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Abstract: The paper presents an H∞ type control procedure for multi-agent systems taking into
account possible data dropout in the communication network. The data dropout is modelled using a
standard homogeneous Markov chain leading to an H∞ type control problem for stochastic multi-
agent systems with Markovian jumps. The considered H∞ type criterion includes, besides the
components corresponding to the attenuation condition of exogenous disturbance inputs, quadratic
terms aiming to acquire the consensus between the agents. It is shown that in the case of identical
agents, a state-feedback controller with Markov parameters may be determined solving two specific
systems of Riccati equations whose dimension does not depend on the number of agents. Iterative
procedures to solve such systems are also presented together with an illustrative numerical example.

Keywords: multi-agent systems; H∞ type control; data packet dropout; Markovian models; coupled
algebraic Riccati equations; iterative numerical methods

1. Introduction

Multi-agent systems received a considerable interest in control engineering over the
last decades due to their wide area of applications including terrestrial, maritime, aerial and
space surveillance and monitoring missions. Some early developments and comprehensive
surveys in this field may be found, for instance, in [1–4]. The design requirements for
the control of multi-agent systems may be formulated from different perspectives, a lot
of literature treating these topics being available these days. Although the review of the
control design methodologies for multi-agent systems is beyond the purpose of this paper,
one will mention however some monographs as [5–8], presenting different multi-agent
control problems. An important aspect related the multi-agent systems is their distributed
control which is characterised, in contrast with the centralised case, by the absence of a
control decision-maker. Such formulations, primarily considered for agents with single
and double integrators models (see, e.g., [9]) have been then investigated for more general
linear systems, as in [10]. Consensus of nonlinear agents using output feedback has been
analysed, for instance, in [11] and an algorithm based on feedback linearisation of nonlinear
agents with output measurements may be found in [12]. In [13], a stability analysis from
the perspective of a hybrid modelling is proposed using invariant sets and the Lyapunov
stability theory. Consensus problems for Bernoulli networks have been considered for
instance in [14] and for high-order multi-agent systems under deterministic and Markovian
switching network topologies, in [15]. Other consensus problems in stochastic sense have
been investigated, for instance, in [16] and in [17] under Markov switching networks for
agents with first and second order dynamics. Many formulations of the control problems
for multi-agent systems include optimisation criteria. As shown for instance, in [18], the
complexity associated with the computation of distributed optimal controller significantly
increases. In [19], the authors study the structural properties of optimal control problems
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with infinite-horizon linear-quadratic criteria by analysing the spatial structure of the solu-
tion to corresponding Lyapunov operator and Riccati equations. A problem of synthesising
a distributed dynamic output feedback achieving H∞ performance is presented in [20].
In [21], a decentralised Markovian H∞ control problem is considered for first-order dynam-
ics of the agents in presence of time-delay conditions; the optimal control is expressed in
terms of the solutions of a system of linear matrix inequalities depending on the dynamics
of the multi-agent system. An H∞ state-feedback consensus controller for undirected
multi-agent systems is derived in [22] for a more general class of N identical agents; the
complexity of the H∞ consensus problem is reduced by representing the problem by N
number linear systems. In fact, optimal control problems of multi-agent systems remain a
domain of interest due to the design and implementation complexity of the control laws,
even in the case of identical agents (see, for instance, [22–25]). In [26], a linear-quadratic
control problem for identical agents is considered, for which it is proved that the optimal
solution depends on the number of agents and on the stabilising solutions of two Riccati
equations having the same order as the agents dynamics. This conclusion shows that the
computational requirements may be significantly reduced, especially for large-scale multi-
agent systems. The research has been continued in [27] where the robustness properties of
the decentralised linear-quadratic optimal controller are analysed.

More recently, an H∞ optimisation problem for identical stochastic linear models
corrupted with multiplicative noises was formulated and solved in [28], aiming to pro-
vide disturbance attenuation performance together with robust stability with respect to
parametric uncertainties in the agents models. Based on the state-feedback gains of the
centralised state-feedback controller, a distributed controller depending on the adjacency
matrix associated with the undirected graph of the communication network was obtained
using the spectra of Lyapunov operators.

In this paper, the loss of links between agents is modelled by linear stochastic sys-
tems with Markovian jumps. The proposed methodology allows to consider different
configurations of the network, each of them corresponding to a state of the Markov chain.
Markov switching network models may be found in many papers between which one
mentions [29–31]. The formulation and the developments presented in this paper considers
stochastic models both for the agents and for the network. The H∞ cost function for the
optimal control design includes, besides the expression for the attenuation of exogenous
disturbance inputs, quadratic terms aiming to acquire the state consensus between the
agents. The optimal H∞ state-feedback gains are expressed in terms of the stabilising
solutions of two systems of coupled game-theoretic Riccati equations having the same
order as the dynamics of a single agent. This coupling between the Riccati equations is
typical in the optimal control of stochastic Markovian systems, depending on the elements
of the stationary transition rate matrix.

