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Abstract: An electron moving at velocities much lower that the speed of light with a spin, is described
by a wave function which is a solution of Pauli’s equation. It has been demonstrated that this system
can be viewed as a vortical fluid which has remarkable similarities but also differences with classical
ideal flows. In this respect, it was shown that the internal energy of the Pauli fluid can be interpreted,
to some degree, as Fisher Information. In previous work on this subject, electromagnetic fields which
are represented by a vector potential were ignored, here we remove this limitation and study the
system under general electromagnetic interaction.
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1. Introduction

Quantum mechanics is usually interpreted by the Copenhagen school approach. The
Copenhagen approach defies the ontology of the quantum wave function and declares it to
be completely epistemological (a tool for estimating probability of certain measurements)
in accordance with the Kantian [1] conception of reality, and its denial of the human ability
to grasp any thing “as it is” (ontology). However, historically we also see the development
of another school of prominent scholars that interpret quantum mechanics quite differently.
This school believed in the reality of the wave function. In their view, the wave function
is part of reality in a similar sense as an electromagnetic field is. This approach, that was
supported by Einstein and Bohm [2–4], has resulted in other interpretations of quantum
mechanics; among them is the fluid realization championed by Madelung [5,6], which
stated that the modulus square of the wave function is a fluid density and the phase is a
potential of the velocity field of the fluid. More recently quantum macroscopic models were
derived from a Wigner–Boltzmann equation using a diffusion scaling. It was shown in
analogy to the semi-classical situation, that quantum hydrodynamic models can be derived
by employing a hydrodynamic scaling [7]. However, this approach was constrained to
wave functions of spinless electrons and could not take into account a complete set of
attributes even for slow moving (with respect to the speed of light) electrons.

A non-relativistic quantum equation for a spinor was first introduced by Wolfgang
Pauli in 1927 [8]. This equation is based on a two-dimensional operator Hamiltonian
matrix. The two-dimensional operator Hamiltonians matrices are currently abundant in
the literature ([9–22]) and describe many types of quantum systems. It is natural to inquire
whether such a theory can be given a fluid dynamical interpretation. This question is
of great importance as supporters of the non-realistic Copenhagen school of quantum
mechanics usually use the spin concept as a proof that nature is inherently quantum and,
thus, has elements without classical analogue or interpretation. A Bohmian analysis of the
Pauli equation was given by Holland and others [3], however, the analogy of the Pauli
theory to fluid dynamics and the notion of spin vorticity were not considered. This state of
affairs was corrected in [23] for an ensemble of particles based on the Wigner approach and
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was applied to Graphene. In [24], spin fluid dynamics was introduced for a single electron
with a spin. Here, we mention that a kinetic approach, which can, in principle, lead to a
fluid formalism, was suggested by [25], in which an approach to the spin-state description
by means of the probability distributions of dichotomic random variables was introduced.

The interpretation of Pauli’s spinor in terms of fluid density and velocity variables
leads us directly to the nineteenth century seminal work of Clebsch [26,27], which is
strongly related to the variational analysis of fluids. Variational principles for barotropic
fluid dynamics are described in the literature. A four function variational principle for an
Eulerian barotropic fluid was depicted by Clebsch [26,27] and much later by Davidov [28]
whose main purpose was to quantize fluid dynamics. The work was written in Russian,
and was largely unknown in the West. Lagrangian fluid dynamics (which takes a different
approach than Eulerian fluid dynamics) was given a variational description by Eckart [29].
Ignoring both the work of Clebsch (written in German) and the work of Davidov (written
in Russian) initial attempts in the English written literature to formulate Eulerian fluid
dynamics using a variational principle, were given by Herivel [30], Serrin [31], and Lin [32].
However, the variational principles developed by the above authors were cumbersome,
relying on quite a few “Lagrange multipliers” and auxiliary “potentials”. The total number
of independent functions in the above formulations are from 11 to 7, which are much more
than the four functions required for the Eulerian and continuity equations of a barotropic
flow. Thus, those methods did not have practical use. Seliger and Whitham [33] have
reintroduced the variational formalism of Clebsch depending on only four variables for
barotropic flow. Lynden-Bell and Katz [34] have described a variational principle in terms
of two functions the load λ and density ρ. However, their formalism contains an implicit
definition for the velocity ~v, such that one is required to solve a partial differential equation
in order to obtain both ~v in terms of ρ and λ, as well as its variations. Much the same
criticism holds for their general variational for non-barotropic flows [35]. Yahalom and
Lynden-Bell [36] overcame the implicity definition limitation by paying the price of adding
an additional single variational variable. This formalism allows arbitrary variations (not
constrained) and the definition of ~v is explicit.

A fundamental issue in the fluid interpretation of quantum mechanics still remains.
This refers to the meaning of thermodynamic quantities. Thermodynamics concepts, such
as specific enthalpy, pressure, and temperature are related to the specific internal energy
defined by the equation of state as a unique function of entropy and density. The internal
energy is a part of any Lagrangian density related to fluid dynamics. The internal energy
functional can, in principle, be explained on the basis of the microscopic composition of
the fluid using statistical physics. That is the atoms and molecules from which the fluid is
composed and their interactions impose an equation of state. However, a quantum fluid
has no structure and yet the equations of both the spinless [5,6] and spin [24] quantum
fluid dynamics shows that terms analogue to internal energies appear. One, thus, is forced
to inquire where do those internal energies originate? Of course one cannot suggest that
the quantum fluid has a microscopic sub-structure as this will defy current empirical
evidence, suggesting that the electron is a point particle. The answer to this question
comes from an entirely different scientific discipline known as measurement theory [37,38].
Fisher information is a basic notion of measurement theory, and is a figure of merit of
a measurement quality of any quantity. It was demonstrated [38] that this notion is the
internal energy of a spinless electron (up to a proportionality constant) and can be used to
partially interpret the internal energy of an electron with spin. Here, we should mention
an attempt to derive most physical theories from Fisher information as described by
Frieden [39]. It was suggested [40] that there exist a velocity field such that the Fisher
information will be given a complete explanation for the spin fluid internal energy. It was
also suggested that one may define comoving scalar fields as in ideal fluid mechanics,
however, this was only demonstrated implicitly but not explicitly. A common feature of
previous work on the fluid and Fisher information interpretation of quantum mechanics,
is the negligence of electromagnetic interaction thus setting the vector potential to zero.
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This makes sense as the classical ideal fluids discussed in the literature are not charged.
Hence, in order to make the comparison easier to comprehend the vector potential should
be neglected. However, one cannot claim a complete description of quantum mechanics
lacking a vector potential thus ignoring important quantum phenomena, such as the
Zeeman effect, which depends on a vector potential through the magnetic field.

