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Abstract: We consider the use of Shannon information theory, and its various entropic terms to aid
in reaching optimal decisions that should be made in a multi-agent/Team scenario. The methods
that we use are to model how various agents interact, including power allocation. Our metric for
agents passing information are classical Shannon channel capacity. Our results are the mathematical
theorems showing how combining agents influences the channel capacity.
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1. Introduction

Advances in machine intelligence have led to an increase in human-agent teaming.
In this context, one or more machines act as semi-autonomous or autonomous agents
interacting with other machine teammates and/or their human proxies. This phenomenon
has led to cooperative work models where the role of an agent can be, interchangeably, a
human, or machine, support system. Human counterparts that interact with automation
become less like operators, supervisors, or monitors, and more like equal-authority peers.

Critical to the success of any team is efficient and effective communication. Multi-
agent systems are no different. Information sharing is a key element in building collective
cognition, and it enables agents to cooperate and ultimately achieve shared goals success-
fully. Information sharing, or communication, provides the foundation for a team’s success.
In complex multi-agent engagements, information is not always universally available to
all agents. Such engagements are often characterized by distributed entities with limited
communication channels among them, where no agent has a complete view of the solution
space, and information relevant to team goals only becomes available to team members
in spontaneous, unpredictable and even unanticipated ways. Moreover, there is always
a resource cost to inter-agent communication. Finding highly efficient and effective com-
munication patterns is a recurring problem in any multi-agent system, particularly if the
system agents are distributed.

We are concerned with how a Multi-agent System (MAS) [1], or Team, sends in-
formation between agents or teammates. By “how” we mean “how” in an information
theoretic [2] sense—in particular, we do not concentrate on the mechanics or physics of the
transmission other than how it impacts information theory. We are concerned with what
strategy an agent can to use to maximize its information flow to another agent. From an
information geometric standpoint, we only use a simple metric in this article, but lay the
ground work for more complex Riemannian metrics. We are concerned with a transmitting
agent sending a small amount of distinct symbols in a fixed time. In fact, we restrict our-
selves to two symbols to develop our theory (A list of notation is at the end of the article.).
We are using a mathematical approach to model the communication between two agents.
The equations we present are based on a series of assumptions that we will explain.

We assume that an agent sends two symbols to another agent. We refer to the symbols
as “0” or “1”. We are concerned with the fidelity of how the symbols are passed. All
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symbols take the same time to pass. We will be looking at the (Shannon) capacity as one
agent attempts to send a symbol to another agent.

Our scenario is illustrated in Figures 1 and 2. The first agent AX sends a 0 or 1 to the
second agent AY. We have a clock and the unit of time is t. Every t, AX transmits the symbol
to AY. We assume that the symbol is received within the same time unit (i.e., we assume
instantaneous transmission speeds during each interval t). There is no feedback (which,
for the channels we analyze, would not change the capacity anyway (p. 520 [3])) from
AY to AX , and the transmission is considered to be memoryless (quoting [4], “. . . channel
is memoryless if the probability distribution of the output depends only on the input
at that time and is conditionally independent of previous channel inputs or outputs”).
Furthermore, it is implicit that the channel statistics never change (sometime the literature
refers to this as a “stationary” condition).

To summarize the above, we have a Discrete Memoryless Channel (DMC) between
AX and AY. This channel measures information flow in terms of bits per symbol (since t
does not vary). We let X represent the input distribution to this DMC, and we let Y denote
the output random variable.

The probability for the random variable X is given by P(X = i), i = 0, 1; it is the
probability that AX inputs symbol i, and P(Y = j), j = 0, 1 is the probability that AY
received symbol j. The input distribution X is determined by the transmission fidelity of
AX . In particular,

x = P(X = 0) = x, x̄ := P(X = 1) = 1− x . (1)

Whereas the output distribution Y is determined by the (assumed to be well-defined)
conditional distribution between X and Y, and the input distribution. Thus,

P(Y = j) = ∑
i

P(Y = j|X = i) · P(X = i) . (2)

The approach presented in this paper follows from [2,5–7].

AX AY
0,1

Figure 1. Heuristic figure of AX transmitting a bit to AY .
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Figure 2. The noisy channel diagram corresponding to Figure 1.

The conditional probabilities of the DMC is given by a 2× 2 matrix M1, where (Please
keep in mind the swapping of the indices, and, as we had above for x̄, that notationally
∗̄ := 1− ∗ . Furthermore, the convention is that a conditional probability is fixed for all
P(X = i), even if that probability is 0. In the next footnote, we address the impact of this
with respect to (w.r.t.) information theory).

mi,j := P(Y = j|X = i) and (4)

Figure 2. The noisy channel diagram corresponding to the first figure.

The conditional probabilities of the DMC is given by a 2× 2 matrix M1, where (Please
keep in mind the swapping of the indices, and, as we had above for x̄, that notationally
∗̄ := 1− ∗ . Furthermore, the convention is that a conditional probability is fixed for all
P(X = i), even if that probability is 0. In the next footnote, we address the impact of this
with respect to (w.r.t.) information theory).

mi,j := P(Y = j|X = i) and (3)
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M1 =

(
m0,0 m0,1
m1,0 m1,1

)
=

(
P(Y = 0|X = 0) P(Y = 1|X = 0)
P(Y = 0|X = 1) P(Y = 1|X = 1)

)
=:
(

a ā
b b̄

)
. (4)

Note that (a, b) ∈ [0, 1]× [0, 1].
Before we continue with the mathematics let us put this research into some more

perspective. Von Neumann’s [8] seminal work had no concept of “Teamwork”, which is
at the core of what we are discussing. Sliwa’s [9] review suggests that minimum commu-
nication channels are more important when context is understood during teamwork, a
suggestion opposite to our work in this article which we hope to test in the future. Law-
less [10] suggests that maximized channels become more important when Teams confront
uncertainty in their environment. Schölkopf et al. [11] suggest that i.i.d. data are insufficient
to reconstruct whatever social event is being captured, that something is missing and a new
approach must be innovated, our goal in this article. Our results will be discussed in situ
for maximum effect.

1.1. Entropy and Mutual Information

We extend our random variables to allow more than two possible outcomes, and give
the following definitions with the most generality possible. We now have I + 1 possible
inputs, and J + 1 possible outcomes.

