∂n}, where ∂i|p =
( ∂

∂xi −
∂

∂xn+1

)∣∣∣
p

, p ∈ Sn, (2)

be a frame of a tangent vector field on Sn.
The Fisher metric g = (gij) on Sn is defined by

gij(p) ≡ g(∂i, ∂j)|p =
n+1

∑
k=1

xk(p)
∂ log xk

∂xi

∣∣∣
p

∂ log xk

∂xj

∣∣∣
p
=

1
xi(p)

δij +
1

xn+1(p)
, (3)

p ∈ Sn, i, j = 1, . . . , n,

where δij is the Kronecker’s delta. We define an α-connection ∇(α) on Sn by

∇(α)
∂i

∂j =
n

∑
k=1

Γ(α)k
ij ∂k, (4)

Γ(α)k
ij |p =

1 + α

2
(− 1

xk(p)
δk

ij + xk(p)gij(p)), i, j, k = 1, . . . , n, (5)

where δk
ij = 1 if i = j = k, and δk

ij = 0 if others. Then, the Levi–Civita connection ∇ of g

coincides with ∇(0). For α ∈ R, we have

Xg(Y, Z) = g(∇(α)
X Y, Z) + g(Y,∇(−α)

X Z) for X, Y, Z ∈ X (Sn), (6)

where X (Sn) is the set of all smooth tangent vector fields on Sn. Then, ∇(−α) is called
the dual connection of ∇(α). For each α, ∇(α) is torsion-free and ∇(α)g is symmetric.
Therefore, the triple (Sn,∇(α), g) is a statistical manifold, and (Sn,∇(−α), g) the dual
statistical manifold of it.

Note that affine connections ∇(1) and ∇(−1) in Equations (4)–(6) are the dual connec-
tion and the canonical connection, respectively.

It is known that when n ≥ 2, the curvature of the statistical manifold (Sn,∇(α), g) is a
constant value

κ =
1 + α

2
1− α

2
=

1− α2

4
.

Therefore, the curvature of the dual statistical manifold (Sn,∇(−α), g) is also κ = (1− α2)/4.
Iff α = ±1, the curvature of (Sn,∇(α), g) is zero, and (∇(α),∇(−α), g) is called the dually
flat structure.

For α 6= ±1, an α-divergence D(α) on An+1
+ is often defined by

D(α)(p, r) =
4

1− α2 {
1− α

2

n+1

∑
i=1

xi(p) +
1 + α

2

n+1

∑
i=1

xi(r)−
n+1

∑
i=1

xi(p)
1−α

2 xi(r)
1+α

2 }, (7)

p, r ∈ An+1
+ .
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If q = (1− α)/2, it holds that

D(α)(p, r) =
1
q

Kq(p, r), p, r ∈ Sn, (8)

for the Tsallis relative entropy Kq on Sn defined by

Kq(p, r) ≡ −
n+1

∑
i=1

xi(p) lnq
xi(r)
xi(p)

=
1

1− q
{1−

n+1

∑
i=1

xi(p)qxi(r)1−q}, p, r ∈ Sn, (9)

where lnq is the q-logarithmic function defined by

lnq x ≡ x1−q − 1
1− q

, q 6= 1, x > 0 (10)

Refs. [1,2]. The Tsallis relative entropy Kq converges to the Kullback–Leibler divergence as
q→ 1, because limq→1 lnq x = log x. In the information geometric view, the α-divergence
D(α) converges to the Kullback–Leibler divergence as α→ −1.

For the Tsallis q-parameter, the curvature of the statistical manifold (Sn,∇(α), g) is
κ = q(1− q).

3. Divergences Generated by Affine Immersions as Level Surfaces

In this section, we describe the general theory of affine immersions and divergences
related to level surfaces of the Hessian domain.