The paper is organised as follows: the H∞ control problem for stochastic system with
Markovian jumps is formulated and solved in Section 2. The optimal gains of the control
law are expressed in terms of the stabilising solution of a system of coupled algebraic
Riccati equations with indefinite sign. A convergent iterative algorithm to determine the
stabilising solution of this system of coupled Riccati equations is also presented. The third
section analyses the case of multi-agent H∞ control. The main result of this section allows
to determine the optimal control law for multi-agent systems solving two specific systems
of coupled game-theoretic Riccati equations corresponding to the dimension of a single
agent. In Section 4, the case of dropout data packages in the communication networks is
discussed and illustrated by a numerical example for a large-scale multi-agent system with
two states of the Markov chain. The paper ends with some concluding remarks.



Entropy 2022, 24, 1734 3 of 15

2. H∞ Type Control for Stochastic Systems with Markovian Jumps; The Case of a
Single Agent

Consider the linear stochastic system

ẋ(t) = A(η(t))x(t) + B1(η(t))w(t) + B2(η(t))u(t)
y1(t) = C(η(t))x(t) + D(η(t))u(t)
y2(t) = x(t)

(1)

where x ∈ Rn denotes the state vector, w ∈ Rm1 is an exogenous input, u ∈ Rm2 stands
for the control input, y1 ∈ Rp1 is the quality output and y2 ∈ Rn denotes the measured
output. Throughout the paper η(t), t ≥ 0 denotes a continuous Markov chain with the
state space D = {1, . . . , d} and with the probability transition matrix P(t) =

[
pij(t)

]
=

eΠt, i, j ∈ D, t ≥ 0 in which the stationary transition rate matrix of η is Π =
[
πij
]

with

∑d
j=1 πij = 0, i ∈ D and πij ≥ 0 if i 6= j.

The triple {Ω,F , P} denotes a given probability space, E[x] stands for the expectation
of the random variable x, E[x|H] represents the conditional expectation of x with respect to
the σ-algebra H ⊂ F and E[x|η(t) = i] is the conditional expectation with respect to the
event η(t) = i. In the following developments it will be assumed that C>(i)D(i) = 0 and
D>(i)D(i) = Im2 , ∀i ∈ D. For invertible D(i)>D(i), i = 1, . . . , d, if these assumptions are
not accomplished one may perform the following change of the control variable u

u(η(t)) = −
(

D(η(t))>D(η(t))
)−1

D(η(t))>C(η(t))x(t) +
(

D(η(t))>D(η(t))
)− 1

2 ũ(t)

for which one can easily check that with the new control variable ũ the orthogonality
condition C(i)>D(i) = 0 holds and D(i)>D(i) = Im2 , i = 1, . . . , d.

For a multi-agent system with N agents, the indexes k, ` = 1, . . . , N will be used to
define the connection between the agents k and `.

Some known definitions and results used in the following developments will be briefly
reminded (more details and proofs may be found, for instance, in [32,33]).

Definition 1. The stochastic system with Markov parameters

ẋ(t) = A(η(t))x(t) (2)

is called exponentially stable in mean square (ESMS) if there exists β ≥ 1 and α > 0 such that
E
[
|Φ(t)|2|n(0) = i

]
≤ βe−αt, ∀t ≥ 0, i ∈ D, where Φ(t) denotes the fundamental (random)

solution of the differential system (2).

Proposition 1. The stochastic system (2) is ESMS if and only if there exist the matrices X(i) > 0,
i = 1, . . . , d verifying the system of Lyapunov-type inequalities

A>(i)X(i) + X(i)A(i) +
d

∑
j=1

πijX(j) < 0. (3)

Throughout the paper it is assumed that the system

ẋ(t) = A(η(t))x(t)
y(t) = C(η(t))x(t)

(4)

is stochastically detectable, namely there exist a set of matrices H(i), i = 1, ..., d such that
the system ẋ(t) = (A(η(t)) + H(η(t))C(η(t)))x(t) is ESMS.

The proof of the next result may be found, for instance, in [33] (Theorem 7 of Chapter 3).
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Proposition 2. If the system (4) is stochastically detectable and if the system of Lyapunov-type
equations

A>(i)X(i) + X(i)A(i) + C>(i)C(i) +
d

∑
j=1

πijX(j) = 0

has a symmetric solution with X(i) ≥ 0, ∀i ∈ D, then it is ESMS.

Proposition 3. If v : Rn ×D → R is a function of C1 class for every i ∈ D then

E[v(x(t), η(t))|η(0) = i]− v(x0, i) =
E
[∫ t

0

{
x>(τ)A>(η(τ)) + ∑d

j=1 v(x(τ), j)πη(τ)j

}
dτ|η(0) = i

]
, i ∈ D, t ≥ 0,

where x(t) is the solution of the system (2) with the initial condition x0.

The main result of this section is the following theorem.