Given a discrete random variable V, we define the entropy of V as (By convention
log is the base 2 logarithm, and ln is the natural logarithm. Furthermore, we are able to
extend the definitions (p. 19 [4]), as is standard, so that 0 log(0) = 0 log(0/0) = 0. These
conventions allows the most general derivation of (8) from (7)).

H(V) := −∑
j

P(V = vj) log P(V = vj) .

If z ∈ [0, 1], then we define the binary entropy function of z as

h(z) := −z log(z)− (1− z) log(1− z) .

Note that if B is a binary random variable taking the values 0 or 1, then H(B) = h(P(B = 0)).
In fact, we simplify the notation and express the probability of the event {V = vk} as

pv(vk) = P(V = vk) .

Furthermore, when it is clear which distribution we are using, we further simplify the
notation and just write p(vk). Thus,

H(B) = h(p(0)) .

Given two discrete random variables V, W, we define [2] the conditional entropy of V given
W as

H(V|W) :=−∑
i

pw(wi)∑
j

pv|w(vj|wi) log pv|w(vj|wi) , (5)

where, as in the 2× 2 case

P(vj|wi) := mi,j, i = 0, 1, . . . , I; j = 0, 1, . . . , J,

forming the channel matrix (Of course, as in the 2 × 2 case, conditional probability is only
defined when p(wi) 6= 0. However, as we note below, such terms are dealt with by using
the limiting value of the constant conditional probability term which makes our mutual
information calculations consistent, keeping in mind that 0 log ∗ is always taken to be 0.
Furthermore, keep in mind that a distribution that achieves capacity for a 2-input channel
(the subject of this paper) never has either probability value as zero of course (Ref. [12]
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gives better bounds). There are, however, 3× 2 channels for which this does not hold, for

example

 1 0
0.8 0.2
0 1

 which has an optimizing input distribution of (0.5, 0, 0.5).)

M =


p(v0|w0) p(v1|w0) . . . p(vJ |w0)
p(v0|w1) p(v1|w1) . . . p(vJ |w1)

...
...

. . .
...

p(v0|wI) p(v1|wI) . . . p(vJ |wI)

 . (6)

We define the mutual information between V and W by [2]

I(V, W) := H(V)− H(V|W) = H(W)− H(W|V) =: I(W, V) . (7)

Using (5) and (7), and some substitutions [4] (again, division by 0 is taken care of in the
usual way by using limiting values ([Section 2.3] [4]), we find that

I(V, W) = ∑
j,i

p(vj, wi) log

(
p(vj, wi)

p(vj)p(wi)

)
. (8)

We now give Shannon’s definition [2] of (channel) capacity. It has been well-studied
since its inception. We will not delve into the Noisy Coding Theorem, or any of the other
results which showcase its importance. Rather, we will assume in this paper that capacity
is a standard measure of how much information a channel can transmit in an essentially
noise-free manner [2,4]. The traditional units of capacity and mutual information are
accepted in this article; they are bits per channel usage, which in our scenario is equivalent
to bits per t.

Definition 1. We consider W to be the input random variable to a DMC. The capacity C of the
DMC is

C := sup
{p(wi)}

I(V, W) . (9)

The optimization is taken over all possible distributions of W with its fixed values
wi. The supremum is actually achieved and can be taken as a maximum [2,4]. Note that
when trying to compare the magnitude of the channel capacity (with the same number
of inputs), it suffices to compare the mutual information for all x values. Of course the
two channels may have different optimizing distributions. Note the principle (and similar
principles) that if ∀x, I(CH1, x) ≤ I(CH2, x) and if CH1 achieves capacity at x′, then
C(CH1) = I(CH1, x′) ≤ I(CH2, x′) ≤ C(CH2).

Of course swapping rows, or swapping columns from the channel matrix (6) is just
notational and leaves capacity unchanged. However, we end this subsection with some
interesting results in information theory—some obvious, some not so obvious.

Property 1. Removing a row from the channel matrix (6) never increases the capacity.

Proof. Not using a channel input cannot increase mutual information. This is equiva-
lent to using input probability distributions which are always zero for a particular in-
dex; therefore, the capacity can never be greater since capacity is the maximum over all
input distributions.

Property 2.

A—For any input probability, combining (by adding two columns to form one column hence
reducing the channel matrix from n×m to n×m− 1 as illustrated below with Q, Q′) two
columns of a channel matrix will never increase mutual information.
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B—For input probabilities with all terms non-zero, the mutual information will stay the same iff one
of the combined columns is a multiple of the other. Otherwise, the uncombined channel has a
larger mutual information and hence a larger capacity. (Note, that for a 2-input channel [12] has
shown that the capacity achieving distribution has both probabilities in the interval [ 1

e , 1− 1
e ]

so we can apply this property to the capacity directly.)

Proof. A: a b c
d e f
g h i

 ·
1 0

1 0
0 1

 =

a + b c
d + e f
g + h i


The Data-Processing Inequality (Cascade of Channels) [3] shows that the capacity of the
third channel above cannot be greater than that of the first channel. That is, processing
one channel into another can never increase the information sent. The actual statement of
the inequality is for mutual information. However, we use the probability that maximizes
the mutual information of the first channel (which is its capacity), and therefore, it is less
than or equal to the mutual information of the third channel which is less than or equal
to the third channel’s capacity. This argument holds for any initial channel matrix (with
adjustments to the second matrix), not just the 3× 3 matrix, or the columns we chose, for
simplicity above.

B: Without loss of generality (WLOG), combine the first two columns of n by m channel
matrix (note how the indices are reversed as compared to (6))

Q =


q11 q12 · · · q1m
q21 q22 · · · q2m

...
...

. . .
...

qn1 qn2 · · · qnm

 (uncombined)

to make

Q′ =


q11 + q12 · · · q1m
q21 + q22 · · · q2m

...
. . .

...
qn1 + qn2 · · · qnm

 (combined) .

For Q, the output symbols are yj, where j goes from 1 to m. For Q′, they are the same, but
with y1 and y2 replaced by y1 ∪ y2. For both channels, the input symbols are xi, with input
probability vector p defined as

pi := p(xi).