If the Hessian D̃dϕ = ∑i,j(∂
2 ϕ)/(∂xi∂xj)dxidxj of a function ϕ on a domain Ω ⊆ An+1

is non-degenerate, the triple (Ω, D̃, g̃ = D̃dϕ) is called a Hessian domain. A statistical
manifold is said to be flat if the curvature tensor of its affine connection vanishes. A flat
statistical manifold is locally a Hessian domain. Conversely, a Hessian domain is a flat
statistical manifold [12,17].

In a previous study, we show the following theorem on the level surfaces of a Hes-
sian function.

Theorem 1 ([18]). Let M be a simply connected n-dimensional level surface of ϕ on an (n + 1)-
dimensional Hessian domain (Ω, D̃, g̃ = D̃dϕ) with a Riemannian metric g̃ and suppose that
n ≥ 2. If we consider (Ω, D̃, g̃) a flat statistical manifold, (M, D, g) is a 1-conformally flat
statistical submanifold of (Ω, D̃, g̃), where D and g denote the connection and the Riemannian
metric on M induced by D̃ and g̃, respectively.

Here, “1-conformally flat” represents the characterization of surfaces projected by a
flat statistical manifold along dual coordinates. We continue to explain the terms used in
Theorem 1 and the outline of the proof.

For α ∈ R, statistical manifolds (N,∇, h) and (N, ∇̄, h̄) are α-conformally equivalent
if there exists a function φ on N such that

h̄(X, Y) = eφh(X, Y),

h(∇̄XY, Z) = h(∇XY, Z)− 1 + α

2
dφ(Z)h(X, Y)

+
1− α

2
{dφ(X)h(Y, Z) + dφ(Y)h(X, Z)}, X, Y, Z ∈ X (N).

If (N, ∇̄, h̄) is 1-conformally equivalent to a flat statistical manifold (N,∇, h), (N, ∇̄, h̄)
is called a 1-conformally flat statistical manifold. A statistical manifold (N,∇, h) is 1-
conformally flat iff the dual statistical manifold (N,∇′, h) is (−1)-conformally flat [19].

In terms of affine geometry, (N,∇′, h) and (N, ∇̄′, h) are (−1)-conformally equivalent
if and only if ∇′ and ∇̄′ are projectively equivalent [20,21].
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For an (n + 1)-dimensional Hessian domain (Ω, D̃, g̃ = D̃dϕ), an n-dimensional level
surface of ϕ has the dualistic structure as the statistical submanifold structure. On the
other hand, the level surface also has the structure induced by the affine immersion. It
is essential for Theorem 1 that the statistical submanifold structure coincides with the
dualistic structure by the affine immersion on a level surface of ϕ.

For (Ω, D̃, g̃ = D̃dϕ), let x be the canonical immersion of an n-dimensional level
surface M into Ω. Let E be a transversal vector field on M defined by

E = −dϕ(Ẽ)−1Ẽ, (11)

where Ẽ is the gradient vector field of ϕ on Ω defined by

g̃(X̃, Ẽ) = dϕ(X̃), X̃ ∈ X (Ω). (12)

For an affine immersion (x, E) and the canonical flat affine connection D̃ on Ω ⊆ An+1, the
induced affine connection DE, the affine fundamental form gE, the shape operator SE and
the transversal connection form τE on M are defined by

DXY = DE
XY + gE(X, Y)E, (13)

DXE = SE(X) + τE(X)E, X, Y ∈ X (M). (14)

See [21,22]. Then, DE and gE coincide with the restricted affine connection of D̃ and the
restricted Riemannian metric of g̃, respectively. For the level surface M, the transversal
connection form satisfies that τE ≡ 0. Therefore, (x, E) it is called the equiaffine immersion.
It is known that a simply connected statistical manifold can be realized in An+1 by a non-
degenerate equiaffine immersion iff it is 1-conformally flat [19]. Thus, Theorem 1 holds.

Next, we introduce a divergence on a Hessian domain, treating it as a flat statisti-
cal manifold.

