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Abstract: The intelligent monitoring of tool wear status and wear prediction are important factors
affecting the intelligent development of the modern machinery industry. Many scholars have used
deep learning methods to achieve certain results in tool wear prediction. However, due to the
instability and variability of the signal data, some neural network models may have gradient decay
between layers. Most methods mainly focus on feature selection of the input data but ignore the
influence degree of different features to tool wear. In order to solve these problems, this paper
proposes a dual-stage attention model for tool wear prediction. A CNN-BiGRU-attention network
model is designed, which introduces the self-attention to extract deep features and embody more
important features. The IndyLSTM is used to construct a stable network to solve the gradient decay
problem between layers. Moreover, the attention mechanism is added to the network to obtain
the important information of output sequence, which can improve the accuracy of the prediction.
Experimental study is carried out for tool wear prediction in a dry milling operation to demonstrate
the viability of this method. Through the experimental comparison and analysis with regression
prediction evaluation indexes, it proves the proposed method can effectively characterize the degree
of tool wear, reduce the prediction errors, and achieve good prediction results.

Keywords: tool wear prediction; attention mechanism; signal analysis; machine learning; gated
recurrent unit

1. Introduction

With the continuous improvement and optimization of sensor technology, internet of
things technology, and deep learning algorithms, the development of industrial intelligent
manufacturing systems is more rapid, and constantly moving toward the integration of
various emerging technologies. In the industrial intelligent manufacturing environment,
most of the machining process is the cutting process, which inevitably causes tool wear.
Tool wear refers to a process in which the metal material on the tool surface is continuously
disappearing and the surface morphology is continuously changing due to the mechanical,
chemical, and thermal effects of the cutting process [1].

The tool wear has an important impact on the machining process. When the tool is
worn to the scrap state, but the machining process has still not stopped, it will damage the
workpiece and even break down the machine tool, which may directly affect the processing
efficiency, product quality, and production cost [2,3]. The traditional coping mode is to
change tools at regular intervals, which can cause the waste of materials. In that case, the
coping mode has gradually updated to intelligent tool changing based on the prediction
of tool wear. Changing the severely worn tools through online monitoring and real-time
prediction can not only improve tool utilization rate and processing quality, but also reduce
safety accidents and shutdown rate.
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In recent years, many scholars have conducted a lot of work on tool monitoring. Most
of them are committed to the online monitoring of tool wear status and the prediction of
remaining tool life usefulness. According to different measurement methods, the automatic
monitoring solutions in tool wear can be mainly divided into two types, direct method and
indirect method. The mainstream method is to use different sensors indirectly to collect
digital signals, such as vibration, force, current, and acoustic emission. These signals can
reflect the changes with time about the process of tool wear and can realize online intelligent
monitoring without interrupting the machining process to establish a correlation between
signal data and wear status, which is able to obtain the wear degree of the tool. Obviously,
extracting useful features from original signals is critical for tool wear monitoring, and it
can directly affect the prediction results of the model. Commonly used feature processing
methods are time domain analysis, frequency domain analysis, and time–frequency domain
analysis [4].

With the wide use of deep learning and neural network in various fields, the current
research on tool wear mainly focuses on the combination of feature engineering and deep
learning. Kong et al. [5] optimized the time–frequency statistic features and developed an
artificial neural network model to predict the degree of tool wear. Tao et al. [6] presented a
novel method based on the long short-term memory network (LSTM) and hidden Markov
model to track the flank wear and predict the remaining useful life. Wu et al. [7] proposed a
tool wear prediction model based on singular value decomposition (SVD) and bidirectional
long short-term memory neural network (Bi-LSTM). SVD was used to extract the signal
features from the reconstructed signal matrix. An et al. [8] used sparse auto-encoder and
Pearson correlation coefficient to extract the sensitive features of the original cutting force
signal and used these features to train back propagation neural network.