Therefore,

p(y1) =
n

∑
i=1

piqi1

and

p(y2) =
n

∑
i=1

piqi2 .

If either of these last two relations are 0, WLOG we assume p(y1) = 0. This assumption
means column 1 of Q must be a 0 column (since the input probabilities are positive), so it
contributes 0 to the mutual information. Therefore, the mutual informations are equal, and
one column is a constant multiple of the other. Now that we have dealt with this case, we
can assume y1 and y2 are positive for the remainder of this proof. For fixed p, the mutual
information of an n by m channel is

I =
n

∑
i=1

m

∑
j=1

p(xi)p(yj|xi) log
p(yj|xi)

p(yj)
.
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Columns 3 through m of Q and 2 through m− 1 of Q′ are the same, so their contributions
to mutual information are the same. Therefore, we only need to consider columns 1 and 2
of Q and column 1 of Q′. Let Ī be these columns’ mutual information, that is,

Ī(Q) =
n

∑
i=1

piqi1 log
qi1

p(y1)
+

n

∑
i=1

piqi2 log
qi2

p(y2)
, and

Ī(Q′) =
n

∑
i=1

pi

[
(qi1 + qi2) log

qi1 + qi2
p(y1) + p(y2)

]
, since p(y1 ∪ y2) = p(y1) + p(y2), etc.

Note that Ī(Q) can also be written as

Ī(Q) =
n

∑
i=1

pi

[
qi1 log

qi1
p(y1)

+ qi2 log
qi2

p(y2)

]
.

The log sum inequality [4] states that, for a series of non-negative numbers ak and bk with
sums a and b, respectively, where k goes from 1 to K, then

K

∑
i=1

ai log
ak
bk
≤ a log

a
b

,

with equality iff ak
bk

are equal for all i. By applying this inequality to the above terms in
square braces, we have that Ī(Q′) ≤ Ī(Q), with equality iff q1i

p(y1)
= q2i

p(y2)
for all i. Since

p(y1) and p(y2) are nonzero and independent of i, this is true iff column 1 of Q is a constant
multiple p(y1)/p(y2) of column 2. In fact, this also shows that p(y1) is a constant multiple
of p(y2), regardless of the all of the positive input probabilities.

1.2. Back to Our Binary-Input Binary-Output DMC, the (2,2) Channel

Restating (1) and following the approach of [13] :

x = P(X = 0), x̄ = P(X = 1) and we define

y := P(Y = 0), thus ȳ = P(Y = 1) .
(10)

The above expressions simplify for our DMC under investigation. Using (1) and (2),
we have that the distribution of Y is

(y, ȳ) = (x, x̄)
(

a ā
b b̄

)
=
(
(a− b)x + b, 1−

[
(a− b)x + b

])
We now define a differentiable function f (x), x ∈ [0, 1] by

f (x) := (a− b)x + b = ax + bx̄ , (11)

which gives us
(y, ȳ) = ( f (x), f (x)) . (12)

Thus,
H(Y) = h(y) = h( f (x)) . (13)

From (5), we have that

H(Y|X) = −
{

x
[
a log a + ā log ā

]
+ x̄
[
b log b + b̄ log b̄

]}
= x · h(a) + x̄ · h(b) .

(14)
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Putting the above together gives us

I(Y, X) = h( f (x))− x · h(a)− x̄ · h(b) . (15)

Using (9), we have that the capacity of the (2,2) channel is

C2,2 = max
x

I(Y, X) = max
x

[
h( f (x))− x · h(a)− x̄ · h(b)

]
. (16)

So, for the (2,2) channel, the capacity calculation boils down to a (not so simple) calculus
problem. Silverman [14] was the first to express the closed form result (see also [5,13] and
([Equation (5)] [7]) for derivations and alternate expressions).

C2,2(a, b) = log
(

2
ā·h(b)−b̄·h(a)

a−b + 2
b·h(a)−a·h(b)

a−b

)
, where C(a, a) := 0 , (17)

which is a continuous function on the unit square [0, 1]× [0, 1]. It is trivial to show that
capacity is continuous on the unit square without the main diagonal a = b. However, to
prove continuity on the entire unit square requires some work and uses the fact that (15) is
continuous in a, b, and x see ([Section 2.4] [15]).

One can easily show that (see Figure 3)

C2,2(a, b) = C2,2(b, a) = C2,2(ā, b̄) , (18)

by simple algebraic substitution. Additionally, this tells us that C2,2(a, b) = C2,2(b̄, ā) also.
C2,2(a, b) = C2,2(b, a) is equivalent to capacity being symmetric across the line b = a,

and C2,2(a, b) = C2,2(b̄, ā) is equivalent to capacity being symmetric when across the line
b = −a + 1 (simple geometry proves this). This result is illustrated in Figure 3. Thus,
capacity has a quadrant of the unit square as its principal domain (see ([Figure 1] [14])).

Figure 3. Plot of C2,2(a, b) along with its level set contours. This figure shows the symmetries (18)
about the lines y = x and y = −x + 1 as seen by how the countours can be folded onto each other
across the two lines. C is the capacity.

1.3. Power/Fidelity Constraints of C2,2

We consider the situation where we attempt to increase the capacity by adjusting the
terms a and b. Ideas like this for a Team’s interdependence, with a different measurement
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and no mention of information theory, were discussed in [1]. However, the values of a, b are
a function of the transmitting environment from AX to AY. If the agents were all-powerful,
that could simply adjust a to be 1, and b to be 0 (or visa versa) to achieve a channel of
maximal capacity C2,2 = 1.

1.3.1. Positive Channels

Let us start by considering positive channels [6], that is a > b. Note if a < b, we have a
negative channel, and if a = b, we have a 0-capacity channel. Of course, no matter what
C(a, b),≥ 0. However, if we are at a point (a,b), is it better to increase a, decrease b, or some
combination thereof? Implicit in this question is that we stay in the domain of positive
channels (under the line b = a).

Definition 2. We say that we have a power constraint P when we are at the channel given by (a,b)
and the most we can adjust the channel is to (a′, b′) where the standard Euclidean distance (its l2

norm) between (a, b) and (a′, b′) is no more that P.