Theorem 1. If the system of coupled Riccati equations

A>(i)X(i) + X(i)A(i) + X(i)
(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X(i)

+∑d
j=1 πijX(j) + C>(i)C(i) = 0

(5)

has a stabilizing solution (X(1), ..., X(d)) with X(i) ≥ 0, ∀i ∈ D for a certain γ > 0, namely if
the stochastic system with Markov jumps

ẋ(t) =
(

A(η(t)) +
(

γ−2B1(η(t))B>1 (η(t))− B2(η(t))B>2 (η(t))
)

X(η(t)))
)

x(t)

is ESMS, where

F(η(t)) := −B>2 (η(t))X(η(t)), (6)

then the state-feedback control law u(t) = F(η(t))x(t) stabilises the system (1) and

E
[∫ ∞

0

(
|y1(t)|2 − γ2|w(t)|2

)
dt
]
≤ 0 (7)

for all w ∈ L2
η([0, ∞),Rm1), where the quality output y1(t) is determined with the initial condition

x(0) = 0 of the system (1) .

Proof. In order to prove that the state feedback gain (6) stabilises (1) one may firstly rewrite
the Riccati system (5) as

(A(i) + B2(i)F(i))>X(i) + X(i)(A(i) + B2(i)F(i)) + γ−2X(i)B1(i)B>1 (i)X(i)
X(i)B2(i)B>2 (i)X(i) + ∑d

j=1 πijX(j) + C>(i)C(i) = 0

with X(i) ≥ 0, i = 1, . . . , d. On the other hand, since the system (4) is assumed stochastically
detectable, it follows that the system

ẋ(t) = (A(η(t)) + B2(η(t))F(η(t)))x(t)

y(t) =

 γ−1B>1 (η(t))X(η(t))
B>2 (η(t))X(η(t))

C(η(t))

x(t)

is also stochastically detectable and then, based on Proposition 2, one concludes that the
above stochastic system with the state matrix A(η(t)) + B2(η(t))F(η(t)) is ESMS. Since the
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system (1) with the control law u(t) = F(η(t))x(t) has the same state matrix it follows that
the state-feedback (6) is stabilising.

In order to prove the last part of the theorem one introduces the function V(x(t), η(t)) =
x>(t)X(η(t))x(t). Using Proposition 3 for a certain initial condition x0, it follows that

E
[(

x>(t)X(η(t))x(t)− x>0 X(η(0))x0
)
|η(0) = i

]
= E

[∫ >
0

{
2(A(η(τ))x(τ) + B1(η(τ))w(τ) + B2(η(τ))u(τ))

>X(η(τ))x(τ)

+∑d
j=1 πη(τ)jx>(τ)X(j)x(τ)

}
dτ|η(0) = i

]
.

Adding J(i, w, u) := E
[∫ t

0

(
|y1(τ)|2 − γ2|w(τ)|2

)
dτ|η(0) = i

]
, i ∈ D and using (5) one

obtains

J(i, w, u) + E
[(

x>(t)X(η(t))x(t)− x>0 X(η(0))x0
)
|η(0) = i

]
= E

[∫ t
0

{
x>(τ)C>(η(τ))C(η(τ))x(τ) + u>(τ)u(τ)− γ2w>(τ)w(τ)

+x>(τ)
(

A>((η(τ))X(η(τ)) + X(η(τ))A(η(τ))
)
x(τ) + w>(τ)B>1 (η(τ))X(η(τ))x(τ)

+x>(τ)X(η(τ))B1(η(τ))w(τ) + u>(τ)B>2 (η(τ))X(η(τ))x(τ)
+x>(τ)X(η(τ))B2(η(τ))u(τ) + ∑d

j=1 πη(τ)jx>(τ)X(j)x(τ)
}

dτ|η(0) = i
]

= E
[∫ t

0

{
x>(τ)

(
A>(η(τ))X(η(τ)) + X(η(τ))A(η(τ))

+X(η(τ))
(
γ−2B1(η(τ))B>1 (η(τ))− B2(η(τ))Bτ

2 (η(τ))
)
X(η(τ))

+∑d
j=1 πη(τ)jx>(τ)X(j) + C>(η(τ))C(η(τ))

)
x(τ)

+
(
u(τ) + B>2 (η(τ))X(η(τ))x(τ)

)>(u(τ) + B>2 (η(τ))X(η(τ))x(τ)
)

−
(
γw(τ)− γ−1B>1 (η(τ))X(η(τ))x(τ)

)(
γw(τ)− γ−1B>1 (η(τ))X(η(τ))x(τ)

)>}dτ|η(0) = i
]
.

Taking into account (5), one obtains

J(i, w, u) + E
[(

x>(t)X(η(t))x(t)− x>0 X(η(0))x0
)
|η(0) = i

]
= E

[∫ t
0

{(
u(τ) + B>2 (η(τ))X(η(τ))x(τ)

)>(u(τ) + B>2 (η(τ))X(η(τ))x(τ)
)

−
(
γw(τ)− γ−1B>1 (η(τ))X(η(τ))x(τ)

)(
γw(τ)− γ−1B>1 (η(τ))X(η(τ))x(τ)

)>}dτ|η(0) = i
]
.