Although these studies have made great progress to improve the accuracy and reli-
ability of the tool wear prediction model, there are still some limitations. In the feature
extraction process of different sensors, only a few common features are extracted from
experts’ domain knowledge, which can not be applied to more scenes or adjust different
tools. In the process of feature selection, the influence degree between different features
and target wear value is not reflected or ignored. The design of many neural network
structures may cause the gradient attenuation between layers. Due to the instability and
variability of the collected signal, the designed tool wear prediction model is not stable and
accurate enough.

Hence, to solve these problems, and to accurately reflect the change in tool wear
status with time during machining process, a dual-stage attention model is proposed to
predict tool wear online. When the set threshold is reached, the machine will be stopped
intelligently and change new tools. The main contributions of this paper include three parts:

Firstly, to obtain comprehensive signal characteristics, features are extracted from the
collected sensor signals during milling cutter processing through three-domain analysis.
Selecting highly relevant features by using the maximum information coefficient can reduce
the redundant features and improve modelling efficiency.

Secondly, to extract deep features and reflect influence degree of different features, a
network based on convolutional neural network (CNN) and bidirectional gated recurrent
unit (BiGRU) with attention (CBGA) is proposed to encode feature vectors by applying the
self-attention to assign different weights.

Finally, to improve the stability of tool wear prediction model, an IndyLSTM-attention
network is proposed to predict the wear values.

The rest of the paper is organized as follows. Section 2 introduces related works
about the application of deep learning in the tool wear prediction. A dual-stage attention
prediction model is specifically described in Section 3. Section 4 evaluates the performance
of the proposed model by a case study for tool wear prediction in a dry milling operation.
Section 5 is the conclusion section of this paper.
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2. Related Works

With the development of deep learning in the last few years, many deep learning
methods based on predictive analysis have been widely adapted for the process of tool
condition monitoring and tool wear prediction [9–11]. Dai, Zhang, and Meng used a
stacked sparse auto-encoder network to reduce the feature vectors and build a least squares
support vector machine prediction model based on cuckoo optimization parameters [12].
An adaptive method was developed by Cao, Sun, and Zhang by using a deep network
to replace manual feature extraction from signals and proposed an on-line tool wear
monitoring model based on convolution neural networks [13]. Wu, Jennings, and Terpenny
introduced a method based on random forests for tool wear prediction [14]. To realize a
real-time and accurate monitoring of the tool wear in machining process, Kong, Dong, and
Chen presented a model based on the integrated radial basis function with kernel principal
component analysis (KPCA_IRBF) and relevance vector machine (RVM) [15].

Considering the characteristics of the time series and dynamic changes of input data,
the recurrent neural network introduces a cyclic structure, which can model dynamic time
series data better than other neural networks. Therefore, RNN and its variations, such
as LSTM and GRU, have been widely applied to this field of tool wear. For example,
a recurrent neural network based on health indicator (RNN-HI) for RUL prediction of
bearings was proposed by Guo, Li, and Jia [16]. Zhu, Xie, and Li established a tool wear
monitoring model on the basis of long-term and short-term memory neural networks [17].
A deep neural network structure named convolutional bi-directional long short-term
memory (CBLSTM) has been designed to address raw sensory data [18]. It presented a
hybrid prediction scheme to solve long-term prediction problems by a newly developed
deep heterogeneous GRU model, along with local feature extraction [19]. Inspired by the
success of deep learning methods that redefine representation learning from raw data,
Zhao, Wang, and Yan [20] proposed a network named local feature-based gated recurrent
unit (LFGRU). It was a hybrid approach that combined handcrafted feature design with
automatic feature learning for machine health monitoring.