In terms of Information Geometry [1], our distance is obtained from the Rieman-
nian metric

ds2 = da2 + db2 . (19)

Of course we can generalize this to a more general metric of the form

ds2 = E da2 + F da · db + G db2 , (20)

which would put us in a non-Euclidean situation. This non-trivial situation may be neces-
sary if a and b relate differently to various transmission characteristics.

It is shown in ([Theorem 4.9] [6]) that if we restrict ourselves to positive channels,
that the capacity increases as a increases, and decreases as b increases. This result makes
physical sense in terms of adding or decreasing noise. Now consider the (closed) disk of
radius r about the point (a, b), denoted as Dr(a, b). We assume that r is small enough so
that Dr(a, b) is composed only of positive channels.

Example 1. We illustrate this situation in Figure 4 by the channels that are in the disk or radius
0.15 about the point (0.6,0.2).

a

b

1

1

•D
∂D

Figure 4. Closed disk D of radius 0.15, about the point (0.6,0.2), that consists only of positive channels.
The boundary of the disk is the circle ∂D.
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Theorem 1. Given a closed disk Dr(a, b) consisting of positive channels, the maximum capacity is
achieved and occurs on the boundary circle ∂Dr(a, b).

Proof. Since C2,2(a, b) is a continuous function on the compact set Dr(a, b) , it is has a
maximum denoted as CM. Assume that the maximum is achieved at an interior point
(a′, b′) ∈ Dr(a, b). By ([Theorem 4.9] [6]) we know that increasing a′ increases capacity,
which contradicts CM being achieved at the interior point (a′, b′).

We note that the above theorem still holds for non-positive channels by a simple
adjustment of the proof.

Example 1 is illustrated in Figure 4 and is examined again in Figures 5 and 6, where
we can see the level sets of C2,2 and the surface plot of capacity. Furthermore, numerical
calculations show that the maximum of capacity for the closed disk is obtained at the
boundary points (0.68, 0.07) and has a value of 0.32 .

Of course, as the center of the disk and the radius vary, so does the relative position
of the point on the circle that capacity is achieved at. What is interesting is that it is not
obvious where this point should be. We will explain this further. For a positive channel,
increasing a brings increased capacity, whereas decreasing b results in increased capacity.
So, considering our example of the disk centered at (0.6, 0.2) with radius 0.15, one might
think that this critical point is when b is decreased by the amount that a is increased—this
being the point on the boundary circle at 2π − π

4 = 5.50 radians, which only gives us a
capacity of 0.31 . However, numerical methods tell us that the actual maximum occurs are
5.25 radians with a value, as noted, of 0.32. Of course, for this example, the difference is not
much, but this result is relative to the size of the disk. What is important is that the actual
critical point depends on the disk’s position to the two lines b = a and b = 1− a. We do
note that when the disk is centered on the line b = 1− a, that 2π − π

4 radians is the correct
position for the critical point. One can also see this by examining the capacity level sets
in Figure 5.

Of course, we are using an l2 metric which has a metric ball of a disk. If, for example,
we used an l1 metric, the ball would be a square rotated by 45 degrees.

Figure 5. Example 1 illustrated with level sets of capacity with more detail than Figure 4.
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Figure 6. Same as Figure 5, but with a 3D perspective.

1.3.2. Power

We assume that the transmitting agent AX has adjustable power P. This power allows
the transmission capabilities of AX to vary. By way of example, say that AX transmits with
fidelity a = 0.6, b = 0.2. Now, AX is given an increase in its transmitting power that allows
it to change (a, b) to (a′, b′) such that the “distance” between the two points is less than P.
Consider that we use the L2 Euclidean norm and set P = 0.15. This tells us that all such
points (a′, b′) are in the disk of radius 0.15 about the center (0.6, 0.2). We note that this is a
rudimentary concept of power. Power helps a transmission when we are restricted to the
bottom quarter of this disk and where a is increasing (giving more transmission fidelity)
and b is decreasing (more transmission fidelity—recall that b gives us the probability of a 1
going to the opposite symbol 0). However, the conclusion is still the same point that we
made and illustrated above.

1.3.3. Results and Discussion

We end this section with a brief summary. We have discussed how one agent can pass
Shannon information to another and how changing the transmission characteristics can
increase or decrease this information transfer. We have used capacity as our metric for
information transfer. Let us now progress to multiple agents. We have also proven some
information theoretic properties for the reader (Properties 1 & 2).

In the situation that we discussed in this section where there are two transmitting
agents and one receiving agent, we denote the channel as M1, which is given by the channel
matrix (In this article, we freely identify a channel with its matrix. Furthermore, for a 2× 2
channel, we identify the channel as the ordered 2-tuple (a, b) also.) M1 described earlier (4).
We denote that channel capacity as C(M1) which we have analyzed as C2,2 in this section.

2. Two Transmitting Agents

Say we have two transmitting agents, AX1 and AX2 acting independently with respect
to each other. Assume they have the same transmitting characteristics; that is, the channel
matrices are the same. The receiving agent AY gets symbols from both transmitting agents.
How does this impact the information flow to AY?

In our scenario, AX1 and AX2 both sense the same environment. That is, they both
wish to send a 0 or they both wish to send a 1. So, as before, the possible inputs are 0 or 1,
but the outputs are of the form

(0, 0), (0, 1), (1, 0), (1, 1) (21)
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since we are assuming that the noise affects each transmitting agent independently. Keep
in mind that both AX1 and AX2 are both attempting to transmit the same symbol.

The output that AY uses is given by the random variable Y.

(0, 0) is taken to be the symbol Y = O0,0

(0, 1) is taken to be the symbol Y = O0,1

(1, 0) is taken to be the symbol Y = O1,0

(1, 1) is taken to be the symbol Y = O1,1 .

We denote P(Y = Oi,j) =: yi,j. Our channel matrix is 2× 4 and is

M2 =

(
P(Y = O0,0|X = 0) P(Y = O0,1|X = 0) P(Y = O1,0|X = 0) P(Y = O1,1|X = 0)
P(Y = O0,0|X = 1) P(Y = O0,1|X = 1) P(Y = O1,0|X = 1) P(Y = O1,1|X = 1)

)
=

(
a2 aā āa ā2

b2 bb̄ b̄b b̄2

)
.