For t→ ∞ and u(t) = F(η(t))x(t), from the above equation it follows that

E
[∫ ∞

0

(
|y1(t)|2 − γ2|w(t)|2

)
dt
]
= ∑d

i=1 pi(0)x>0 X(i)x0
−∑d

i=1 pi(0)E
[∫ ∞

0

(
γw(τ)− γ−1B>1 (η(τ))X(η(τ))x(τ)

)
×
(
γw(τ)− γ−1B>1 (η(τ))X(η(τ))x(τ)

)>dτ|η(0) = i
]

where pi(0) := P(η(0) = i). Then, for x0 = 0, the inequality (7) directly follows and it
becomes equality for w∗(t) = γ−2BT

1 X(η(t))x(t).

Remark 1. Matrix Riccati equations with indefinite sign as in the system (5) appear in H∞
control ([34]) and in mixed H2/H∞ control problems ([35]) in the deterministic framework.

The next result proved in [36] gives a numerical procedure to compute the stabilis-
ing solution (X(1), . . . , X(d)) of the system of game theoretic Riccati-type equations (5)
assuming that such a solution exists.

Proposition 4. Assume that the system (1) is stochastically detectable and that the system of
Riccati Equation (5) has a stabilising solution. Then the sequences {Xk(i)}k≥0, {Zk(i)}k≥0 defined
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by X0(i) = 0 and Xk+1(i) = Xk(i) + Zk(i), i = 1, . . . , d, where Z0(i) are the stabilising solutions
of the system of Riccati type equations(

A(i) + 1
2 πii In

)>
Z0(i) + Z0(i)

(
A(i) + 1

2 πii In

)
−Z0(i)B2(i)B>2 (i)Z0(i) + C>(i)C(i) + ∑d

j=1,j 6=i Z0(i) = 0,
(8)

Zk(i), k ≥ 1 are the stabilising solutions of the un-coupled Riccati equations

M>k (i)Zk(i) + Zk(i)Mk(i)− Zk(i)B2(i)B>2 (i)Zk(i) + Rk(i) = 0,

and where

Mk(i) = A(i) + 1
2 πii In +

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
Xk(i)

Rk(i) = γ−2Zk−1(i)B1(i)B>1 (i)Zk−1(i) + ∑d
j=1,j 6=i πijZk−1(j),

are convergent and the limit of Xk(i), i = 1, . . . , d when k → ∞ is the stabilising solution of the
system (5).

An iterative algorithm to solve the system of coupled Riccati equations with definite
sign is given for completeness in Appendix A. The proof of the algorithm convergence may
be found in [33] (Theorem 21 of Chapter 4).

3. Markovian H∞ Controller Design for Multi-Agent Systems

Consider N > 1 agents with identical dynamics of form

ẋk(t) = A(η(t))xk(t) + B1(η(t))wk(t) + B2(η(t))uk(t)
y1k(t) = C(η(t))xk(t) + D(η(t))uk(t)
y2k(t) = xk(t), t ≥ 0, k = 1, . . . , N

(9)

with C>(i)D(i) = 0 and D>(i)D(i) = Im1 , i = 1, . . . , d, and k = 1, . . . , N.

Remark 2. Although in (9) one considered the same standard homogeneous Markov chain for all
agents one may also treat the case when each agent is modelled with its own stochastic process
ηk(t). Indeed, if each agent dynamics is modelled with a standard homogenous Markov chain
ηk(t), k = 1, ..., N with d states then one may consider for the multi-agent system (9) an extended
Markov chain with dN states. Since in the present paper the Markov parameters are used to
characterise the availability or the link failure between agents it follows that the maximal number of
states of the Markov chain in these applications is 2N .

The dynamics of the multi-agent system (9) may be written in the following com-
pact form

˙̃x(t) = Ã(η(t))x̃(t) + B̃1(η(t))w̃(t) + B̃2(η(t))ũ(t)
ỹ1(t) = C̃(η(t))x̃(t) + D̃(η(t))ũ(t)
ỹ2(t) = x̃(t)

(10)

in which x̃ :=
[
x>1 , . . . , x>N

]>
, w̃ :=

[
w>1 , . . . , w>N

]>
, ũ := [u>1 , . . . ,

u>N ]
>, ỹ1 :=

[
y>11, . . . , y>1N

]>
and Ã(η(t)) := IN ⊗ A(η(t)), B̃1(η(t)) := IN ⊗ B1(η(t)),

B̃2(η(t)) := IN ⊗ B2(η(t)), C̃(η(t)) := IN ⊗ C(η(t)), D̃(η(t)) := IN ⊗ D(η(t)) where ⊗
denotes the Kronecker product.

For γ > 0 define the cost function

J(w̃, ũ) = E
[∫ ∞

0

{
|ỹ1(t)|2 − γ2|w̃(t)|2

+ 1
2 ∑N

k=1 ∑N
`=1,` 6=k(xk(t)− x`(t))

>Qk`(η(t))(xk(t)− x`(t))
}

dt
] (11)
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where Qk`(i), k, ` = 1, . . . , N and i = 1, . . . , d are positive semidefinite weighting matrices.
Then (11) may be rewritten as

J(w̃, ũ) = E
[∫ ∞

0

(
ỹ1(t)>ỹ1(t)− γ2w̃(t)>w̃(t) + x̃(t)>Q̃(η(t))x̃(t)

)
dt
]