We will begin this paper by introducing the Eulerian–Clebsch variational principle
for a charged fluid (A variational principle for a charged classical particle with a vector
potential interaction, a system of the same, and the Eckart [29] Lagrangian variational
principles generalized for a charged fluid are given in the Appendices A and B). Next, we
will introduce the Fisher information and the concept of probability amplitude. This will be
followed by a discussion of Schrödinger equation with a non-trivial vector potential and its
interpretation in terms of Madelung fluid dynamics. The variational principle of a charged
Madelung fluid dynamics will be described and its relations to Fisher information will
be elucidated. Then, we introduce Pauli’s equation with a vector potential and interpret
it in terms of generalized Clebsch variables and discuss the similarities and differences
between a charged Clebsch flow and spin fluid dynamics and their variational principles.
Finally, the concept of Fisher information will be introduced in the framework of spin fluid
dynamics.

2. An Eulerian Charged Fluid—The Clebsch Approach

In this section, we follow closely the analysis of [24] with the modification of taking
into account the electromagnetic interaction, which was neglected in our previous work.
Consider the action:

A ≡
∫
Ld3xdt, L ≡ L0 + L2 + Li

L0 ≡ ρ(
1
2

v2 − ε), L2 ≡ ν[
∂ρ

∂t
+ ~∇ · (ρ~v)]− ρα

dβ

dt
(1)

Li = ρc

(
~A ·~v− ϕ

)
In the Eulerian approach, we consider the variational variables to be fields, that are functions
of space and time. We have two such variational variables the vector velocity field ~v(~x, t)
and density scalar field ρ(~x, t). The conservation of quantities, such as the label of the fluid
element, mass, charge, and entropy are dealt by introducing Lagrange multipliers ν, α in
such a way that the variational principle will yield the following equations:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0

dβ

dt
= 0 (2)

Provided ρ is not null those are just the continuity equation which ensures mass conser-
vation and the conditions that β is comoving and is, thus, a label, further analysis to be
described below shows that α is a label too. This is why in the Eulerian approach we
are obliged to add the Lagrangian density L2. The specific internal energy ε defined in
Equation (A24) is dependent on the thermodynamic properties of the specific fluid. It
generally depends, through a given “equation of state”, on the density and specific entropy.
In our case, we shall assume a barotropic fluid, that is a fluid in which ε(ρ) is a function of
the density ρ only. Other functions connected to the electromagnetic interaction, such as
the potentials ~A, ϕ are assumed given function of coordinates and are not varied. Another
simplification which we introduce is the assumption that the fluid element is made of
microscopic particles having a given mass m and a charge e, in this case it follows from
Equation (A57) that:

ρc = kρ. (3)
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Let us take an arbitrary variational derivative of the above action with respect to ~v,
this will result in:

δ~v A =
∫

d3xdtρδ~v · [~v− ~∇ν− α~∇β + k~A]

+
∮

d~S · δ~vρν +
∫

d~Σ · δ~vρ[ν], (4)

the above boundary terms contain integration over the external boundary
∮

d~S and an
integral over the cut

∫
d~Σ that must be introduced in case that ν is not single valued. The

external boundary term vanishes; in the case of astrophysical flows, for which ρ = 0
on the free flow boundary, or the case in which the fluid is contained in a vessel which
induces a no flux boundary condition δ~v · n̂ = 0 (n̂ is a unit vector normal to the boundary).
The cut “boundary” term vanish when the velocity field varies only parallel to the cut
that is it satisfies a Kutta type condition. If the boundary terms vanish, ~v must have the
following form:

~v = ~̂v ≡ α~∇β + ~∇ν− k~A (5)

this is a generalization of Clebsch representation of the flow field (see for example [29],
(page 248, [41])) for a charged flow. The vorticity of such a flow is:

~ω = ~∇×~v = ~∇α× ~∇β− k~B (6)

in which we have taken into account the definition of the magnetic field given in Equation (A6).
Let us now take the variational derivative with respect to the density ρ, we obtain:

δρ A =
∫

d3xdtδρ[
1
2
~v2 − w− ∂ν

∂t
−~v · ~∇ν + k(~A ·~v− ϕ)]

+
∮

d~S ·~vδρν +
∫

d~Σ ·~vδρ[ν] +
∫

d3xνδρ|t1
t0

(7)

in which w = ∂(ρε)
∂ρ is the specific enthalpy (see Equation (A33)). Hence, provided that

δρ vanishes on the boundary of the domain, on the cut and in initial and final times the
following equation must be satisfied:

dν

dt
=

∂ν

∂t
+~v · ~∇ν =

1
2
~v2 − w + k(~A ·~v− ϕ) (8)

In the above, we notice that taking a time derivative for a fixed label~α (also known as a
material derivative) of any quantity g takes the form:

dg(~α, t)
dt

=
dg(~x(~α, t), t)

dt
=

∂g
∂t

+
d~x
dt
· ~∇g =

∂g
∂t

+~v · ~∇g (9)

once g is considered to be a field dependent on ~x, t. Finally we have to calculate the
variation with respect to β, this will lead us to the following results:

δβ A =
∫

d3xdtδβ[
∂(ρα)

∂t
+ ~∇ · (ρα~v)]

−
∮

d~S ·~vραδβ−
∫

d~Σ ·~vρα[δβ]−
∫

d3xραδβ|t1
t0

(10)

Hence, choosing δβ in such a way that the temporal and spatial boundary terms vanish
(this includes choosing δβ to be continuous on the cut if one needs to introduce such a cut)
in the above integral will lead to the equation:

∂(ρα)

∂t
+ ~∇ · (ρα~v) = 0 (11)
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Using the continuity Equation (2) this will lead to the equation:

dα

dt
= 0 (12)

Hence, for ρ 6= 0, both α and β are comoving coordinates.

2.1. Euler’s Equations

We shall now show that a velocity field given by Equation (5), such that the functions
α, β, ν satisfy the corresponding Equations (2), (8) and (12) must satisfy Euler’s equations.
Let us calculate the material derivative of ~v:

d~v
dt

=
d~∇ν

dt
+

dα

dt
~∇β + α

d~∇β

dt
− k

d~A
dt

(13)

It can be easily shown that:

d~∇ν

dt
= ~∇dν

dt
− ~∇vn

∂ν

∂xn
= ~∇(1

2
~v2 − w + k~A ·~v− kϕ)− ~∇vn

∂ν

∂xn

d~∇β

dt
= ~∇dβ

dt
− ~∇vn

∂β

∂xn
= −~∇vn

∂β

∂xn
(14)

In which xn is a Cartesian coordinate and a summation convention is assumed. Inserting
the result from Equations (14) into Equation (13) yields:

d~v
dt

= −~∇vn(
∂ν

∂xn
+ α

∂β

∂xn
) + ~∇(1

2
~v2 − w + k~A ·~v− kϕ)− k

d~A
dt

= −~∇vn(vn + kAn) + ~∇(1
2
~v2 − w + k~A ·~v− kϕ)− k∂t ~A− k(~v · ~∇)~A

= −~∇w + k~E + k(vn~∇An − vn∂n ~A), (15)

in the above we have used the electric field defined in Equation (A6). We notice that
according to Equation (A7):

(vn~∇An − vn∂n ~A)l = vn(∂l An − ∂n Al) = εlnjvnBj = (~v× ~B)l , (16)

Hence, we obtain the Euler equation of a charged fluid in the form:

d~v
dt

= −~∇w + k
[
~v× ~B + ~E

]
= −1

ρ
~∇P + k

[
~v× ~B + ~E

]
, (17)

since in a barotropic fluid (see Equation (A34)):

~∇w =
∂w
∂ρ

~∇ρ =
1
ρ

∂P
∂ρ

~∇ρ =
1
ρ
~∇P. (18)

The above equation is identical to Equation (A56) and, thus, proves that the Euler equations
can be derived from the action given in Equation (2) and, hence, all the equations of charged
fluid dynamics can be derived from the above action without restricting the variations in
any way.