We note that the second and third columns of the above channel matrix are identical. This
has implications for the mutual information and, of course, the capacity of the channel.

Let us look at this in more generality. Say we have two channel matrices

M3 =

(
α 2ε δ
β 2γ φ

)
and M4 =

(
α ε ε δ
β γ γ φ

)
.

Both channels have the same input random variable X as above. The output random
variables are Y3 and Y4, respectively.

Let us consider the M3 channel first. Y3 has probability values yi := P(Y3 = i)
as follows

(y1, y2, y3) = (αx + βx̄, 2εx + 2γx̄, δx + φx̄) . So, H(Y3)

= −[(αx + βx̄) log(αx + βx̄) + (2εx + 2γx̄) log(2εx + 2γx̄) + (δx + φx̄) log(δx + φx̄)] ,

H(Y3|X) = −x
[
α log(α) + 2ε log(2ε) + δ log(δ)

]
− x̄
[

β log(β) + 2γ log(2γ) + φ log(φ)
]

. (22)

The mutual information is I(Y, X) = H(Y)− H(Y|X). We expand the mutual information
into the sum of two functions. The first function is from the first and last columns, and the
second function is from the middle column. That is

I(Y3, X) = F3
1 (α, β, δ, φ, x) + F3

2 (ε, γ, x) , where

F3
2 = −2εx log(2εx + 2γx̄)− 2γx̄ log(2εx + 2γx̄) + 2εx log(2ε) + 2γx̄ log(2γ)

= 2εx log
(

2ε

2εx + 2γx̄

)
+ 2γx̄ log

(
2γ

2εx + 2γx̄

)
= 2εx log

(
ε

εx + γx̄

)
+ 2γx̄ log

(
γ

εx + γx̄

)
.

Now let us consider the M4 channel. As above

(y1, y2, y3, y4) = (αx + βx̄, εx + γx̄, εx + γx̄, δx + φx̄) .
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H(Y4) = −
[
(αx + βx̄) log(αx + βx̄) + (εx + γx̄) log(εx + γx̄)

+ (εx + γx̄) log(εx + γx̄) + (δx + φx̄) log(δx + φx̄)
]

(23)

= −
[
(αx + βx̄) log(αx + βx̄) + 2(εx + γx̄) log(εx + γx̄)

+ (δx + φx̄) log(δx + φx̄)
]

. (24)

H(Y4|X) = −x
[
α log(α) + ε log(ε) + ε log(ε) + δ log(δ)

]
− x̄
[

β log(β) + γ log(γ) + γ log(γ) + φ log(φ)
]

(25)

= −x
[
α log(α) + 2ε log(ε) + δ log(δ)

]
− x̄
[

β log(β) + 2γ log(γ) + φ log(φ)
]

. (26)

As above we expressthe mutual information as

I(Y3, X) = F3
1 (α, β, δ, φ, x) + F3

2 (ε, γ, x)

and we have that

F4
2 = −2εx log(εx + γx̄)− 2γx̄ log(εx + γx̄) + 2εx log(ε) + 2γx̄ log(γ)

= 2εx log
(

ε

εx + γx̄

)
+ 2γx̄ log

(
γ

εx + γx̄

)
= F3

2 .

A quick inspection tells us that F4
1 = F3

1 ; thus, the mutual information of both channels
is the same. This result is not surprising because if we combine output symbols where
the channel matrix has identical rows, we lose nothing as far as the output information is
concerned—there is no extra value in looking at the output symbols separately. This makes
sense, and is also what our mathematics have shown.

Let us keep in mind that we wish to find C(M2), the capacity of the Shannon channel
when there are two transmitting agents. (To keep our notation consistent, C(a, b) is the
capacity given by the corresponding 2× 2 channel matrix as in (4), whereas C(∗) is the
capacity of the channel given by ∗).

Theorem 2. C(M2) ≥ C(M1).

Proof. M2 has four output symbols which are in essence 2-vectors. We ignore the second
component of the vector. Therefore, we collapse the first and third symbol to a, and the
second and fourth to ā. This results in M1, and since using more output symbols never
lowers capacity, by Property 2 (also, a code that works for M1 works for M2 as well by
collapsing the symbols), we are done. (Later in the paper we do better than this result with
Corollary 1 to Theorem 6.)

We now form another channel related to what we discussed above. Say now that the
receiving agent receives the symbols without any order. Therefore, instead of a 2-vector,
the output is one of the three multisets [0, 0], [1, 0], [1, 1] with

P(Y = [0, 0]) = a2, P(Y = [1, 0]) = 2āa, P(Y = [1, 1]) = ā2 .

We call this channel M2−, and its channel matrix is

M2− =

(
a2 2āa ā2

b2 2b̄b b̄2

)
.
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From what we discussed above with M4 and M3, we see that

Theorem 3.
C(M2−) = C(M2) .

Let us examine the bounds in Theorem 1 above. We will see that, not surprisingly
except for special cases, C(M2) > C(M1). Figure 7 is a plot of C(M2)−C(M1) as a function
of (a, b).
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Figure 7. The plot C(M2) − C(M1), of course the C axis is now measuring the difference in the
capacities (in units of bits per t).

From Figure 7, we see that except for the line b = a (where both channels M1 and
M2 have 0 capacity), and at (a, b) = (1, 0) or (a, b) = (0, 1) (where both channels have
capacity 1), that C(M2) > C(M1). We note that for M2 and the other higher dimensional
channels that we will discuss, there is to our knowledge no closed form as there is for
M1. Therefore, for our calculations of capacity, we rely upon numerical results from the
Blahut-Arimoto capacity algorithm [16,17].

Results and Discussion

In this section, we have laid the groundwork for n transmitting agents. We derived
some capacity results. We concentrated on the effects of going from 1 to 2 transmitting
agents. What happens as we go to three or more transmitting agents?

3. Multiple Transmitting Agents

We have the canonical representation for the channel of n transmitting agents, and
we denote this canonical channel matrix as Mn, which is formed by taking the output of
channel Mn−1 (Note, due to the simplicity of the construction for “small” channels, we
have that M1 = M1, M2 = M2.) and adding a 0 or a 1 to it. For M3 this results in

M3 =

(
a3 a2 ā a2 ā aā2 a2 ā aā2 aā2 ā3

b3 b2b̄ b2b̄ bb̄2 b2b̄ bb̄2 bb̄2 b̄3

)
.