(12)

in which Q̃(i) has the block elements

Q̃kk(i) = C>(i)C(i) + ∑N
`=1,` 6=k Qk`(i),

Q̃k`(i) = −Qk`(i), k, ` = 1, . . . , N, k 6= `,
(13)

i = 1, . . . , d. Choosing Qk`(i) = P>(i)P(i), k, ` = 1, . . . , N, k 6= `, i = 1, . . . , d, it follows
that the block elements of the matrix Q̃(i) are

Q̃kk(i) = C>(i)C(i) + (N − 1)P>(i)P(i),
Q̃k`(i) = −P>(i)P(i), k, ` = 1, . . . , N, k 6= `,

i = 1, . . . , d. One can easily check that

ỹ1(t)>ỹ1(t) + x̃(t)Q̃(η(t))x̃(t) = C̃(η(t))x̃(t) + D̃(η(t))ũ(t)

where

C̃(i) :=


P̃(i)

C(i) 0 . . . 0
0 C(i) . . . 0
...

...
. . .

...
0 0 . . . C(i)

 , D̃(i) :=


0n·N×m2·N

D(i) 0 . . . 0
0 D(i) . . . 0
...

...
. . .

...
0 0 . . . D(i)

, (14)

i = 1, ..., d with P̃(i) satisfying the condition

P̃(i)>P̃(i) =


(N − 1)P>(i)P(i) −P>(i)P(i) . . . −P>(i)P(i)
−P>(i)P(i) (N − 1)P>(i)P(i) . . . −P>(i)P(i)

...
...

. . .
...

−P>(i)P(i) −P>(i)P(i) . . . (N − 1)P>(i)P(i)

,

i = 1, . . . , d. Therefore the cost function (11) may be rewritten as

J(w̃, ũ) = E
[∫ ∞

0

(
z̃>(t)z̃(t)− γ2w̃>(t)w̃(t)

)
dt
]

(15)

where z(t) = C̃(η(t))x̃(t) + D̃(η(t))ũ(t). Moreover, since it was assumed that C>(i)D(i) =
0 and D>(i)D(i) = Im2 , i = 1, . . . , d it follows that C̃>(i)D̃(i) = 0 and D̃>(i)D̃(i) =
Im1·N , i = 1, . . . , d and therefore one may apply Theorem 1 for the Markov stochastic system

˙̃x(t) = Ã(η(t))x(t) + B̃1(η(t))w(t) + B̃2(η(t))u(t)
z̃(t) = C̃(η(t))x̃(t) + D̃(η(t))ũ(t)
ỹ2(t) = x̃(t)

(16)

with the cost function (15).
The main result of this section is given by the following theorem.

Theorem 2. (i) If the system of coupled Riccati equations

Ã>(i)X̃(i) + X̃(i)Ã(i) + X̃(i)
(
γ−2B̃1(i)B̃>1 (i)− B̃2(i)B̃>2 (i)

)
X̃(i)

+∑d
j=1 πijX̃(j) + Q̃>(i)Q̃(i) = 0, i = 1, . . . , d.

(17)
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has a stabilising solution
(
X̃(1), . . . , X̃(d)

)
with X̃(i) ≥ 0, i = 1, . . . , d then the stochastic system

with Markov parameters

˙̃x(t) =
(

Ã(η(t)) + B̃2(η(t))F̃(η(t))
)
x(t) + B̃1(η(t))w̃(t) (18)

where F̃(i) = −B̃>2 (i)X̃(i), i = 1, . . . , d, is ESMS and for the initial condition x̃(0) = 0,

E
[∫ ∞

0

(
|ỹ1(t)|2 − γ2|w̃(t)|2

)
dt
]
≤ 0

for all w̃ ∈ L2
η

(
[0, ∞),RN·m1

)
.

(ii) The solution of (17) has the following structure

X̃(i) :=
[
X̃k`
]

k,`=1,...,N where
X̃kk(i) := X1(i) + (N − 1)X2(i)
X̃k`(i) := −X2(i), k, ` = 1, . . . , N, k 6= `,

(19)

in which (X1(1), . . . , X1(d)) and (X2(1), . . . , X2(d)) are the solutions of the Riccati type equations

A>(i)X1(i) + X1(i)A(i) + X1(i)
(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X1(i)

+∑d
j=1 πijX1(j) + C>(i)C(i) = 0, i = 1, . . . , d (20)

and [
A(i) +

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X1(i)

]>X2(i)
+X2(i)

[
(A(i) +

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X1(i)

]
+NX2(i)

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X2(i)

+∑d
j=1 πijX2(j) + P>(i)P(i) = 0, i = 1, . . . , d,

(21)

respectively.
(iii) If the Riccati type systems (20) and (21) have the stabilising solutions (X1(1), . . . , X1(d))

and (X2(1), . . . , X2(d)) respectively, with X1(i) ≥ 0 and X2(i) ≥ 0, i = 1, . . . , d
then

(
X̃(1), ..., X̃(d)

)
with X̃(i) defined in (19), is the stabilising solution of (17) and X̃(i) ≥

0, i = 1, . . . , d.