The canonical divergence ρ of a Hessian domain (Ω, D̃, g̃ = D̃dϕ) is defined by

ρ(p, r) = ϕ(p) + ϕ∗(ι̃(r)) +
n+1

∑
i=1

xi(p)x′i(r) for p, r ∈ Ω, (15)

where ι̃ is the gradient mapping from Ω to the dual affine space A∗n+1, i.e.,

x′i = x∗i ◦ ι̃ = − ∂ϕ

∂xi , (16)

and {x∗1 , . . . , x∗n+1} is the dual affine coordinate system of {x1, . . . , xn+1}. The Legendre
transform ϕ∗ of ϕ is defined by

ϕ∗ ◦ ι̃ = −
n+1

∑
i=1

xix′i − ϕ. (17)

See [12].
Let ι be the conormal immersion for the affine immersion (x, E) defined by Equa-

tion (11), 12. By the definition of a conormal immersion, ι satisfies that

〈ι(p), Yp〉 = 0, Yp ∈ Tp M, 〈ι(p), Ep〉 = 1 for p ∈ M,

where 〈a, b〉 is the pairing of a ∈ A∗n+1 and b ∈ An+1. It is known that the conormal
immersion ι coincides with the restriction of the gradient mapping ι̃ to the level surface M.

The next definition is given in relation to affine immersions and divergences.
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Definition 1 ([19]). Let (N,∇, h) be a 1-conformally flat statistical manifold realized by a non-
degenerate affine immersion (v, ξ) into An+1, and w the conormal immersion for v. Then the
divergence ρcon f of (N,∇, h) is defined by

ρcon f (p, r) = 〈w(r), v(p)− v(r)〉 for p, r ∈ N.

The ρcon f definition is independent of the choice of a realization of (N,∇, h).

The divergence ρcon f is referred to as Kurose geometric divergence in affine geometry
and as Fenchel–Young divergence in the machine learning community [23,24]. Since an n-
dimensional level surface M of (Ω, D̃, g̃ = D̃dϕ) is a 1-conformally flat statistical manifold
realized by a non-degenerate affine immersion (x, E), ρcon f on M is as follows:

ρcon f (p, r) = 〈ι(r), x(p)− x(r)〉 for p, r ∈ M. (18)

Let ρsub be the restriction of the canonical divergence ρ to (M, D, g) as a statistical
submanifold of (Ω, D̃, g̃). From Equations (15), (17) and (18), the next theorem holds.

Theorem 2 ([20]). For a 1-conformally flat statistical submanifold (M, D, g) of (Ω, D̃, g̃), two
divergences ρcon f and ρsub coincide.

4. Deformed Probability Simplexes and Escort Distributions Generated by
Affine Immersions

In this section, we explain dualistic structures on deformed probability simplexes,
which correspond to sets of escort distributions via affine immersion.

We set pi = xi(p), i = 1, . . . , n + 1 for p ∈ Sn, where Sn and {x1, . . . , xn+1} be the
probability simplex and the canonical affine coordinate system on An+1, respectively. For
n + 1 states p1, . . . , pn+1 on Sn and 0 < q < 1, if each probability P(pi) satisfies

P(pi) =
(pi)

q

∑n+1
i=1 (pi)q

, i = 1, . . . , n + 1, (19)

the probability distribution P is called the escort distribution [1,2], where (pi)
q is pi powered

by q.
It realizes the dualistic structure of a set of escort distributions via the affine immersion

into An+1
+ [4,5]. For 0 < q < 1, let fq be the affine immersion of Sn into An+1

+ defined by

xi( fq(p)) =
1
q
(xi(p))q, i = 1, . . . , n + 1, for p ∈ Sn. (20)

Then, the escort distribution P is also represented as follows:

P(pi) =
θi

∑n+1
i=1 θi

, θi =
1
q
(pi)

q, i = 1, . . . , n + 1. (21)