This comes from taking the output for two agents as given in canonical form by (21) and
extending it to

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) .

Theorem 4. Rearranging outputs/columns of a channel matrix does not affect capacity.
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Proof. By looking at the expression for mutual information, we see that changing the order
of arithmetic operations leaves it unchanged. This result follows, since capacity is the
maximum of mutual information.

Therefore, we can permute the columns of Mn and obtain a new matrix Mn, which
has the same capacity, that is C(Mn) = C(Mn), and is given below.

Mn =

(
an an−1 ā . . . an−1 ā an−2 ā2 . . . an−1 ā . . . ān

bn bn−1b̄ . . . bn−1b̄ bn−2b̄2 . . . bn−1b̄ . . . b̄n

)
. (27)

Look at the above theorem in terms of the columns of Mn. Let us use M3 as an example.

M3 =

(
a3 a2 ā a2 ā a2 ā aā2 aā2 aā2 a3

b3 b2b̄ b2 ā b2b̄ bb̄2 bb̄2 bb̄2 b3

)
. (28)

Collapsing the output in this situation is equivalent to interchanging the 4th and 5th
columns (which does not change capacity) and forming the matrix M3c.

M3c =

(
a3 a2 ā a2 ā aā2 a2 ā aā2 aā2 a3

b3 b2b̄ b2 ā bb̄2 b2b̄ bb̄2 bb̄2 b3

)
. (29)

As above when we looked at M3 and M4, we see that we may form the channel where
we identify output symbols with the same conditional probabilities for both inputs. This
give us the channel Mn− , where

Mn− =

(
an nan−1 ā (n

2)an−2 ā2 . . . naān−1 ān

bn nbn−1b̄ (n
2)b

n−2b̄2 . . . nbb̄n−1 b̄n

)
. (30)

Theorem 5. C(Mn) = C(Mn−)

Proof. As above for M2 in Theorem 3, or we can just use Property 2 repeatedly.

The reason we introduce Mn− is that it is a cleaner way to express the channel, and
the calculations are simpler than that of Mn. For example, M8 is a 2× 256 matrix, whereas
M8− is a 2× 9 matrix. This obviously makes the coding issues easier. Now we examine
Figure 8, which is the difference between C(M8) and C(M1).
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0.5 

0,4 
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0.3
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0. 1
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      0
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Figure 8. C(M8)− C(M1).

When we compare Figure 8 to Figure 7, we easily see that C(Mn) grows, except for
the endpoints and the line b = a (which stay at 0) as n grows.



Entropy 2022, 24, 1719 15 of 26

Nota Bene We now look at the prior illustrative results in terms of a more general
encompassing theory. We included much of Section 2 so that the reader who is not familiar
with some of the “tricks” will have a feel for why the more general results hold.

Theorem 6. C(Mn+1) ≥ C(Mn) for any positive integer n.

Proof. (The proof is the same as for the above when n = 1.) Mn can be obtained from
Mn+1 by combining certain columns together; the result follows from Property 2.

Corollary 1. C(Mn+1) > C(Mn), except for (1, 0) and (0, 1) where they both have capacity 1,
and the line b = a where they both have capacity 0.

Proof. We show the proof in three steps.

1. If a = b, C(Mn) = C(Mn+1) = 0 since the rows are identical. In this case, it is trivial to
show that H(Y) = H(Y|X) (the output has no idea what the channel input was). One
can see this by the fact that x · aq ān−q + x̄ · aq ān−q = aq ān−q. In short, the capacities
are equal.

2. If (a, b) = (1, 0) or (a, b) = (0, 1), both Mn and Mn+1 are both the 2× 2 identity matrix
with zero columns added in; hence, C(Mn) = C(Mn−1) = 1. In short, the channel
capacities are equal.

3. Now, excluding the special cases where a = b, (a, b) = (1, 0), or (a, b) = (0, 1), by
Property 2, we only have to show that here are two combined columns that are not
multiples of each other.

By excluding the special cases, we cannot use the endpoints of the unit square; there-
fore, a or b must be in (0, 1). WLOG, we assume that 0 < a < 1.

Consider a generic column of Mn; it is of the form c =

(
ae ān−e

be b̄n−e

)
, e ∈ {0, . . . , n}. By

construction, Mn+1 has two columns, c1 =

(
a · ae ān−e

b · be b̄n−e

)
and c2 =

(
ā · ae ān−e

b̄ · be b̄n−e

)
, that when

combined result in column c. If c1 is not a constant multiple of c2, we will have shown that
C(Mn+a) > C(Mn). Assume the opposite—that is, c1 = k · c2; since neither a or ā is 0 we
have that a = kā. Then a = kā is equivalent to a = k

k+1 , k 6= 0. We now have three cases
for b.

• b = 0. In this case, b̄ = 1 and we only look at the last column of Mn, so we let

c =
(

ān

b̄n

)
=

(
ān

1

)
. Since we are assuming that c1 = k · c2, we have that

0 = 0 · 1 = b · 1 = k · b̄ · 1 = k, which is impossible.
• b = 1. Using the same argument as above, just replace the last column of Mn with the

first. So again, it is impossible that the columns are multiples.
• 0 < b < 1. As above for a, we also have that b = k

k+1 . This tells us that a = b which
has been ruled out.

Thus, we have shown the existence of two columns of Mn+1 that are not multiples of
each other and combine them into a column of Mn.

Theorem 7. limn→∞ C(Mn) = 1, except for when b = a, and in that case, the channel capacity
is 0.