Both GRU and LSTM are special RNN structures, which are proposed to solve the
problems of gradient disappearance in RNN. Although these structures solve the gradient
problems to some extent by using the tanh and sigmoid function as activation function, they
will also cause gradient attenuation between layers. IndyLSTMs (independently recurrent
long short-term memory cells) [21] were proposed on the basis of IndRNN [22], which
adds the gate structure of LSTM. Compared with the traditional LSTM, the cyclic weight is
no longer a full matrix, but a diagonal matrix. In each layer of IndyLSTM, the number of
parameters and nodes shows a linear relationship, while the traditional LSTM is quadratic.
This feature makes the model smaller and faster, and the accuracy of this model is better
than the LSTM model in most cases. Therefore, the IndyLSTM is introduced to build a new
network to solve the problems of gradient attenuation between layers and to obtain a stable
and accurate model for tool wear monitoring.

Moreover, most tool wear prediction models based on the recurrent neural network
mainly focus on the selection of input features, ignoring the influence degree of input
features on the tool wear. The attention mechanism is widely used in various types of
deep learning tasks, such as natural language processing, image recognition, and speech
recognition. As a resource allocation mechanism, it can assign different weights to input
features so that different features containing important information will not disappear with
the increase in time steps, which can highlight the impact of more important information.
In this way, full use of the network can help to study and improve the prediction quality
for a longer period of stability [23].

In summary, existing works have used deep networks instead of traditional methods,
such as manual or machine learning methods, to extract features from signals to improve
the prediction accuracy. However, existing models, such as IndyLSTM, ignore the difference
in the degree of influence of selected input features on tool wear. In addition, existing
methods do not make full use of prior knowledge to improve model performance.
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3. Dual-Stage Attention Prediction Model

The framework of the tool wear prediction model based on dual-stage attention is
shown in Figure 1. The whole model mainly includes three layers: the feature engineering
layer, the deep feature extraction layer, and the model prediction layer. After the initial
feature engineering process to the raw signals, the CBGA network will be used to extract
deep features. Finally, applying the IndyLSTM-Attention model to train and output the
wear values generates a stable model to realize real-time prediction of tool wear.
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3.1. Feature Engineering

The feature engineering layer consists of data cleaning, feature extraction, and feature
selection. In this part, data cleaning mainly includes zero-averaging, removing the trend
term, and normalizing signals. Meanwhile, according to the wavelet packet decomposition
theory, high-frequency noise will be filtered out. Using the common signal analysis methods
on the cleaned data, the statistical features of signal data are extracted from three domains.
Combined with the existing research, this paper integrates time domain, frequency domain,
and time-frequency to analyze the sensor signals comprehensively. After feature fusion, a
preliminary feature selection is conducted on the extracted features. The flow of feature
engineering is shown in Figure 2.
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3.1.1. Feature Exaction: Signal Analysis

Time domain analysis uses time axis as the coordinate to express the relationship
between dynamic signals. It can effectively improve the signal-to-noise ratio and find the
similarity and correlation of signal waveform transformations at different times. These
obtained features can reflect the operating status of mechanical equipment.

Frequency domain analysis transforms the signals to the frequency axis. This method
based on frequency characteristics makes up for the shortcomings of time domain analysis.
It indirectly reveals the time domain performance of signals and easily displays the effect
of system parameters on system performance. In this paper, spectrum analysis is used to
analyze the signals after fast Fourier transform and to extract frequency domain features.

Wavelet analysis is a common time–frequency domain analysis method, which takes
the signal information in both time domain and frequency domain into account. By
analyzing frequency spectrum of sampled signal, the level of wavelet decomposition about
signal is determined. The energy of each frequency band and the total energy entropy are
taken as the time–frequency features after decomposition. In the Formula (1), Fs is the
sampling frequency, n is the number of layers, and fmin is the minimum frequency band.

fmin = Fs/2n+1 (1)

The sampling frequency is 50 kHz, so a five-layer wavelet packet decomposition is
performed. One then takes 25 = 32 frequency band energy and energy entropy as time–
frequency domain features. Thus, the signal analysis selects 13 features in the time domain,
3 features in the frequency domain, and 33 features in the time-frequency domain. In that
case, 49 different features of each sensor channel will be extracted. The main extracted
features are shown in Table 1.