For a function ψq on An+1
+ defined by

ψq =
1

1− q

n+1

∑
i=1

(qxi)
1
q , (22)

the image fq(Sn) is a level surface of ψq satisfying ψq = 1/(1 − q). For 0 < q < 1,
the Hessian matrix of the function ψq is positive definite on An+1

+ . Then, ψq induces the
Hessian structure (An+1

+ , D̃, g̃q ≡ (∂2ψq/∂xi∂xj)). By definition
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Γ̃ijk =
n+1

∑
l=1

g̃q kl Γ̃l
ij =

∂3ψ

∂xi∂xj∂xk , i, j, k = 1, . . . , n, (23)

D̃(α)
∂

∂xi

∂

∂xj
=

1− α

2

n+1

∑
k=1

Γ̃k
ij

∂

∂xk
, α = 1− 2q, (24)

the tetrad (An+1
+ , D̃, D̃(−1), g̃q) is the dually flat structure. The connection D̃(0) coincides

with the Levi–Civita connection of the Riemannian metric g̃q.
We denote by D and gq the restricted D̃ and g̃q on fq(Sn), and induce the dualistic

structure of ( fq(Sn), D, gq) as the submanifold structure of (An+1
+ , D̃, g̃q). From the dis-

cussion in Section 3, ( fq(Sn), D, gq) coincides with the dualistic structure induced by the
equiaffine immersion ( fq, Eq), where

Eq ≡ −dψq(Ẽq)
−1Ẽq (25)

for the gradient vector field Ẽq of ψq on An+1
+ defined by

g̃q(X̃, Ẽq) = dψq(X̃) for X̃ ∈ X (An+1
+ ). (26)

The pullback of ( fq(Sn), D, gq) to Sn is (−1)-conformally equivalent to (Sn,∇(α), g) de-
fined by Equations (3)–(5). In addition, ( fq(Sn), D, gq) has a constant curvature κ =
q(1− q) = (1− α2)/4 [5].

On ( fq(Sn), D, gq), the restricted divergence ρq from the canonical divergence of
(An+1

+ , D̃, g̃q) coincides with the geometric divergence by Equation (18) from the affine
immersion ( fq, Eq). For an affine coordinate system {x′1, . . . , x′n+1} on An+1 defined by

x′i = −
∂ψq

∂xi = − 1
1− q

(qxi)
1−q

q , (27)

the divergence ρq of ( fq(Sn), D, gq) is described as

ρq(a, b) =
n+1

∑
i=1

x′i(b)(xi(a)− xi(b)), a, b ∈ fq(Sn). (28)

In addition, the pullback divergence of ρq to Sn coincides with D(α) and the Tsallis relative
entropy Kq [4].

At the end of this section, we mention the divergence of (An+1
+ , D̃, g̃q). By Equa-

tion (17), the Legendre transform ψ∗q of ψq is

ψ∗q (x′(a)) = −ψq(a) +
n+1

∑
i=1

xi(a)x′i(a), a ∈ An+1
+ . (29)

By Equations (15) and (16), the canonical divergence ρq of (An+1
+ , D̃, g̃q) is defined by

ρq(a, b) = ψq(a)− ψq(b) +
n+1

∑
i=1

x′i(b)(xi(a)− xi(b)), a, b ∈ An+1
+ , (30)

represented by the same symbol ρq of ( fq(Sn), D, gq).

5. Extended Divergence on a Foliation by Deformed Probability Simplexes

Previous sections described the divergence for each fixed q and each fixed α. This
section defines an extended divergence on a foliation by deformed probability simplexes
( fq(Sn), D, gq) for all 0 < q < 1, and shows the divergence decomposition theorem.
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The contents of our paper [15] are included but are explained in detail by the setting of
affine geometry.

To give the proximity of q-escort distributions with different q-parameters, we define
an extended divergence on a foliation by deformed probability simplexes as follows.