2.2. Simplified Action

The reader of this paper might argue that the authors have introduced unnecessary
complications to the theory of fluid dynamics by adding three more functions α, β, ν to the
standard set ~v, ρ. In the following, we will show that this is not so and the action given in
Equation (2) in a form suitable for a pedagogic presentation can indeed be simplified. It
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is easy to show that the Lagrangian density appearing in Equation (2) can be written in
the form:

L = −ρ[
∂ν

∂t
+ α

∂β

∂t
+ ε(ρ) + kϕ] +

1
2

ρ[(~v− ~̂v)2 − ~̂v2]

+
∂(νρ)

∂t
+ ~∇ · (νρ~v) (19)

In which ~̂v is a shorthand notation for ~∇ν + α~∇β− k~A (see Equation (5)). Thus L has three
contributions:

L = L̂+ L~v + Lboundary

L̂ ≡ −ρ[
∂ν

∂t
+ α

∂β

∂t
+ ε(ρ) + kϕ +

1
2
(~∇ν + α~∇β− k~A)2]

L~v ≡ 1
2

ρ(~v− ~̂v)2

Lboundary ≡ ∂(νρ)

∂t
+ ~∇ · (νρ~v) (20)

The only term containing ~v is L~v, it can easily be seen that this term will lead, after we
nullify the variational derivative, to Equation (5) but will otherwise have no contribution
to other variational derivatives. Notice that the term Lboundary contains only complete
partial derivatives and, thus, cannot contribute to the equations although it can change the
boundary conditions. Hence, we see that Equations (2), (8) and (12) can be derived using
the Lagrangian density L̂ in which ~̂v replaces ~v in the relevant equations. Furthermore,
after integrating the four Equations (2), (8) and (12) we can insert the potentials α, β, ν into
Equation (5) to obtain the physical velocity ~v. Hence, the general barotropic fluid dynamics
problem is changed such that instead of solving the Euler and continuity equations we
need to solve an alternative set which can be derived from the Lagrangian density L̂.

The Lagrangian density L̂ has two manifest properties that will repeat in both
Schrodinger and Pauli quantum mechanics, but are not evident in other formulations
of classical mechanics. First, it contains a term quadratic in the vector potential ~A, this
cannot be found in classical Lagrangians which are described in previous sections, in those
cases the Lagrangians are always linear in ~A. Second, the gauge freedom described in
Equation (A15) is preserved by redefining the variation variable:

ν′ = ν− kΛ. (21)

However, before we discuss quantum theory a remark on Fisher information is required.

3. Fisher Information

Let there be a random variable X with probability density function (PDF) fX(x). The
Fisher Information for a PDF which is translationaly invariant is given by the form:

FI =
∫

dx
(

d fX
dx

)2 1
fX

(22)

It was shown [37,39] that the standard deviation σX of any random variable is bounded
from below, such that:

σX ≥ σXmin =
1
FI

(23)

Hence, the higher the Fisher information we have about the variable, the smaller standard
deviation we may achieve and, thus, our knowledge about the value of this random variable
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is greater. This is known as the Cramer Rao inequality. Fisher information is most elegantly
introduced in terms of the probability amplitude:

fX = a2 ⇒ FI = 4
∫

dx
(

da
dx

)2
(24)

In this work, we will be interested in a three-dimensional random variable designating the
position of an electron, hence:

FI =
∫

d3x
(
~∇ f~X

)2 1
f~X

= 4
∫

d3x
(
~∇a
)2
≡
∫

d3xFI (25)

In the above, FI ≡ 4
(
~∇a
)2

is the Fisher information density. The Fisher information is the
only intuitive reason to consider a “probability density amplitude” a notion which is quite
important in quantum mechanics as it is also the amplitude of the quantum wave function
to be described in the next section.

4. Schrödinger’s Theory Formulated in Terms of Fluid Mechanics
4.1. Background

Quantum mechanics has lost faith in our ability to predict precisely the whereabouts
of even a single particle. What the theory does predict precisely is the evolution in time of
a quantity denoted “the quantum wave function”, which is related to a quantum particle
whereabouts in a statistical manner. This evolution is described by an equation suggested
by Schrödinger [42]:

ih̄ψ̇ = Ĥψ, Ĥ = − 1
2m

(
h̄~∇− ie~A

)2
+ eϕ (26)

in the above i =
√
−1 and ψ is the complex wave function. ψ̇ = ∂ψ

∂t is the partial time
derivative of the wave function. h̄ = h

2π is Planck’s constant divided by 2π and m is the
particles mass. The Lagrangian density L for the non-relativistic electron is written as:

LS =
1
2

ih̄(ψ∗ψ̇− ψ̇∗ψ)− ψ∗Ĥψ (27)

A straightforward variation of the action:

AS ≡
∫ t2

t1
LSdt ≡

∫ t2

t1

∫
LSd3xdt (28)

with respect to ψ∗ will lead to Equation (26) (while a variation with respect to ψ will lead
to a complex conjugate of the same). However, this presentation of quantum mechanics
is rather abstract and does not give any physical picture regarding the meaning of the
quantities involved. Thus, we write the quantum wave function using its modulus a and
phase φ:

ψ = aeiφ (29)

the Lagrangian density takes the form:

LS = − h̄2

2m
[(~∇a)2 + a2(~∇φ)2]− ea2 ϕ− h̄a2 ∂φ

∂t
+ ea2 ~A ·~vS +

e2

2m
a2 A2 (30)

in we define:
~vS =

h̄
m
~∇φ− e

m
~A (31)
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The variational derivative of this with respect to φ yields the continuity equation :

δAS
δφ

= 0→ ∂ρ̂

∂t
+ ~∇ · (ρ̂~vS) = 0 (32)

in which the mass density is defined as:

ρ̂ = ma2. (33)

Hence, ~vS field is the velocity associated with the probability, charge, and mass flow.
Variationally deriving with respect to a leads to the Hamilton Jacobi equation:

δAS
δa

= 0→ ∂S
∂t

+
1

2m

(
~∇S− e~A

)2
+ eϕ =

h̄2∇2a
2ma

(34)

in which: S = h̄φ. The right-hand side of the above equation contains the “quantum
correction”. These results are elementary, but their derivation illustrates the advantages
of using the two variables, phase and modulus, to obtain equations of motion that have a
substantially different form than the familiar Schrödinger equation (although having the
same mathematical content) and have straightforward physical interpretations [2]. The
interpretation is, of course, connected to the modulus being a physical observable (by
Born’s interpretational postulate) and to the phase having a similar though somewhat more
problematic status (The “observability” of the phase has been discussed in the literature by
various sources, e.g., in [43] and, in connection with a recent development, in [11,13]).