Table 1. The information of extracted features.

Domain Feature Name Formula Feature Name Formula

Time

mean y = 1/n
n
∑

i=1
yi form factor

√
(1/n ∑n

i=1 yi
2)

1/n ∑n
i=1
∣∣yi
∣∣

root mean
square

(
1
n

n
∑

i=1
yi

2
)1/2

spectral kurtosis E
[
{(y− y)/σ}4

]
(√

1/n ∑n
i=1 yi

2
)4

maximum Max{|yi|} spectral skewness E
[
{(y− y)/σ}3

]
(√

1/n ∑n
i=1 yi

2
)4

variance 1
n

n
∑

i=1
(yi − y)2 impulse index Max{|yi|}/y

skewness E
[
{(y− y)/σ}3

]
clearance index Max{|yi|}(

1/n ∑n
i=1
∣∣yi
∣∣)2

kurtosis E
[
{(y− y)/σ}4

]
standard deviation [

1
n

n
∑

i=1
(yi − y)2]1/2

crest factor max(y)−min(y)√
1/n ∑n

i=1 (yi)
2

Frequency

centroid frequency FC =
∑n/2

f=1 f w( f )

∑n/2
f=1 w( f )

frequency
variance

∑n/2
f=1( f − FC)2w( f )

∑n/2
f=1 w( f )

mean square
frequency MSF =

∑n/2
f=1 f 2w( f )

∑n/2
f=1 w( f )

Time-Frequency wavelet energy Ei=1,2,...32 = wt2
∅(i)/n wavelet entropy E = ∑32

i=1 wt2
∅(i)/n
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3.1.2. Feature Selection: Based on MIC

Unnecessary features will reduce training speed and generalization performance of the
test set. In this paper, the features are selected and reduced by the maximum information
coefficient (MIC). MIC can express various linear and non-linear relationships, and its
value range is between 0 and 1. The higher the value, the stronger the correlation, so it
has been widely used to select features in machine learning [24]. The basic principle of
MIC utilizes the concept of mutual information, which is used to measure the degree of
interdependence between two random variables. The mutual information can be explained
as the following equation.

I(x; y) =
∫

p(x, y)log
p(x,y)

p(x)p(y)
2 dxdy (2)

where p (x, y) is the joint probability density function of x and y, p (x) is the marginal
probability density function of x, and p (y) is the marginal probability density function of y.
The calculation formula of MIC is shown in Formula (3):

MIC(x; y) =
max

a ∗ b < B
I(x; y)

logmin(a,b)
2

(3)

In the above formula, a and b are the number of dividing grids in the x and y directions,
B is a variable, and the size of B is generally set to 0.5 or 0.6 power of the total amount of
data. Calculate the maximum information coefficient of tool statistical features and choose
the target number of features according to the correlation and, at last, return the feature
vectors after feature selection.

3.2. Deep Feature Extraction: CBGA Network

In this section, a CNN-BiGRU-attention (CBGA) network is proposed to encode
and mine the deep features. It consists of CNN, Bi-GRU, and the attention mechanism,
expanding the features in two dimensions of space and time.

CNN is a neural network with a deep structure that includes convolution calculations.
It uses local connection and weight sharing to perform a higher-level and more abstract
process on original data and can effectively extract local features of the data. CNN is mostly
used for static output and is difficult for obtaining dynamic characteristics, especially when
the data fluctuate or are unstable.

Bi-GRU can capture long-term dependencies and describe the continuous state output
in time. It is suitable for analyzing time series data because of its memory function. The
bidirectional structure can make full use of historical information and learn the dynamic
laws of both positive and negative directions at the same time.