Proof. Part (i) of the statement is a direct consequence of Theorem 1.
The proof of (ii) is inspired by the arguments given in Theorems 1 and 2 of [26] for

the multi agent linear quadratic control problem in deterministic framework. Thus, the
stabilising solution

(
X̃(1), . . . , X̃(d)

)
of (17) has an N × N blocks structure, each of them

having the size (n× n). Since all the matrix coefficients in (17) are diagonal it follows that
the diagonal and the off-diagonal elements of X̃(i), i = 1, . . . , d are equal, respectively.
Then the diagonal block elements will be denoted by X̃1(i) and the off-diagonal ones by
X̃2(i), i = 1, . . . , d. The blocks (k, `), k, ` ∈ {1, . . . , N} of (17) have the form

A>(i)X̃k`(i) + X̃k`(i)A(i) + ∑N
m=1 X̃km(i)

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X̃m`(i)

+Q̃kl(i) + ∑d
j=1 πijX̃k`(j) = 0.

Denoting X1(i) := X̃1(i) + (N − 1)X̃2(i), i = 1, . . . , d and summing up the terms of the
k-th row of (17) it follows that X1(i), i = 1, . . . , d verifies (20). Further, for any off-diagonal
block (k, `) with k 6= ` and k, ` ∈ {1, . . . , N}, direct computations give(

A(i) +
(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X̃1(i)

)>X̃2(i)
+X̃2(i)

(
A(i) +

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X̃1(i)

)
+(N − 2)X̃2(i)

(
γ−2B1(i)B>1 (i)− B2(i)B>2 (i)

)
X̃2(i)

+Q̃k`(i) + ∑d
j=1 πijX̃2(j) = 0.
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Using the fact that X̃1(i) = X1(i) − (N − 1)X̃2(i) and that Q̃k`(i) = −P>(i)P(i), i =
1, . . . , d from the above equation it follows that X2(i) := −X̃2(i) is a solution of (21).

For part (iii) of the statement, one will prove that the stochastic system

˙̃x(t) =
(

Ã(η(t)) +
(

γ−2B̃1(η(t))B̃>1 (η(t))− B̃2(η(t))B̃>2 (η(t))
)

X̃(η(t))
)

x̃(t) (22)

is ESMS, namely there exist the positive definite matrices S̃(i), i = 1, . . . , d such that(
Ã(η(t)) +

(
γ−2B̃1(η(t))B̃>1 (η(t))− B̃2(η(t))B̃>2 (η(t))

)
X̃(η(t))

)>S̃(i)
+S̃(i)

(
Ã(η(t)) +

(
γ−2B̃1(η(t))B̃>1 (η(t))− B̃2(η(t))B̃>2 (η(t))

)
X̃(η(t))

)
+∑d

j=1 πijS̃(j) < 0, i = 1, . . . , d.
(23)

Since (X1(1), . . . , X1(d)) is the stabilising solution of the Riccati-type system (20) it follows
that the stochastic system

ẋ(t) = (A(η(t)) + M(η(t))X1(η(t)))x(t),

where one denoted M(i) := γ−2B1(i)B>1 (i)− B2(i)B>2 (i), is ESMS and therefore there exist
the positive definite matrices S1(i), i = 1, . . . , d such that

(A(i) + M(i)X1(i))
>S1(i) + S1(i)(A(i) + M(i)X1(i)) +

d

∑
j=1

πijS1(j) < 0. (24)

Similarly, based on the fact that (X2(1), . . . , X2(d)) is the stabilising solution of (21), there
exist the positive definite matrices S2(i), i = 1, . . . , d such that

(A(i) + M(i)(X1(i) + NX2(i)))
>S2(i)

+S2(i)(A(i) + M(i)(X1(i) + NX2(i))) + ∑d
j=1 πijS2(j) < 0, i = 1, . . . , d.

(25)

Define

S̃(i) =


S1(i) + (N − 1)S2(i) −S2(i) . . . −S2(i)
−S2(i) S1(i) + (N − 1)S2(i) . . . −S2(i)
...

...
. . .

...
−S2(i) −S2(i) . . . S1(i) + (N − 1)S2(i)


for which the inequalities (23) become:

P(i) :=


P1(i) P2(i) . . . P2(i)
P2(i) P1(i) . . . P2(i)
...

...
. . .

...
P2(i) P2(i) . . . P1(i)

 < 0, i = 1, . . . , d (26)

where

P1(i) = (A(i) + M(i)(X1(i) + (N − 1)X2(i)))
>(S1(i) + (N − 1)S2(i))

+(S1(i) + (N − 1)S2(i))(A(i) + M(i)(X1(i) + (N − 1)X2(i)))
+(N − 1)(X2(i)M(i)S2(i) + S2(i)M(i)X2(i)) + ∑d

j=1 πij(S1(j) + (N − 1)S2(j))

and

P2(i) = −(A(i) + M(i)(X1(i) + (N − 1)X2(i)))
>S2(i)

−S2(i)(A(i) + M(i)(X1(i) + (N − 1)X2(i)))
−(S1(i) + S2(i))M(i)X2(i)− X2(i)M(i)(S1(i) + S2(i))−∑d

j=1 πijS2(j),
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i = 1, . . . , d. Defining the matrix