Definition 2. Let S f ol = ∪0<q<1 fq(Sn) =
{

p | p ∈ An+1
+ , ∑n+1

i=1 xi(p) > 1
}

, which corre-
sponds to a foliation F = { fq(Sn)|0 < q < 1}. We call a function ρ f ol on S f ol × S f ol defined by
Equation (31) an extended divergence on a foliation by deformed probability simplexes.

ρ f ol(a, b) ≡ ψq(a)(a)− ψq(b)(b) +
n+1

∑
i=1

x′i(b)(xi(a)− xi(b)) (31)

for a ∈ fq(a)(Sn), b ∈ fq(b)(Sn), 0 < q(a) < 1, 0 < q(b) < 1.

The i-th component of the conormal immersion of ( fq, Eq) is −∂ψq/∂xi. By the right-
hand side of Equation (27), the dual coordinate of b, denoted by x′(b), satisfies that

−x′(b) ≡ (−x′1(b), . . . ,−x′n+1(b)) ∈ f1−q(b)(Sn).

Therefore, we consider f1−q(Sn) as the dual simplex of fq(Sn) for 0 < q < 1. As q = 1/2,
fq(Sn) is self dual [4]. Note that the i-th component of the dual coordinate of b is denoted
by ηi(b) = −x′i(b) = (∂ψq/∂xi)|b in [15].

On the extended divergence, the next proposition holds.

Proposition 1. An extended divergence ρ f ol on S f ol of satisfies that:
(i) If a, b ∈ fq(a)(Sn),

ρ f ol(a, b) = ρq(a)(a, b) = D(α(a))( f−1
q(a)(a), f−1

q(a)(b)),

where ρq is the divergence of ( fq(Sn), D, gq) by Equation (28), D(α) is an α-divergence defined by
Equation (7), and α(a) = 1− 2q(a).
(ii) In the case of q(a) ≥ q(b),

ρ f ol(a, b) ≥ 0 for (a, b) ∈ S f ol × S f ol ,

and if and only if a = b,
ρ f ol(a, b) = 0.

Proof. If a, b ∈ fq(a)(Sn), ψq(a)(a) = ψq(b)(a) = ψq(b)(b). By Equations (28) and (31),

ρ f ol(a, b) =
n+1

∑
i=1

x′i(b)(xi(a)− xi(b)) = ρq(a)(a, b).

Then, (i) holds. If 1 > q(a) ≥ q(b) > 0, it holds that ψq(a)(a) ≥ ψq(b)(b) because

ψq(a)(a) =
1

1− q(a)
, ψq(b)(b) =

1
1− q(b)

(32)

are induced by the definition of fq(Sn). In addition, fq(a)(Sn) and fq(b)(Sn) are convex
surfaces centered on the origini of An+1

+ , and the surfaces fq(a)(Sn) closer to the origin than
fq(b)(Sn). Then, ∑n+1

i=1 x′i(b)(xi(a)− xi(b)) ≥ 0. Thus, (ii) holds.
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We define the extended dual divergence ρ∗f ol of ρ f ol as follows;

ρ∗f ol(a, b) ≡ ψ∗q(a)(x′(a))− ψ∗q(b)(x′(b)) +
n+1

∑
i=1

xi(b)(x′i(a)− x′i(b)) (33)

for a ∈ fq(a)(Sn), b ∈ fq(b)(Sn), 0 < q(a) < 1, 0 < q(b) < 1,

where ψ∗q is the Legendre transform of ψq for 0 < q < 1. Then, the following holds.

Proposition 2. The functions ρ f ol and ρ∗f ol satisfy that

ρ∗f ol(b, a) = ρ f ol(a, b) for a ∈ fq(a)(Sn), b ∈ fq(b)(Sn). (34)

Proof. By the definition of the Legendre transform, we have

ρ∗f ol(b, a) = ψ∗q(b)(x′(b))− ψ∗q(a)(x′(a)) +
n+1

∑
i=1

xi(a)(x′i(b)− x′i(a))

= −ψq(b)(b)−
n+1

∑
i=1

xi(b)x′i(b)

+ψq(a)(a) +
n+1

∑
i=1

xi(a)x′i(a) +
n+1

∑
i=1

xi(a)(x′i(b)− x′i(a))

= ψq(a)(a)− ψq(b)(b) +
n+1

∑
i=1

x′i(b)(xi(a)− xi(b))

= ρ f ol(a, b).