Simultaneously, self-attention as one of the attention mechanisms can discover the
internal characteristics of sequence data and highlight the important features. Thus, the
self-attention layer is added to obtain final deep features. Based on the above theory, the
CBGA network is designed to further process the feature vectors. Figure 3 shows the whole
structure of the CBGA. As shown in this figure, the CBGA network can be divided into
four parts: the multi-channel convolution layer, the max-pooling layer, the bidirectional
GRU layer, and the attention layer.

Assume that the number of initially extracted features is n. The input data of this
module is a n-dimensional feature vector that uses I[i0, i1, . . . in] to represent this input
vector. Firstly, multi-channel convolution will be performed, it will connect the sequence
results of the output, and it will obtain a t-dimensional vector C[c0, c1, . . . ct], where t = k*f, k
is the number of convolution layers, and f is the number of filters of the convolution neural
network.

The max-pooling operation will be carried out. After that, the full sequence feature
extraction will be conducted on the input through the bidirectional GRU. This part output
G[g0, g1, . . . gm] is the concatenation of the results of forward GRU and backward GRU,
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where m = 2*h, and h is the number of Bi-GRU’s hidden units. At last, the attention value
of each GRU node will be calculated in the attention layer. A weighted feature vector
Z[z0, z1, . . . zm] is obtained as the final deep feature encoding vector.
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Using mathematical formulas to express the self-attention mechanism, the input se-
quence from the Bi-GRU layer is G[g0, g1, . . . gm], and the output sequence is Z[z0, z1, . . . zm].
Obtain three sets of vector sequences through linear transformation:

Q = WQG ∈ Rd3×N (4)

K = WKG ∈ Rd3×N (5)

V = WV G ∈ Rd2×N (6)

where Q, K, and V are query vector sequence, key vector sequence, and value vector
sequence, respectively. WQ,WK, and WV are the parameter matrix that can be learned,
respectively. In the definition of self-attention, Q = K = V = G, so the output vector zi is
calculated as:

zi = att((K, V), qi) = ∑N
j=1 αijvj = ∑N

j=1 so f tmax
(
s
(
k j, qi

))
(7)

where i, j ∈ [1, m] are the positions of the output and input vector sequences, and s
(
k j, qi

)
is a function to calculate the similarity between two vectors.

3.3. Model Prediction: IndyLSTM-Attention

The IndyLSTM-attention model is used in this paper to train and output the prediction.
The model consists of the IndyLSTM network, the attention network, and the fully con-
nected network, and these decode the feature sequences and output the required prediction.
In the common RNN decoding unit, generally only the last sequence is taken from the
output result as the prediction result. However, other sequences in the network structure
are also meaningful. Combining other sequences through the attention mechanism may
help us achieve a better fitting effect.
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Therefore, the Bahdanau attention [25] is added after the IndyLSTM layer. The formula
of Bahdanau attention mechanism is as follows:

att((K, V), q) = ∑N
i=1 αivi = ∑N

i=1
exp(s(ki, q))

∑j exp(s(k j, q))
vi (8)

Input the deep feature results Z [z0, z1, . . . zm] extracted by the CBGA network into the
model. The IndyLSTM-Attention network will output the vector H[h0, h1, . . . hu], where u is
equal to the number of hidden units of the IndyLSTM cell. At the fully connected network,
two layers of fully connected networks are used to get the prediction. The architecture of
the IndyLSTM-Attention model is shown in Figure 4.
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4. Experiments

In this section, an empirical evaluation is conducted to test the performance of the
proposed model. The descriptions of the datasets and experimental setup are introduced in
detail. The proposed model is compared with other common prediction methods to form
the comparison results and discussion.

4.1. Descriptions of Datasets

Open datasets were used to verify the predictive performance of the model, which
were collected from the ball end carbide milling cutter of a high-speed (CNC) machine
operated under dry milling operations [26]. Each training record contains one “wear” file
that lists the flank wear values measured for three cutting edges after each cut in 10−3 mm
and a folder with approximately 300 individual data acquisition files (one for each cut).
The data acquisition files have seven columns of dynamometer, accelerator, and acoustic
emission data. The main equipment and cutting parameters are specifically listed in Table 2.