Proof. WLOG, we assume a > b. We can do this because of the constraint a 6= b and the
fact that the rows of a channel matrix can be interchanged without affecting its capacity.
Take a positive ε << a−b

2 be fixed. For a large enough N, we can always find a rational
number m(n) for any n > N such that ā + ε < m < b̄− ε < 1 and nm ∈ Z. (The ε padding
prevents m from converging to ā or b̄). This result is guaranteed to exist for sufficiently
large N.
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Given 0 ≤ b < a ≤ 1, let x = ā + ε, y = b̄− ε, giving us 0 ≤ x < y ≤ 1. Certainly there
exists a positive integer N such that 1/N < y− x. Therefore, for any integer n ≥ N, we
have that 1/n < y− x. Consider (x, y) as a sub-interval of [0, 1]. For any n ≥ N, consider
the largest integer W such that W(1/n) ≤ x. Look at (W + 1)(1/n); by the definition of W,
this must be greater than x. However, since 1/n < y− x, we have that (W + 1)(1/n) < y.
We let m = (W + 1)(1/n). Keep in mind two characteristics of m as a function of n:

1. Since W is an integer, mn ∈ Z, and,
2. mn < n, since m < 1.

Let M′n be the channel matrix Mn−, but modified as follows: all outputs yk for k ≤ mn
are combined into y′0, and all of the other outputs are combined into y′1. The channel matrix
then looks like this:

M′n =

(
P(y′0|x0) P(y′1|x0)
P(y′0|x1) P(y′1|x1)

)
,

where

(Y = y′0) = (Y = y0) ∪ (Y = y1) ∪ . . . ∪ (Y = ymn) ( (Y = yo) ∪ . . . ∪ (Y = yn) and

P(y′0|x0) =
mn

∑
i=0

P(yi|x0) , with P(yi|x0) =

(
n
i

)
an−i āi .

(Keep in mind that we are dealing with the binomial random variable Sn, where i is the
number of successes in n Bernoulli trials, with the probability of success ā, P(Sn = i) =
(n

i )an−i āi).

∴ P(y′0|x0) =
mn

∑
i=0

(
n
i

)
an−i āi .

If we let Φ(x) be the cumulative standard normal distribution function, the De-Moivre
Laplace limit theorem [18] states that (when we take c, d as integers)

P
(

c <
Sn − nā√

naā
< d

)
→ Φ(d)−Φ(c) as n→ ∞; thus,

P
(

c− ā√
naā

<
Sn − nā√

naā
<

d− ā√
naā

)
→ Φ

(
d− ā√

naā

)
−Φ

(
c− ā√

naā

)
as n→ ∞, and

P(c ≤ Sn ≤ d)→ Φ
(

d− ā√
naā

)
−Φ

(
c− ā√

naā

)
as n→ ∞ .

This step leaves us with

d

∑
i=c

(
n
i

)
an−i āi → Φ

(
d− nā√

naā

)
−Φ

(
c− nā√

naā

)
as n→ ∞ . (31)

Thus, the De-Moivre Laplace limit theorem gives us (with c = 0, d = mn):

lim
n→∞

P(y′0|x0) = lim
n→∞

[
Φ
(

mn− nā√
naā

)
−Φ

( −nā√
naā

)]
= lim

n→∞
Φ
(√

n
m− ā√

aā

)
− lim

n→∞
Φ
(√

n
−ā√

aā

)
.

Since a and ā are positive, then − ā√
aā

is negative, giving

lim
n→∞

√
n
−ā√

aā
= −∞, and

lim
n→∞

Φ
(√

n
−ā√

aā

)
= 0 .
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If m < ā, then m−ā√
aā

is negative. However, if m > ā, it is positive, giving (Even though

m changes as n changes, the value of
√

n m−ā√
aā

remains greater than or equal to
√

n ε√
aā

for

m > ā + ε. Since
√

n ε√
aā

approaches ∞, so does
√

n m−ā√
aā

. The same logic can also be used
for the m < ā− ε case.)

lim
n→∞

√
n

m− ā√
aā

=

{
−∞ if m < ā− ε

∞ if m > ā + ε ; and

lim
n→∞

Φ
(√

n
m− ā√

aā

)
=

{
0 if m < ā− ε

1 if m > ā + ε

∴ lim
n→∞

P(y′0|x0) = 1− 0 = 1 .

Thus, we have that
lim

n→∞
P(y′1|x0) = 0 .

P(y′0|x1) beahves the same, but with a replaced by b. Since ā + ε < m < b̄− ε, then the
limn→∞ P(y′0|x0) = 1 and limn→∞ P(y′0|x1) = 0; thus,

lim
n→∞

M′n =

(
1 0
0 1

)
.

which has a channel capacity of 1. Since M′n was formed by combining the outputs of Mn,
then C(M′n) ≤ C(Mn) ≤ 1. Therefore, by the squeeze theorem, limn→∞ C(Mn) = 1.

Results and Discussion

The theorems presented in this section shows what happens as the number of trans-
mitters grows. The ultimate result of this section was Theorem 7, which used a rather
non-trivial application of the Central Limit Theorem. At this point, the seemingly obvious
but difficult result that we proved, i.e., that as the number of transmitting agents grows, so
does the reliability of the channel in terms of its capacity. This result, of course, is in line
with the similar result that if we have a code that consisted of repeating a symbol many
times the error rate is small (the transmission rate may be low, but this does not apply to
our agent examples).

4. Non-Identical Transmitting Agents

In a shift, say we start with only two transmitting agents, but their noise characteristics
are different. Of course, keep in mind that in this situation, we have assumed that there is a
master transmitter using the X agent to communicate with Y. The master transmitter picks
the input symbols and the transmitting agents do their best to communicate by forming
one encompassing Shannon channel. We have shown above that, if all of the agents share
the same assumption for (a, b), the channel capacity increases as the number of agents
increase. However, what happens if the (a, b) are different for the various agents? Are we
better off only using a subset of agents, or is it still best to use as many agents as possible?
We partially answer those questions below.

Let M1
1 be the channel matrix for agent 1, and M2

1 be the channel matrix for agent 2.

M1
1 =

(
a ā
b b̄

)
,

M2
1 =

(
c c̄
d d̄

)
.
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The output is such that the receiving agent uses the ordering of agent 1 first, then agent 2.
If the agents wish to send a signal of 0, the possible outputs, expressed via their probabili-
ties, are

P(0, 0) = ac

P(0, 1) = ac̄

P(1, 0) = āc

P(1, 1) = āc̄

If the agents wish to send a signal of 1 instead, we have

P(0, 0) = bd

P(0, 1) = bd̄

P(1, 0) = b̄d

P(1, 1) = b̄d̄ .