The extended divergence is related to the duo Bregman (pseudo-)divergence, where
the parameters also define the convex functions [16]. To work with the entire parametrized
probability distribution families and to explore the application of divergences, we must
investigate their relationship.

6. Decomposition of an Extended Divergence

In this section, we explain the orthogonal foliation ofF . Next, we give a decomposition
of an extended divergence along the orthogonal leaf and the original leaf.

For the foliation F = { fq(Sn)|0 < q < 1}, we consider the flow on S f ol defined using
the following equation.

dx′i
dt

= x′i , i = 1, . . . , n + 1, (35)

where a function x′i on S f ol takes the i-th component of the dual coordinate on fq(Sn) as
Equation (27) for each 0 < q < 1. An integral curve of Equation (35) is orthogonal to
fq(Sn) for each q with respect to the pairing 〈 , 〉. The set of integral curves becomes the
orthogonal foliation of F . We denote it by F⊥.

Translating into the primal coordinate system, we have the next equation.

dxi

dt
= Ẽi, i = 1, . . . , n + 1, on S f ol , (36)

Ẽ = Ẽi
q =

n+1

∑
j=1

gij
q

∂ψq

∂xj on fq(Sn), (37)
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where (gij
q ) is the inverse matrix of (gq ij). The right-hand side of Equation (37) is calculated

using Equations (11) and (12) for ψq. A leaf of F⊥ is an integral curve of the vector field Ẽ
that takes the value Ẽq on fq(Sn) for each q.

The following theorem is on the decomposition of the extended divergence.

Theorem 3. Let Sn be the probability simplex, and ( fq(Sn), D, gq) the 1-conformally flat statistical
manifold generated by the affine immersion ( fq, Eq), where fq is defined as

xi( fq(p)) =
1
q
(xi(p))q, i = 1, . . . , n + 1, for p ∈ Sn, (38)

ψq ≡ 1/(1− q)∑n+1
i=1 (qxi)1/q, Eq ≡ −dψ(Ẽq)−1Ẽq, Ẽi

q ≡ ∑n+1
j=1 gij

q ∂ψq/∂xj, and gq is the
restriction of (gq ij) = Ddψq to fq(Sn). Let a, b ∈ fq(a)(Sn), 0 < q(a) < 1, and c ∈ S f ol ≡
∪0<q<1 fq(Sn). If there exists an orthogonal leaf L⊥ ∈ F⊥ that includes b and c, we have

ρ f ol(a, c) = µ ρ f ol(a, b) + ρ f ol(b, c), x′(c) = µ x′(b), µ > 0, (39)

where x′(·) is the dual coordinate of fq(Sn) for each q.

Proof. From a, b ∈ fq(a)(Sn), it holds that ψq(a)(a) = ψq(b)(b), where q(b) = q(a). By the
definition in Equations (22) and (23), we have

ρ f ol(a, c) = ψq(a)(a)− ψq(c)(c) +
n+1

∑
i=1

x′i(c)(xi(a)− xi(c))

= ψq(b)(b)− ψq(c)(c) +
n+1

∑
i=1
{x′i(c)(xi(a)− xi(b)) + x′i(c)(xi(b)− xi(c))}

= +µ
n+1

∑
i=1

x′i(b)(xi(a)− xi(b))

+{ψq(b)(b)− ψq(c)(c) +
n+1

∑
i=1

x′i(c)(xi(b)− xi(c))}

= µ ρ f ol(a, b) + ρ f ol(b, c).