In the experiment, six independent milling cutters (c1~c6) were used for the full tool
life test. The force sensor, acceleration sensor, and acoustic emission sensor were used
to collect signals, and each tool collected seven channel signals, which include force in
three directions (X, Y, Z), vibration in three directions (X, Y, Z), and AE–RMS. During
the experiment, all the sensor data were collected on a data acquisition card, and the
data acquisition card transmitted all the information to the computer. Meanwhile, in the
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process of cutting the workpiece, the tool would be stopped in every cutting and used the
microscope to measure the wear in the X, Y, and Z directions. The test was terminated
when the tool was severely worn out and could not work anymore. 315 samples were
obtained during the test, taking the average of the flank wear in three directions as the true
value of tool wear estimation, and the unit of the tool wear is 10−3 mm.

Table 2. The main equipment and cutting parameters of milling experiment.

Machine Tool Roders Tech RFM760 Spindle Speed 10,400 r/min

Cutter Ball end Carbide milling Feed rate 1555 mm/min

Milling material Stainless steel HRC52 Cutting width 0.125 mm

Dynamometer Kistler 9265B Cutting depth 0.2 mm

Vibration sensor Kistler 8636C Sampling frequency 50 kHZ

Collector NI DAQ PCI 1200 Charge amplifier Kistler 5019A

Wear gauge Microscope LEICA MZ12 Cooling condition Dry Machining

In the given datasets, c1, c4, and c6 are training data with corresponding wear values,
and c2, c3, and c5 are test data without wear values. Therefore, during the process of model
verification, c1, c4, and c6 were selected as the training dataset. The leave-one-out method
was adopted to achieve cross-validation by using two datasets as training set and using the
rest one for verification. Therefore, three different test cases can be created, denoted as C1,
C4, and C6. The partition of datasets is shown in Table 3.

Table 3. The setup of training and testing data.

Group Training Set Testing Set

C1 c4, c6 c1

C4 c1, c6 c4

C6 c1, c4 c6

4.2. Evaluation Index

In order to quantify the performance of all comparison methods, three commonly
used evaluation indicators were selected to evaluate the regression loss, including mean
absolute error (MAE), root mean square error (RMSE) and the coefficient of determination
(R2 score). Among the selected functions, both the MAE and R2 scores are relatively robust
and insensitive to outliers and noise. On the contrary, RMSE can integrate the advantages
and disadvantages of MSE and MAE, is very sensitive to extremely large or small errors,
and can make the model tend to be optimal.

MAE is the average of absolute values of errors. RMSE is the square root of mean of
all squared errors. These two metrics are calculated as follows:

MAE =
1
n ∑n

i=1|yi − yi| (9)

RMSE =

√
1
n ∑n

i=1(yi − yi)
2 (10)

where yi and yi are true and predicted tool wear values.
The R2 score is the coefficient of determination, reflecting how much of the fluctuation

of y can be described by the fluctuation of x. The value range of the R2 score is between 0
and 1. The closer the value is to 1, the higher the degree of interpretation of the variable.
The expression is as follows:
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R2 = 1− ∑(yi − yi)
2

∑(yi − y)2 , where y =
1
n ∑n

i=1 yi (11)

4.3. Evaluation Setup

The vibration sensor signals were chosen for modeling. According to the part of
feature exaction, the signal analysis was performed from three directions (X, Y, and Z) of
vibration signals. Therefore, 147-dimensional (49*3) features were obtained in total. Then,
the 40 best features were selected with high correlation by MIC, and the feature vectors
were obtained after preprocessing. Meanwhile, the average of the wear value (mm) in three
directions after each cutting was taken as true wear value of the tool. The initial values of
the parameters of the experimental models are set with reference to the pre-trained models.
In the experiment, the parameters are adjusted one by one by fixing other parameters and
fine-tuning one parameter until the optimal result is obtained. The specific structure and
experimental parameter configurations of the model are shown in Table 4.