T =


In In In . . . In
0 In 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . In


direct computations give

T P(i)T −1 =


P1(i) + (N − 1)P2(i) 0 . . . 0

? P1(i)−P2(i) . . . 0

? ?
. . . 0

? ? . . . P1(i)−P2(i)


in which ∗ denotes irrelevant elements. Due to the triangular structure of the above system
it follows that the spectra of P(i), i = 1, . . . , d is given by the reunion of the spectra of
P1(i) + (N − 1)P2(i) and of P1(i)− P2(i), respectively, i = 1, . . . , d. On the other hand,
one may direcly check that P1(i) + (N − 1)P2(i) coincide with the left hand sides of (24),
i = 1, . . . , d. Further, using the above expressions of P1(i) and P2(i), it follows that

P1(i)−P2(i) = (A(i) + M(i)(X1(i) + NX2(i)))
>(S1(i) + NS2(i))

+(S1(i) + NS2(i))(A(i) + M(i)(X1(i) + NX2(i))) + ∑d
j=1 πij(S1(i) + NS2(i)),

(27)

i = 1, . . . , d. Since (24) remains true if S1(i) are replaced by εS1(i), i = 1, . . . , d for any ε > 0,
from (25) it follows that for a small enough ε > 0, P1(i)−P2(i) < 0. Thus one concludes
that P(i) < 0, i = 1, . . . , d and therefore

(
X̃(1), . . . , X̃(d)

)
is the stabilising solution of the

Riccati system (17). The fact that X̃(i), i = 1, . . . , d given by (19) are positive semidefinite
directly follows taking into account that

T X̃(i)T −1 =


X1(i) 0 . . . 0
? X1(i) + NX2(i) . . . 0

? ?
. . . 0

? ? . . . X1(i) + NX2(i)


and using the assumption that X1(i) and X2(i) are positive semidefinite. Thus the
proof ends.

Remark 3. Based on the expressions of X̃(i) and F̃(i), i = 1, . . . , d, it follows that F̃(i) has the
following structure

F̃(i) =


F1(i) F2(i) . . . F2(i)
F2(i) F1(i) · · · F2(i)

...
. . .

...
...

F2(i) F2(i) . . . F1(i)

 (28)

where

F1(i) = −B2(i)>(X1(i) + (N − 1)X2(i))
F2(i) = B2(i)>X2(i), i = 1, . . . , d.

(29)

4. The Data Packet Dropout Case

From (28) and (29) it follows that the control of each agent is determined as a combina-
tion of its own states and the states of all other network agents. The case when the states of
all agents are available for every agent represents the nominal case and it will be denoted as
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the state i = 1 of the set D. In the case when the state of a certain agent is not available,
the corresponding terms in the control expression of the other agents will be zero which is
equivalent with the fact that F̃2(2) = 0. This case will be associated with the state i = 2 ofD.
Supposing that the communication network fails at a certain moment of time, it follows that
F̃(2) = diag(F1(2), . . . , F1(2)) and X2(2) = 0. The condition X2(2) = 0 is accomplished if
the weights corresponding to the coupling terms in (11) are taken to be zero, namely if
P(2) = 0 and if the corresponding row in the stationary transition rate matrix Π has null
elements. To conclude, in the above considered scenario in which either the communication
network properly works or it completely fails leads to a Markovian model with d = 2 states
of the set D. If the connection with a single agent, let say k is lost then the gain F̃ will have
all extra diagonal elements of the k-th column equal to zero. Similarly, in the case when
the connections with more agents fail, the columns of F̃ corresponding to these agents will
have zero extra diagonal elements; in this situation the Markov chain will have maximum
2N states.

In order to illustrate these ideas one considers a networked system with N = 100
agents whose planar motions are described by the kinematic equations

ẍk(t) = uk(t)
ÿk(t) = vk(t), k = 1, . . . , N

where xk and yk denote the Cartesian coordinates and ui and vi their commanded accelera-
tions, respectively. Two states of the Markov chain have been considered in this example.
The first one corresponds to the case when the communication properly works and the
states of all agents are available for all others; the second state of the Markov chain charac-
terizes the situation in which each agent can only access its own state vector. Assuming that
the quality outputs (denoted in Section 3 by y1k) are

[
xk yk uk vk

]> it follows that
the matrix coefficients in the representation (1) are identical for both states of the Markov
chain, namely

A(i) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, B1(i) =


1 0
0 0
0 1
0 0

, B2(i) =


0 0
1 0
0 0
0 1

,

C(i) =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

, D(i) =


0 0
0 0
1 0
0 1

, i = 1, 2,

only the weights Qk`(i) in the cost function (11) being different for the two states. Thus for
i = 1 one chose Qk` = 100 · I4 (namely P(1) = 102 · I4) and for i = 2, Qk`(2) = 04, for all
k 6= ` . It was assumed that stationary transition rate matrix of η is

Π =

[
−0.5 0.5

0 0

]
.

The elements of the second row of the stationary transition matrix were taken zero in order
to accomplish the condition X2(2) = 0. Indeed, for P(2) = 0 and for π21 = π22 = 0,
the unique stabilising solution of the Riccati system (21) has the form (X2(1), 0) since
(X1(1), X1(2)) is the stabilising solution of (20). The elements of the first row of Π have been
chosen such that the transition from the nominal first state to the second one corresponding
to the network failure takes place in about 5 s as illustrated in Figure 1.
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Figure 1. Transition probabilities: P11(t)-solid line, P12(t)-dash-dotted line.