See Figure 1 for a decomposition of extended divergence and graphs of deformed
simplexes fq(Sn).

A decomposition similar to Equation (39) is also available on a foliation by Hessian
level surfaces of one Hessian manifold [20]. Theorem 3 generalizes the previous decompo-
sition.

Finally, we describe the gradient flow on a leaf fq(Sn) using the extended divergence.

Theorem 4. For a submanifold ( fq(Sn), D, gq) of S f ol , we denote by {x1, . . . , xn} an affine
coordinate system on fq(Sn) such that Ddxi = 0, i = 1, . . . , n, and set gq ij = gq(∂/∂xi, ∂/∂xj),

(gij
q ) = (gq ij)

−1. For a fixed point c ∈ L⊥, the gradient flow on fq(Sn) defined by

dxi

dt
= −

n

∑
j=1

gij
q

∂

∂xj ρ f ol(ax, c), i = 1, . . . , n, ax ∈ fq(Sn) (40)

converges to the unique point b ∈ L⊥ ∩ fq(Sn), where ax is a variable point parametrized as
{x1(t), . . . , xn(t)}.
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Proof. By Theorem 3, for any ax ∈ fq(Sn), there exists µ > 0 such that

ρ f ol(ax, c) = µ ρ f ol(ax, b) + ρ f ol(b, c), x′(c) = µ x′(b).

Equation (40) is described by the dual coordinate system {x′1, . . . , x′n} on fq(Sn) as follows;

dx′i
dt

= −µ
∂

∂xj ρ f ol(ax, b), i = 1, . . . , n. (41)

On fq(Sn), from Prop. 1.(i), ρ f ol coincides with the geometric divergence ρq, generated by
the affine immersion ( fq, Eq). The geometric divergence generates the dual coordinate x′i
such that D∗dx′i = 0, i = 1, . . . , n, to be derived by xi [19]. Then, it holds that

dx′i
dt

= −µ(x′i(ax)− x′i(b)), i = 1, . . . , n, (42)

and that
x′i = x′i(b) + (x′i(a|t=0)− x′i(b))e

−µt, i = 1, . . . , n, (43)

where a|t=0 is an initial point of Equation (40). Then, the gradient flow of Equation (40)
converges to b ∈ L⊥ ∩ fq(Sn) following a geodesic for the dual coordinate system.

The gradient flow similar to Equation (40) has been provided on a flat statistical
submanifold [25]. The similar one on a Hessian level surface, i.e., a 1-conformally statistical
submanifold, has been given in [20]. Theorem 4 generalizes the previous theorems on
gradient flows.

Figure 1. A decomposition of extended divergence ρ f ol(a, c), graphs of the standard simplex (q→ 1),
and deformed simplexes as q = 0.75, 0.6, 0.5, 0.4, 0.25 in A2

+. For primal coordinates a, b ∈ f0.75(S1),
and c ∈ f0.6(S1), dual coordinates satisfy −x′(a),−x′(b) ∈ f0.25(S1), and −x′(c) ∈ f0.4(S1). The
primal geodesic between a and b is orthogonal to the dual one between b and c with respect to the
metric g0.75.
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7. Conclusions

This study considers a foliation of deformed probability simplexes corresponding to
sets of escort distributions with q-parameters, for the continuous transition of α-parameters
on information geometry. Since these are typical q-exponential families, we still need
to provide details on the extended divergence and natural definition of the foliation of
q-exponential families.

The extended divergence guides the proximity of q-exponential distributions with
different q-parameters. Therefore, our theory guarantees the mathematical basis for general-
izing methods of machine learning and statistical mechanics to the case of the q-distribution
families when different q-parameters are mixed. The decomposition theorem is applied
to the problem of the optimal choice of q-parameter. The application methods are open
to consideration. It also remains to investigate the relationship with a new λ-duality on
nonextensive statistical mechanics with mixed parameters [26,27].
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