Table 4. Model structure and parameter configuration of this paper.

Structure Layer

CBGA

Conv1D (filters = 128, kernel_size = 2)
Batch Normalization

Conv1D (filters = 128, kernel_size = 3)
Batch Normalization
Conv1D (filters = 128, kernel_size = 4)
Batch Normalization

MaxPool1D (pool_size = 5, strides = 1)

Bi-GRU (hidden_units = 64)

Self-Attention

Model

IndyLSTM (hidden_units = 128)
Dropout (0.8)
Attention (attention_length = 22)
Fully Connected
Reshape

The IndyLSTM-attention model was also compared with common neural networks
including RNN, LSTM, GRU, IndRNN, and IndyLSTM. These different neural network
methods are used as the model to output tool wear values after training. The input vectors
of these models are extracted by CBGA network, and the size of hidden units in recurrent
neural cells is unified to be the same as 128. The loss function used is mean squared
error (MSE). Stochastic gradient descent (SGD) is adopted as an optimizer algorithm to
train the models. During the training process, by using the estimator to build a deep
recurrent network model, it can easily configure, train, and evaluate various machine
learning models.

4.4. Experimental Evaluation

This section shows the results of comparison experiments and makes a brief analysis.
This gives the prediction curves of the proposed method for three different test sets, as
shown in Figure 5. In the figure, the broken line is the actual value of tool wear, the smooth
curve is the predicted value of tool wear, and the bottom histogram is the error between
the predicted value and the true value.
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Figure 5. The tool wear prediction curve of a dual-stage attention model.

Table 5 shows all the results of common methods on three test cases, including the
RMSE, MAE and R2 score.

Table 5. The MAE, RMSE and R2 for all methods for three test cases.

Models
C1 C4 C6

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

RNN 7.111 5.611 0.955 2.360 1.983 0.993 6.080 5.060 0.979

LSTM 6.535 4.391 0.959 2.414 2.024 0.992 5.757 4.130 0.981

GRU 6.378 4.855 0.963 2.020 1.731 0.994 5.568 4.150 0.983

IndRNN 6.216 5.129 0.964 2.037 1.702 0.995 5.728 4.537 0.982

IndyLSTM 6.180 4.499 0.965 1.977 1.632 0.995 4.485 3.745 0.988

IndyLSTM-Att 5.796 4.242 0.970 1.822 1.406 0.996 3.681 2.776 0.992

The bold face indicates the best performance.

Figure 6 shows the error area between the true wear values and the predicted values.
The area chart can clearly display the error size of each prediction model.
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In order to show the comparison results more intuitively, the average performance of
six methods is calculated for three test cases, as shown in Table 6. The average performance
comparison histogram of three cases is shown in Figure 7.

Table 6. The average performance of the three cases.

Models RMSE MAE R2

RNN 5.184 4.218 0.976

LSTM 4.902 3.515 0.977

GRU 4.655 3.579 0.980

IndRNN 4.660 3.789 0.980

IndyLSTM 4.214 3.292 0.983

IndyLSTM-Att 3.766 2.808 0.986
The bold face indicates the best performance.

Entropy 2022, 24, x FOR PEER REVIEW 12 of 14 
 

 

Table 6. The average performance of the three cases. 

Models RMSE MAE 𝐑𝟐 
RNN 5.184 4.218 0.976 
LSTM 4.902 3.515 0.977 
GRU 4.655 3.579 0.980 

IndRNN 4.660 3.789 0.980 
IndyLSTM 4.214 3.292 0.983 

IndyLSTM-Att 3.766 2.808 0.986 
The bold face indicates the best performance. 

 
Figure 7. The area chart of error absolute value of six models for three cases. 