4.2. Similarities Between Potential Fluid Dynamics and Quantum Mechanics

In writing the Lagrangian density of quantum mechanics in the modulus-phase repre-
sentation, Equation (30), one notices a striking similarity between this Lagrangian density
and that of potential fluid dynamics (fluid dynamics without vorticity), as represented in
the work of Clebsch [33]. The connection between fluid dynamics and quantum mechanics
of an electron was already discussed by Madelung [5] and in Holland’s book [3]. How-
ever, the discussion by Madelung refers to the equations only, and does not address the
variational formalism which was discussed in [24] and is repeated here with the important
addition of an electromagnetic interaction.

If a flow satisfies the condition of zero vorticity in the absence of a magnetic field, i.e.,
the velocity field ~v is such that ~∇×~v = 0, then there exists a function ν, such that ~v = ~∇ν.
The above statement is equivalent to taking a Clebsch representation of the velocity field
but with α = β = 0. In that case, following Equation (20), one can describe the fluid
mechanical system with the following Lagrangian density:

L̂ = −[∂ν

∂t
+

1
2
(~∇ν− k~A)2 + ε(ρ) + kϕ]ρ (35)

by inserting α = β = 0 in L̂ [38]. Taking the variational derivative with respect to ν and ρ,
one obtains the following equations:

∂ρ

∂t
+ ~∇ · (ρ(~∇ν− k~A)) = 0 (36)

∂ν

∂t
= −1

2
(~∇ν− k~A)2 − w− kϕ. (37)

The first of those equations is the continuity equation, while the second is Bernoulli’s
equation.
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Going back to the quantum mechanical system described by Equation (30), we intro-
duce the following variable: ν̂ = h̄φ

m = S
m . In terms of these new variables, the Lagrangian

density in Equation (30) will take the form:

LS = −[∂ν̂

∂t
+

1
2
(~∇ν̂− k~A)2 +

h̄2

2m2
(~∇
√

ρ̂)2

ρ̂
+ kϕ]ρ̂ (38)

When compared with Equation (35) the following correspondence is noted:

ν̂⇔ ν, ρ̂⇔ ρ,
h̄2

2m2
(~∇
√

ρ̂)2

ρ̂
⇔ ε. (39)

The quantum “internal energy”:

εq ≡
h̄2

2m2
(~∇
√

ρ̂)2

ρ̂
(40)

depends also on the derivative of the density and in this sense it is non-local. This is
unlike the fluid case, in which internal energy is a function of the mass density only.
However, in both cases, the internal energy is a positive quantity. Unlike classical systems,
in which the Lagrangian is quadratic in the time derivatives of the degrees of freedom
(see Equation (A1)), the Lagrangians of both quantum and Eulerian fluid dynamics are
linear in the time derivatives of the degrees of freedom. We also note that gauge freedom
is preserved (see Equation (A15)) provided that the variational quantum potential ν̂ (or
quantum phase) is redefined as:

ν̂′ = ν̂− kΛ, φ′ = φ− e
h̄

Λ, (41)

this means that the global phase of a quantum wave function does not have a physical
meaning, in contrast to the quantity ~vS that does (see Equation (31)), as it is invariant under
gauge transformations. Finally, we note that the concept of quantum internal energy is
closely related to the concept of quantum potential [3] (see the right side of Equation (34)):

Q = − h̄2

2m

~∇2√ρ̂√
ρ̂

. (42)

Additionally, also that in the limit h̄→ 0 Schrödinger’s quantum mechanics is essentially a
potential fluid flow without pressure or internal energy.

4.3. Madelung Flows in Terms of Fisher Information

As explained in the introduction, the quantum Madelung flow does not have a mi-
crostructure that will explain its internal energy. To understand the origins of this term
let us look at the internal energy of Equation (38), the term appearing in the Lagrangian
density has the form:

ρ̂εq =
h̄2

2m2 (
~∇
√

ρ̂)2 =
h̄2

2m
(~∇a)2. (43)

Comparing this to Equation (25) we arrive at the result:

ρ̂εq =
h̄2

8m
FIq. FIq ≡ 4(~∇a)2 (44)

Thus, the Lagrangian density of the Madelung flow can be written as:

L = −[∂ν̂

∂t
+

1
2
(~∇ν̂− k~A)2 + kϕ]ρ̂− h̄2

8m
FIq (45)
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The pre-factor h̄2

8m seems to appear in every case in which Fisher information appears in a
quantum Lagrangian and may be significant. This is the case, also, in spin fluid dynamics,
as will be shown in the next section.

Thus, Schrödinger’s fluid differ from a classical potential flow in that it takes into
account Fisher information as a driving force, and its “fluid element” lacks an internal
energy, that is, it is truly microscopic and has no structure. Thus, when written explicitly in
terms of physical quantities and not mere abstractions, quantum mechanics reveals itself as
a theory that takes into account information gain (or loss) as a force of nature. We conclude
this section by quoting Anton Zeilinger’s recent remark to the press, that it is quantum
mechanics that demonstrates that information is more fundamental than space-time.

5. Spin

Schrödinger’s quantum mechanics is limited to the description of spinless particles
and its fluid dynamics representation is limited to zero vorticity (for the zero magnetic field
case) potential flows. This suggests that a quantum theory of particles with spin may have
a fluid dynamics representation which cannot be described solely by using ν̂ and requires
the full Clebsch apparatus. The Pauli equation for a non-relativistic particle with spin is
given by:

ih̄ψ̇ = Ĥψ, Ĥ = − h̄2

2m
[~∇− ie

h̄
~A]2 + µ~B ·~σ + eϕ (46)

ψ here is a two-dimensional complex column vector (also denoted as spinor), Ĥ is a two-
dimensional hermitian operator matrix, µ is the magnetic moment of the particle. ~σ is a
vector of two-dimensional Pauli matrices which can be represented as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(47)

A spinor ψ satisfying Equation (46) must also satisfy a continuity equation of the form:

∂ρ

∂t
+ ~∇ ·~j = 0. (48)

In the above:
ρ = ψ†ψ, ~j =

h̄
2mi

[ψ†~∇ψ− (~∇ψ†)ψ]− k~Aρ. (49)

The symbol ψ† represents a row spinor (the transpose) whose components are equal to the
complex conjugate of the column spinor ψ. Comparing the standard continuity equation to
Equation (48) suggests the definition of a velocity field as follows [3]:

~v =
~j
ρ
=

h̄
2miρ

[ψ†~∇ψ− (~∇ψ†)ψ]− k~A. (50)

A variational description of the Pauli system can be given using the following Lagrangian
density:

L =
1
2

ih̄(ψ†ψ̇− ψ̇†ψ)− ψ† Ĥψ (51)

Holland [3] has suggested the following representation of the spinor:

ψ = Rei χ
2

 cos
(

θ
2

)
ei φ

2

i sin
(

θ
2

)
e−i φ

2

 ≡ ( ψ↑
ψ↓

)
. (52)

In terms of this representation the density is given as:

ρ = ψ†ψ = R2 ⇒ R =
√

ρ. (53)
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The mass density is given as:

ρ̂ = mρ = mψ†ψ = mR2. (54)

The probability amplitudes for spin up and spin down electrons are given by:

a↑ =
∣∣ψ↑∣∣ = R

∣∣∣∣cos
θ

2

∣∣∣∣, a↓ =
∣∣ψ↓∣∣ = R

∣∣∣∣sin
θ

2

∣∣∣∣ (55)

Let us now look at the expectation value of the spin:

<
h̄
2
~σ >=

h̄
2

∫
ψ†~σψd3x =

h̄
2

∫ (
ψ†~σψ

ρ

)
ρd3x (56)

The spin density can be calculated using the representation given in Equation (52) as:

ŝ ≡ ψ†~σψ

ρ
= (sin θ sin φ, sin θ cos φ, cos θ) (57)

This gives an easy physical interpretation to the variables θ, φ as angles which describe
the projection of the spin density on the axes. θ is the elevation angle of the spin density
vector and φ is the azimuthal angle of the same. The velocity field can now be calculated
by inserting ψ given in Equation (52) into Equation (50):

~v =
h̄

2m
(~∇χ + cos θ~∇φ)− k~A. (58)

Comparing Equation (58) with the generalized Clebsch form given in Equation (5) suggest
the following identification:

α = cos θ, β =
h̄

2m
φ, ν =

h̄
2m

χ. (59)

Notice that α is single valued, but β and ν are not. Obviously, this velocity field will have a
generically non-vanishing vorticity even if the magnetic field is null:

~ω = ~∇×~v = ~∇α× ~∇β− k~B

=
h̄

2m
~∇ cos θ × ~∇φ− k~B =

h̄
2m

sin θ~∇φ× ~∇θ − k~B. (60)

We see again that the gauge symmetry (Equation (A15)) is maintained provided that the
variational variable ν proportional to the global phase χ is redefined:

ν′ = ν− kΛ. (61)

Inserting the representation of ψ given in Equation (52) into the Lagrangian density Equation (51)
will yield after tedious but straight-forward calculations the Lagrangian density:

LP ≡ −ρ̂[
∂ν

∂t
+ α

∂β

∂t
+ εqt + kϕ +

1
2
(~∇ν + α~∇β− k~A)2 +

µ

m
~B · ŝ]

εqt[ρ̂, α, β] ≡ εq[ρ̂] + εqs[α, β]

εq[ρ̂] ≡
h̄2

2m2
(~∇
√

ρ̂)2

ρ̂
=

h̄2

2m2
(~∇R)2

R2

εqs[α, β] ≡ h̄2

8m2

(
(~∇θ)2 + sin2 θ(~∇φ)2

)
=

1
2

((
h̄

2m

)2 (~∇α)2

1− α2 + (1− α2)(~∇β)2

)
(62)
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The Lagrangian LP has the same form as the Clebsch Lagrangian L̂ given in Equation (20).
However, there are some important differences. The internal energy in the Pauli Lagrangian
is positive as is the case for the barotropic fluid but now the internal energy depends on the
derivatives of the degrees of freedom and not just on the density at a given point, in this
sense this internal energy is non-local. Moreover, it is made of two parts the Schrödinger
quantum internal energy εq which depends on the mass density and the spin quantum
internal energy εqs that depend on the spin (vorticity) degrees of freedom. Finally, the
classical limit h̄→ 0 will eliminate εq but will not eliminate the spin internal energy:

lim
h̄→0

εqs =
1
2
(1− α2)(~∇β)2 (63)

In this sense, the Pauli theory has no standard classical limit, although this limit is a
perfectly legitimate classical field theory. The interaction terms of electron dipole moment
with the magnetic field µ

m
~B · ŝ has no classical analogue either. Indeed, this term was

introduced by Pauli on a empirical basis with no theoretical justification, that is Pauli was
aiming to explain the Stern–Gerlach experiment. Later, however, it was obtained from the
relativistic Dirac equation. This points to the conclusion that we have gone as far as possible
in understanding quantum mechanics is a non-relativistic framework. Additionally, further
insight can only be gained by considering relativistic fluids, which are unfortunately
beyond the scope of the current paper. This is indeed peculiar, as sometimes it is claimed
that quantum mechanics and relativity (mainly general relativity) are contradictory when
it now seems to be that quantum mechanics cannot be understood without relativity.

We conclude this section by writing down the equations for the Clebsch–Pauli vari-
ables, unfortunately those equations are not very helpful. Taking the variational derivative
we arrive at the equations of motion (see also [3] p. 392, Equations (9.3.6), (9.3.17) and
(9.3.18)):

∂ρ̂

∂t
+ ~∇ · (ρ̂~v) = 0

dα

dt
=

1
ρ̂
~∇ ·
(

ρ̂(α2 − 1)~∇β
)
+

2µ

h̄
(~B× ŝ)3

dβ

dt
=

(
h̄

2m

)2 1

ρ̂
√

1− α2
~∇ ·
(

ρ̂
~∇α√
1− α2

)
+ α(~∇β)2

+
µ

m
~B · (cot θ sin Φ, cot θ cos Φ,−1)

dν

dt
=

1
2
~v2 − eϕ− α2(~∇β)2 − Q

m
− εqs

−
(

h̄
2m

)2 α

ρ̂
√

1− α2
~∇ ·
(

ρ̂
~∇α√
1− α2

)
− µ

m
~B · ŝ. (64)

We notice that, in spin fluid dynamics, α and β are not comoving scalar fields (labels) as
in the case of ideal barotropic fluid dynamics. We are now in a position to calculate the
material derivative of the velocity and obtain the spin fluid dynamics Euler equation ([3]
p. 393, Equation (9.3.19)):

d~v
dt

= −~∇
(

Q
m

)
−
(

h̄
2m

)2 1
ρ̂

∂k(ρ̂~∇ŝj∂k ŝj) + k(~E +~v× ~B)− µ

m
(~∇Bj)sj (65)

Spin Flows in Terms of Fisher Information

As explained in the introduction, the quantum spin flow does not have a microstruc-
ture that will explain its internal energy, so it should not have an internal energy. Neverthe-
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less, the Lagrangian density does contain a “quantum internal energy term”, as can be seen
in Equation (62). The term can be written as:

ρ̂εqt = ρ̂εq + ρ̂εqs =
h̄2

8m

[
4(~∇R)2 + R2(~∇θ)2 + R2 sin2 θ(~∇φ)2

]
(66)

Using the amplitudes of Equation (55) and the definition of Fisher information density of
Equation (25) we arrive at the result:

FIp = FI↑ +FI↓ = 4
[
(~∇a↑)2 + (~∇a↓)2

]
= 4(~∇R)2 + R2(~∇θ)2 (67)

Hence:

ρ̂εqt =
h̄2

8m
FIp +

1
2

ρ̂(1− α2)(~∇β)2 (68)

Thus, the Lagrangian density of the spin flow given in Equation (62) can be written as:

LP = −ρ̂[
∂ν

∂t
+ α

∂β

∂t
+

1
2
(1− α2)(~∇β)2 + kϕ +

1
2
(~∇ν + α~∇β− k~A)2]− h̄2

8m
FIp (69)

The pre-factor h̄2

8m seems to appear in every case in which Fisher information appears in a
quantum Lagrangian and may be significant.