Solving the Riccati systems (20) and (21) for γ = 100 one obtains

X1(1) =


1.7686 1.2373 0 0
1.2373 1.7379 0 0

0 0 1.7686 1.2373
0 0 1.2373 1.7379

,

X2(1) =


204.1418 2.0204 0 0
2.0204 1.0006 0 0

0 0 204.1418 2.0204
0 0 2.0204 1.0006

,

X1(2) =


1.4147 1.0002 0 0
1.0002 1.4145 0 0

0 0 1.4147 1.0002
0 0 1.0002 1.4145

, X2(2) = 04

resulting the following gains

F1(1) =
[
−20.1631 −10.0793 0 0

0 0 −20.1631 −10.0793

]
,

F2(1) =
[

0.2024 0.1001 0 0
0 0 0.2024 0.1001

]
,

F1(2) =
[
−0.1012 −0.1431 0 0

0 0 −0.1012 −0.1431

]
, F2(2) = 02×4.

Using the aforementioned gains one determined the agents planar trajectories for both cases
when the network communication properly works and the case when it fails, respectively.
Figure 2 presents two snapshots at t = 0.5 s and at t = 2 s obtained for random initial
positions of the agents in both cases. One can see from the two snapshots in the upper half
of the figure, that the matrix gain P giving the coupling between agents is important in
determining a short settling time. By contrast, numerical simulations show that in the case
when the communication network is not available the settling time is about 6.5 s.
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! = 10%&'

! = 0'

t= 0.5 *+, t= 2 *+,

Figure 2. Snapshots for two different coupling weighting matrices of the agents.

5. Concluding Remarks

An optimal H∞ type control method for large-scale multi-agent systems with identical
dynamics and independently actuated is presented. It is shown that regardless the number
of agents, the optimal solution may be obtained solving two systems of algebraic Riccati
equations whose dimension correspond to a single agent. Convergent iterative numerical
procedures are presented and used for a case study revealing the benefits of the coupling
between agents. The proposed design methodology may be also used in applications in
which only some of the links between agents fail. The dimension of the Riccati equations
remains the same but their number increases due to the larger number of states of the
Markov chain. Future research will be devoted to applications in which a sensitivity
analysis with respect to the transition probabilities will be included.
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Appendix A

The following convergent algorithm is used to solve the system of coupled Riccati
equations with definite sign (8), assuming that the stochastic system

ẋ(t) =
(

Ã(η(t)
)
x(t) + B2(η(t))u(t)
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where Ã(i) := A(i) + 1
2 πii In, i = 1, . . . , d, is stabilisable, namely there exist F(1), . . . , F(d)

such that the resulting system obtained for u(t) = F(η(t))x(t), namely

ẋ(t) =
(

Ã(η(t)) + B2(η(t))F(η(t))
)
x(t)

is ESMS.
Step 1. Determine Y(i) > 0 and F̃0(i), i = 1, . . . , d such that

(
Ã(i) + B2(i)F̃0(i)

)
Y(i) + Y(i)

(
Ã(i) + B2(i)F̃0(i)

)>
+

d

∑
j=1,j 6=i

πjiY(j) < 0.

The above system of inequalities may be solved using a linear matrix inequalities (LMIs)
solver, denoting V(i) := F̃0(i)Y(i) and solving the resulting system of LMIs with respect to
V(i) and Y(i) > 0, i = 1, . . . , d. Then, F̃0(i) = V(i)Y−1(i), i = 1, . . . , d.

Step 2. For an arbitrary ε > 0 solve the following system of LMIs(
Ã(i) + B2(i)F̃0(i)

)>Z̃0(i) + Z̃0(i)
(

Ã(i) + B2(i)F̃0(i)
)

+C>(i)C(i) + F̃>0 (i)F̃0(i) + ∑d
j=1,j 6=i πijZ̃0(j) + εIn < 0

with respect to Z̃0(i) > 0, i = 1, . . . , d.
Step 3. With F̃0(i) and Z̃0(i), i = 1, . . . , d determined at Steps 1 and 2, respectively and

with an arbitrary ε > 0, solve iteratively for k ≥ 1 the system of Lyapunov equations(
Ã(i) + B2(i)F̃k−1(i)

)>Z̃k(i) + Z̃k(i)
(

Ã(i) + B2(i)F̃k−1(i)
)

+F̃k−1(i)> F̃k−1(i) + C>(i)C(i) + ε
k+1 In + ∑d

j=1,j 6=i πijZ̃k−1(i) = 0,
F̃k(i) = −B>2 (i)Z̃k(i), i = 1, . . . , d.

Since in [33] it is proved that the sequence Z̃k(i), i = 1, . . . , d tends to the stabilising
solution of (8) when k → ∞, Step 3 will be repeated until ‖Z̃k+1(i)− Z̃k(i)‖, i = 1, . . . , d
are small enough.
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