Overall, the model proposed by this paper has a good fitting effect, and the curves 
basically match the true data from Figure 5. The prediction of C4 and C6 is better than C1. 
According to the comparison results of Tables 5 and 6, the IndyLSTM-attention in three 
indicators has the best performance. It can be observed that the IndyLSTM and In-
dyLSTM-attention outperforms the RNN, LSTM, and GRU neural network in three cases. 
This shows that independently recurrent long short-term memory networks perform bet-
ter than traditional recurrent neural networks in this situation. Meanwhile, the compari-
son between the results of IndyLSTM and IndyLSTM-attention also shows that all indica-
tors have been improved to a certain extent. Therefore, it can be concluded that the accu-
racy of prediction can be improved by adding an attention layer to the predictive model. 

Further analysis is seen through the error area chart, the area where the prediction 
error of the proposed model is the smallest. At the same time, the model is found to have 
large fluctuations at the beginning and at the end of the tool prediction, and the error of 
other stages is small. Finally, through the histogram, the differences between different 
models can be observed. RMSE and MAE of the proposed model are much smaller than 
in the other models. 

5. Conclusions 
In this paper, an IndyLSTM model with a self-attention mechanism is proposed in 

order to solve the problem that existing deep learning methods ignore (the different in-
fluences of the degree of input features on tool wear in the process of intelligent tool wear 
monitoring). By using the 2010 PHM Society Conference Data Challenge open datasets, 
the proposed model has achieved better performance than common regression prediction 
methods in all three evaluation criteria (MAE, RMSE, and R  score). Through experi-
mental verification, there are two main findings obtained. 
(1) By applying the self-attention mechanism in the deep feature extraction and tool 

wear prediction model to assign different weights to different input features, perfor-
mance of the prediction model for tool wear can be effectively improved. 

Figure 7. The area chart of error absolute value of six models for three cases.

Overall, the model proposed by this paper has a good fitting effect, and the curves
basically match the true data from Figure 5. The prediction of C4 and C6 is better than
C1. According to the comparison results of Tables 5 and 6, the IndyLSTM-attention in
three indicators has the best performance. It can be observed that the IndyLSTM and
IndyLSTM-attention outperforms the RNN, LSTM, and GRU neural network in three cases.
This shows that independently recurrent long short-term memory networks perform better
than traditional recurrent neural networks in this situation. Meanwhile, the comparison
between the results of IndyLSTM and IndyLSTM-attention also shows that all indicators
have been improved to a certain extent. Therefore, it can be concluded that the accuracy of
prediction can be improved by adding an attention layer to the predictive model.

Further analysis is seen through the error area chart, the area where the prediction
error of the proposed model is the smallest. At the same time, the model is found to have
large fluctuations at the beginning and at the end of the tool prediction, and the error of
other stages is small. Finally, through the histogram, the differences between different
models can be observed. RMSE and MAE of the proposed model are much smaller than in
the other models.

5. Conclusions

In this paper, an IndyLSTM model with a self-attention mechanism is proposed
in order to solve the problem that existing deep learning methods ignore (the different
influences of the degree of input features on tool wear in the process of intelligent tool wear
monitoring). By using the 2010 PHM Society Conference Data Challenge open datasets,
the proposed model has achieved better performance than common regression prediction
methods in all three evaluation criteria (MAE, RMSE, and R2 score). Through experimental
verification, there are two main findings obtained.
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(1) By applying the self-attention mechanism in the deep feature extraction and tool wear
prediction model to assign different weights to different input features, performance
of the prediction model for tool wear can be effectively improved.

(2) By combining prior experience, the feature selection method using the maximum
information coefficient can effectively reduce redundant features, which shows an
ability to improve modeling efficiency.

However, the features used in this paper are a combination of time domain, frequency
domain, and deep learning features, wherein the time and frequency domain features are
dependent on prior knowledge. The future work is to select better time and frequency
domain features and better feature selection criteria to further improve the performance of
the model.
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