6. Conclusions

In the current work, which is a continuation of previous studies [24,38,40], we demon-
strate how Pauli’s spinor can be interpreted in terms of spin fluid using a generalized
Clebsch form which is modified to include the electromagnetic vector potential which
should affect a charged fluid. The theory is described by an action and a variational princi-
ple, and the fluid equations are derived as the extrema of the action. The similarities, as
well as the pronounced differences, with barotropic fluid dynamics are discussed.

A fundamental obstacle to the fluid interpretation of quantum mechanics still exist.
This is related to the origin of thermodynamic quantities which are part of fluid mechanics
in the quantum context. For classical fluid the thermodynamic internal energy implies that
a fluid element is not a point particle but has internal structure. The standard thermody-
namics notions such as specific enthalpy, pressure, and temperature are derived from the
specific internal energy equation of state which in turn assumes the said internal structure.
The internal energy is a required component of any Lagrangian density attempting to depict
a fluid. The unique form of the internal energy can be derived in principle relying on the
basis of the atoms and molecules from which the fluid is composed and their interactions
using statistical physics. However, the quantum fluid has no such microscopic structure
and yet analysis of both the spinless [5,6] and spin [24] quantum fluid shows that terms
analogue to internal energies appear. Thus, one is forced to ask where do those internal
energies originate, surely the quantum fluid is devoid of a microscopic substructure as
this will defy the empirically supported conception of the electron as a point particle. The
answer to this inquiry originated from measurement theory [37]. Fisher information a basic
concept of measurement theory is a measure of the quality of the measurement. It was
shown that this concept is proportional to the internal energy of Schrödinger’s spinless
electron which is essentially a theory of a potential flow which moves under the influence
of electromagnetic fields and Fisher information forces. Fisher information can also explain
most parts of the internal energy of an electron with spin. This puts (Fisher) information
as a fundamental force of nature, which has the same status as electromagnetic forces in
the quantum mechanical level of reality. Indeed, according to Anton Zeilinger’s recent
remark to the press, it is quantum mechanics that demonstrates that information is more
fundamental than space-time.

We have highlighted the similarities between the variational principles of Eulerian
fluid mechanics and both Schrödinger’s and Pauli’s quantum mechanics as opposed to
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classical mechanics. The former have only linear time derivatives of degrees of freedom
while that later have quadratic time derivatives. The former contain terms quadratic in the
vector potential ~A while the later contain only linear terms, thus making the mass current
and the current which couple to vector potential proportional. The former are manifestly
gauge invariant which is achieved by redefining a phase or a flow potential.

To conclude we suggest the following future directions of research:

1. It is conjectured that same analogy found between Pauli’s theory and fluid dynam-
ics may be found between Dirac’s relativistic electron theory and relativistic fluid
dynamics.

2. It is also conjectured that an Eulerian relativistic fluid once properly defined in terms
of a variational principle and augmented by a four dimensional Fisher information
term will fully explain Dirac’s relativistic electron theory and inter alia Pauli’s theory
as well.
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Appendix A. A Classical Charged Particle

Consider a classical particle with the coordinates ~x(t), mass m and charge e interacting
with a given electromagnetic vector potential ~A(~x, t) and scalar potential ϕ(~x, t). We will
not be interested in the effects of the particle on the field and thus consider the field as
“external”. The action of said particle is:

A =
∫ t2

t1
Ldt, L = L0 + Li

L0 ≡ 1
2

mv2, Li ≡ e(~A ·~v− ϕ), ~v ≡ d~x
dt
≡ ~̇x, v = |~v|. (A1)

The variation of the two parts of the Lagrangian are given by:

δL0 = m~̇x · δ~̇x =
d(m~v · δ~x)

dt
−m~̇v · δ~x (A2)

δLi = e
(

δ~A ·~v + ~A · δ~̇x− δϕ
)

= e

(
∂k ~A ·~vδxk +

d(~A · δ~x)
dt

− δ~x · d~A
dt
− ~∇ϕ · δ~x

)
, (A3)

in the above ∂k ≡ ∂
∂xk

and ~∇ ≡ ( ∂
∂x , ∂

∂y , ∂
∂z ) ≡ ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
). We use the Einstein summation

convention in which a Latin index (say k, l) takes one of the values k, l ∈ [1, 2, 3]. We may
write the total time derivative of ~A as:

d~A(~x(t), t)
dt

= ∂t ~A + vl∂l ~A, ∂t ≡
∂

∂t
. (A4)

Thus, the variation δLi can be written in the following form:

δLi =
d(e~A · δ~x)

dt
+ e[(∂k Al − ∂l Ak)vl − ∂t Ak − ∂k ϕ]δxk, (A5)
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Defining the electric and magnetic fields in the standard way:

~B ≡ ~∇× ~A, ~E ≡ −∂t ~A− ~∇ϕ, (A6)

it follows that:
εklnBn = ∂k Al − ∂l Ak, Ek = −∂t Ak − ∂k ϕ, (A7)

in which εkln is the three index antisymmetric tensor. Thus, we may write δLi as:

δLi =
d(e~A · δ~x)

dt
+ e[εklnvl Bn + Ek]δxk =

d(e~A · δ~x)
dt

+ e
[
~v× ~B + ~E

]
· δ~x. (A8)

We use the standard definition of the Lorentz force (MKS units):

~FL ≡ e
[
~v× ~B + ~E

]
(A9)

to write:

δLi =
d(e~A · δ~x)

dt
+ ~FL · δ~x. (A10)

Combining the variation of Li given in Equation (A10) and the variation of L0 given in
Equation (A2), it follows from Equation (A1) that the variation of L is:

δL = δL0 + δLi =
d
(
(m~v + e~A) · δ~x

)
dt

+ (−m~̇v + ~FL) · δ~x. (A11)

Thus, the variation of the action is:

δA =
∫ t2

t1
δLdt = (m~v + e~A) · δ~x

∣∣∣t2
t1
−
∫ t2

t1
(m~̇v− ~FL) · δ~xdt. (A12)

Since the classical trajectory is such that the variation of the action on it vanishes for a
small modification of the trajectory δ~x that vanishes at t1 and t2 but is otherwise arbitrary
it follows that:

m~̇v = ~FL = e
[
~v× ~B + ~E

]
⇒ ~̇v =

e
m

[
~v× ~B + ~E

]
. (A13)

Thus, the dynamics of a classical particle in a given electric and magnetic field is described
by a single number, the ratio between its charge and mass:

k ≡ e
m

⇒ ~̇v = k
[
~v× ~B + ~E

]
. (A14)

The reader is reminded that the connection between the electromagnetic potentials and
the fields is not unique. Indeed performing a gauge transformation to obtain a new set
of potentials:

~A′ = ~A + ~∇Λ, ϕ′ = ϕ− ∂tΛ. (A15)

we obtain the same fields:

~B′ = ~∇× ~A′ = ~∇× ~A = ~B, ~E′ = −∂t ~A′ − ~∇ϕ′ = −∂t ~A− ~∇ϕ = ~E. (A16)

For a system of N particles each with an index 1 ≤ j ≤ N, a corresponding mass mj, charge

ej, position vector ~xj, and velocity~vj ≡
d~xj
dt the action and Lagrangian for each point particle

are as follows:

Aj =
∫ t2

t1
Ljdt, Lj = L0j + Lij

L0j ≡
1
2

mjv2
j , Lij ≡ ej(~A(~xj, t) ·~vj − ϕ(~xj, t)). (A17)
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The action and Lagrangian of the system of particles is:

As =
∫ t2

t1
Lsdt, Ls =

N

∑
j=1

Lj. (A18)

The variational analysis follows the same lines as for a single particle and we obtain a set of
equations of the form:

~̇vj =
ej

mj

[
~vj × ~B(~xj, t) + ~E(~xj, t)

]
, j ∈ [1− N]. (A19)

Appendix B. A Classical Charged Fluid—The Lagrangian Approach

The dynamics of the fluid is determined by its composition and the forces acting on it.
The fluid is made of “fluid elements” [29,44], practically a “fluid element” is a point particle
which has an infinitesimal mass dM~α, infinitesimal charge dQ~α, position vector ~x(~α, t), and
velocity ~v(~α, t) ≡ d~x(~α,t)

dt . Here, the continuous vector label~α replaces the discrete index j
of the previous section. As the “fluid element” is not truly a point particle, it has, also, an
infinitesimal volume dV~α, infinitesimal entropy dS~α, and an infinitesimal internal energy
dEin ~α. The action and Lagrangian for each “fluid element” are according to Equation (A1)
as follows:

dA~α =
∫ t2

t1
dL~αdt, dL~α = dL0~α + dLi~α

dL0~α ≡ 1
2

dM~α v(~α, t)2 − dEin ~α,

dLi~α ≡ dQ~α

(
~A(~x(~α, t), t) ·~v(~α, t)− ϕ(~x(~α, t), t)

)
. (A20)

All the above quantities are calculated for a specific value of the label~α, while the action
and Lagrangian of the entire fluid, should be summed (or integrated) over all possible~α’s.
That is:

L =
∫
~α

dL~α

A =
∫
~α

dA~α =
∫ t2

t1

∫
~α

dL~αdt =
∫ t2

t1
Ldt. (A21)

It is customary to define densities for the Lagrangian, mass, and charge of every fluid
element as follows:

L~α ≡
dL~α
dV~α

, ρ~α ≡
dM~α

dV~α
, ρc~α ≡

dQ~α

dV~α
(A22)

Each of the above quantities may be thought of as a function of the location ~x, where the
“fluid element” labelled~α happens to be in time t, for example:

ρ(~x, t) ≡ ρ(~x(~α, t), t) ≡ ρ~α(t) (A23)

It is also customary to define the specific internal energy ε~α as follows:

ε~α ≡
dEin ~α

dM~α
⇒ ρ~αε~α =

dM~α

dV~α

dEin ~α

dM~α
=

dEin ~α

dV~α
(A24)
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Thus, we can write the following equations for the Lagrangian density:

L~α =
dL~α
dV~α

=
dL0~α
dV~α

+
dLi~α
dV~α

= L0~α + Li~α

L0~α ≡ 1
2

ρ~αv(~α, t)2 − ρ~αε~α,

Li~α ≡ ρc~α

(
~A(~x(~α, t), t) ·~v(~α, t)− ϕ(~x(~α, t), t)

)
. (A25)

The above expression allows us to write the Lagrangian as a spatial integral:

L =
∫
~α

dL~α =
∫
~α
L~αdV~α =

∫
L(~x, t)d3x (A26)

which will be important for later sections of the current paper. Returning now to the
variational analysis we introduce the symbols ∆~x~α ≡ ~ξ~α to indicate a variation of the
trajectory ~x~α(t) (we reserve the symbol δ in the fluid context, to a different kind of variation,
the Eulerian variation). In an ideal fluid the “fluid element” does not exchange mass, nor
electric charge, nor heat with other fluid elements, so it follows that:

∆dM~α = ∆dQ~α = ∆dS~α = 0. (A27)

Moreover, according to thermodynamics a change in the internal energy of a “fluid element”
satisfies the equation:

∆dEin ~α = T~α∆dS~α − P~α∆dV~α, (A28)

The first term describes the heating energy gained by the “fluid element”, while the second
terms describe the work performed by the “fluid element” on neighbouring elements. T~α is
the temperature of the “fluid element” and P~α is the pressure of the same. As the mass of
the fluid element does not change, we may divide the above expression by dM~α to obtain
the variation of the specific energy as follows:

∆ε~α = ∆
dEin ~α

dM~α
= T~α∆

dS~α
dM~α

− P~α∆
dV~α
dM~α

= T~α∆s~α − P~α∆
1
ρ~α

= T~α∆s~α +
P~α
ρ2
~α

∆ρ~α. s~α ≡
dS~α
dM~α

(A29)

in which s~α is the specific entropy of the fluid element. It follows that:

∂ε

∂s
= T,

∂ε

∂ρ
=

P
ρ2 . (A30)

Another important thermodynamic quantity that we will use later is the enthalpy defined
for a fluid element as:

dW~α = dEin ~α + P~αdV~α. (A31)

and the specific enthalpy:

w~α =
dW~α

dM~α
=

dEin ~α

dM~α
+ P~α

dV~α
dM~α

= ε~α +
P~α
ρ~α

. (A32)

Combining the above result with Equation (A30) it follows that:

w = ε +
P
ρ
= ε + ρ

∂ε

∂ρ
=

∂(ρε)

∂ρ
. (A33)
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Moreover:

∂w
∂ρ

=
∂(ε + P

ρ )

∂ρ
= − P

ρ2 +
1
ρ

∂P
∂ρ

+
∂ε

∂ρ
= − P

ρ2 +
1
ρ

∂P
∂ρ

+
P
ρ2 =

1
ρ

∂P
∂ρ

. (A34)

As we assume an ideal fluid, there is no heat conduction or heat radiation, and thus heat can
only be moved around along the trajectory of the “fluid elements”, that is only convection
is taken into account. Thus, ∆dS~α = 0 and we have:

∆dEin ~α = −P∆dV~α. (A35)

Our next step would to be to evaluate the variation of the volume element. Suppose a time
t the volume of the fluid element labelled by~α is described as:

dV~α,t = d3x(~α, t) (A36)

Using the Jacobian determinant we may relate this to the same element at t = 0:

d3x(~α, t) = Jd3x(~α, 0), J ≡ ~∇0x1 · (~∇0x2 × ~∇0x3) (A37)

In which ~∇0 is taken with respect to the coordinates of the fluid elements at t = 0: ~∇0 ≡
( ∂

∂x(~α,0)1
, ∂

∂x(~α,0)2
, ∂

∂x(~α,0)3
). As both the actual and varied “fluid element” trajectories start at

the same point it follows that:

∆dV~α,t = ∆d3x(~α, t) = ∆J d3x(~α, 0) =
∆J
J

d3x(~α, t) =
∆J
J

dV~α,t,

(∆d3x(~α, 0) = 0). (A38)

The variation of J can be easily calculated as:

∆J = ~∇0∆x1 · (~∇0x2× ~∇0x3) + ~∇0x1 · (~∇0∆x2× ~∇0x3) + ~∇0x1 · (~∇0x2× ~∇0∆x3), (A39)

Now:

~∇0∆x1 · (~∇0x2 × ~∇0x3) = ~∇0ξ1 · (~∇0x2 × ~∇0x3)

= ∂kξ1~∇0xk · (~∇0x2 × ~∇0x3) = ∂1ξ1~∇0x1 · (~∇0x2 × ~∇0x3) = ∂1ξ1 J.
~∇0x1 · (~∇0∆x2 × ~∇0x3) = ~∇0x1 · (~∇0ξ2 × ~∇0x3)

= ∂kξ2~∇0x1 · (~∇0xk × ~∇0x3) = ∂2ξ2~∇0x1 · (~∇0x2 × ~∇0x3) = ∂2ξ2 J.
~∇0x1 · (~∇0x2 × ~∇0∆x3) = ~∇0x1 · (~∇0x2 × ~∇0ξ3)

= ∂kξ3~∇0x1 · (~∇0x2 × ~∇0xk) = ∂3ξ3~∇0x1 · (~∇0x2 × ~∇0x3) = ∂3ξ3 J. (A40)

Combining the above results, it follows that:

∆J = ∂1ξ1 J + ∂2ξ2 J + ∂3ξ3 J = ~∇ ·~ξ J. (A41)

Which allows us to calculate the variation of the volume of the “fluid element”:

∆dV~α,t = ~∇ ·~ξ dV~α,t. (A42)

Thus the variation of the internal energy is:

∆dEin ~α = −P~∇ ·~ξ dV~α,t. (A43)
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The internal energy is the only novel element with respect to the single particle scenario and
system of particles scenario described in the previous section, thus the rest of the variation
analysis is straight forward. Varying Equation (A20) we obtain:

∆dA~α =
∫ t2

t1
∆dL~αdt, ∆dL~α = ∆dL0~α + ∆dLi~α

∆dL0~α = dM~α ~v(~α, t) · ∆~v(~α, t)− ∆dEin ~α,

∆dLi~α = dQ~α

(
∆~A(~x(~α, t), t) ·~v(~α, t) + ~A(~x(~α, t), t) · ∆~v(~α, t)

− ∆ϕ(~x(~α), t)). (A44)

Notice that:

∆~v(~α, t) = ∆
d~x(~α, t)

dt
=

d∆~x(~α, t)
dt

=
d~ξ(~α, t)

dt
. (A45)

After some steps, which are described prior to Equation (A2), we obtain the variation of
dL0~α:

∆dL0~α =
d(dM~α~v~α ·~ξ~α)

dt
− dM~α

d~v~α
dt
·~ξ~α + P~∇ ·~ξ~α dV~α,t. (A46)

Similarly, the analogue equations of Equation (A9) and Equation (A10) are:

d~FL~α ≡ dQ~α

[
~v~α × ~B(~x(~α, t), t) + ~E(~x(~α, t), t)

]
(A47)

and:

∆dLi~α =
d(dQ~α

~A(~x(~α, t), t) ·~ξ~α)
dt

+ d~FL~α ·~ξ~α. (A48)

The variation of the action of a single fluid element is thus:

∆dA~α =
∫ t2

t1
∆dL~αdt = (dM~α~v(~α, t) + dQ~α

~A(~x(~α, t), t)) ·~ξ~α
∣∣∣t2
t1

−
∫ t2

t1
(dM~α

d~v(~α, t)
dt

·~ξ~α − d~FL~α ·~ξ~α − P~∇ ·~ξ~α dV~α,t)dt. (A49)

The variation of the total action of the fluid is thus:

∆A =
∫
~α

dA~α =
∫
~α
(dM~α~v(~α, t) + dQ~α

~A(~x(~α, t), t)) ·~ξ~α
∣∣∣∣t2
t1

−
∫ t2

t1

∫
~α
(dM~α

d~v(~α, t)
dt

·~ξ~α − d~FL~α ·~ξ~α − P~∇ ·~ξ~α dV~α)dt. (A50)

Now according to Equation (A22) we may write:

dM~α = ρ~α dV~α, dQ~α = ρc~α dV~α (A51)

using the above relations we may turn the~α integral into a volume integral and thus write
the variation of the fluid action in which we suppress the~α labels:

∆A =
∫
(ρ~v + ρc ~A) ·~ξdV

∣∣∣∣t2
t1
−
∫ t2

t1

∫
(ρ

d~v
dt
·~ξ − ~fL ·~ξ − P~∇ ·~ξ)dVdt. (A52)

in the above we introduced the Lorentz force density:

~fL~α ≡
d~FL~α
dV~α

= ρc~α

[
~v~α × ~B(~x(~α, t), t) + ~E(~x(~α, t), t)

]
. (A53)

Now, since:
P~∇ ·~ξ = ~∇ · (P~ξ)−~ξ · ~∇P, (A54)
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and using Gauss theorem the variation of the action can be written as:

∆A =
∫
(ρ~v + ρc ~A) ·~ξdV

∣∣∣∣t2
t1

−
∫ t2

t1

[∫
(ρ

d~v
dt
− ~fL + ~∇P) ·~ξdV −

∮
P~ξ · d~Σ

]
dt. (A55)

It follows that the variation of the action will vanish for a ~ξ, such that ~ξ(t1) = ~ξ(t2) = 0
and vanishing on a surface encapsulating the fluid, but other than that arbitrary only if the
Euler equation for a charged fluid is satisfied, that is:

d~v
dt

= −
~∇P
ρ

+
~fL
ρ

,
d
dt

=
∂

∂t
+~v · ~∇ (A56)

For the particular case that the fluid element is made of identical microscopic particles each
with a mass m and a charge e, it follows that the mass and charge densities are proportional
to the number density n:

ρ = m n, ρc = e n⇒
~fL
ρ

= k
[
~v× ~B + ~E

]
, (A57)

Thus, except for the pressure terms, the equation is similar to that of a point particle. In
experimental fluid dynamics, it is more convenient to describe a fluid in terms of quantities
at a specific location, rather than quantities associated with unseen infinitesimal “fluid
elements”. This road leads to the Eulerian description of fluid dynamics and thinking
in terms of flow fields rather than in terms of a velocity of “fluid elements” as will be
discussed in Section 2. This description will be shown later to be closely connected to
quantum mechanics.
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