This gives us a combined channel matrix for both agents who are transmitting as M1,2
2 , where

M1,2
2 =

(
ac ac̄ āc āc̄
bd bd̄ b̄d b̄d̄

)
. (32)

We use our own notation to express the above channel as the tensor product ,

(a, b)⊗ (c, d) .

We know, by Property 2, that collapsing output symbols does not increase capacity.
However, if we collapse y1 and y2 into y1′ and y3 and y4 into y2′ , we have a channel matrix
of M1,2

2′ :

M1,2
2′ =

(
ac + ac̄ āc + āc̄
bd + bd̄ b̄d + b̄d̄

)
=

(
a ā
b b̄

)
.

Thus, C(M1,2
2 ) ≥ C(M1,2

2′ ) = C(M1
1).

Now let us combine the first and third outputs of M1,2
2 into y1′′ and the second and

fourth outputs into y2′′ . This gives us a channel matrix M1,2
2′′ .

M1,2
2′′ =

(
ac + āc ac̄ + āc̄
bd + b̄d bd̄ + b̄d̄

)
=

(
c c̄
d d̄

)
.

Thus, C(M1,2
2 ) ≥ C(M1,2

2′′ ) = C(M2
1). This result leads us to the next theorem:

Theorem 8. As the number of agents increase, no matter if they have different channel noises, the
total channel capacity is non-decreasing.

Proof. In the above discussion we have show that

C(M1,2
2 ) ≥ C(M1,2

2′ ) = C(M1
1)

C(M1,2
2 ) ≥ C(M1,2

2′′ ) = C(M2
1).

Therefore, by repeating the same argument we see that as we add extra agents the capacity
can never decrease.

In fact, as before when the agents had identical characteristics, the channel capacity,
except for special cases (dependent columns, a capacity 0 or 1, etc.), is greater than that
for separate agents. One can see this by examining the channel matrix—if you unpack the
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outputs and find that the statistics are different, extra information is learned. Let us now
look at the special case of combining a channel with a 0-channel.

Theorem 9. For any zero channel given by (e, e), e ∈ [0, 1], we find that

C((a, b)⊗ (e, e)) = C(a, b) .

Proof. If we can show that the mutual information of (a, b)⊗ (e, e) is given by (15), we are
done. The channel matrix for this situation is(

ae aē āe āē
be bē b̄e b̄ē

)
.

Let u := ax + bx̄, and we find that ū = āx + b̄x̄. Further,

Y = (y1, y2, y3, y4) = (aex + bex̄, aēx + bēx̄, āex + b̄ex̄, āēx + b̄ēx̄)

= (ue, uē, ūe, ūē) ,

H(Y) = −[ue log(ue) + uē log(uē) + ūe log(ūe) + ūē log(ūē)]
= −[ue(log(u) + log(e)) + uē(log(u) + log(ē))

+ūe(log(ū) + log(e)) + ūē(log(ū) + log(ē))]
= −[u log(u) + ū log ū + e log(e) + ē log(ē)]
= h(u) + h(e) , and

H(Y|X) = −x[ae log(ae) + aē log(aē) + āe log(āe) + āē log(āē)]
−x̄
[
be log(be) + bē log(bē) + b̄e log(b̄e) + b̄ē log(b̄ē)

]
.

Now again using the log of a product as the sum of the logs, then grouping like log terms,
this results in

H(Y|X) = x[h(a) + h(e)] + x̄[h(b) + h(e)] = x · h(a) + x̄ · (b) + h(e) ,

and we see that H(Y)− H(Y|X) = h(ax + bx̄)− x · h(a)− x̄ · h(b) .

Results and Discussion

In this section, we showed what happens when two transmitting agents with different
noise characteristics are used. Our important result was that as the number of agents
increase, no matter if they have different channel noises, the total channel capacity is
non-decreasing. As with many of our results it relied upon the algebra of mutual infor-
mation giving common sense answers. However, without proofs we just have intuition to
rely upon.

5. Resource Allocation

We now concern ourselves with the physical limitations of the receiving agent. We
assume that the receiving agent has a limited resourceR that it can use to receive messages.
To the extent possible, the receiving resource, R, may be measured in terms of various
antennas or various allocations of frequencies, etc. It is not our goal in this article to discuss
the engineering of the receiving agent in general. Rather, we accept it as a given.

Upon completion of the mathematics in this section, the results do not seem surprising.
That is good! It shows that our intuition is correct and it lays a foundation for dealing
with many agents and non-linear allocation schemes (where we lose elements of intuition).
Furthermore, aside from linearity, we based our allocation scheme on a Euclidean metric;
it is not at all clear if an information geometric-style Riemannian metric be used instead.
That is beyond the scope of the article.
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Let us take the simplest case where there are two transmitting agent AX1 and AX2 .
As before, AXi has channel matrix Mi. We model noise affecting each channel in a linear
manner. Suppose that an agent AX is given, as before, by its channel matrix

M1 =

(
a ā
b b̄

)
.

How does noise, which results from the receiving agent not allocating enough of its
resources to AX , change this channel matrix? The channel (a, b) is a point in [0, 1]× [0, 1].
Consider the shortest path from (a, b) to the main diagonal (which consists of zero-capacity
channels). View [0, 1]× [0, 1] as sitting R2 and consider the straight line y = −x + (a + b).
This line is orthogonal to the straight diagonal line of zero-capacity channels, goes through
the point (a, b), and intersects the line for the zero-capacity channels at ( a+b

2 , a+b
2 ). The line

segment of interest is given parametrically for t ∈ [0, 1] as

(1− t)
(

a, b
)
+ t
(

a + b
2

,
a + b

2

)
.

We model noise as moving on this new line segment from the point (a, b) to the point
( a+b

2 , a+b
2 ). No noise corresponds to t = 0, total noise to t = 1; that is, we use t as a measure

of the noise normalized in a linear manner between 0 and 1.
EXAMPLE : Let (a, b) = (0.8, 0.4). If t = 0, the channel is given as (0.8, 0.4) and the

capacity is 0.12 . If t = 1, the channel is given as (0.6, 0.6) and the capacity is 0 . Let t = 0.9,
then the channel is given by 0.1(0.8, 0.4) + 0.9(0.6, 0.6) = (0.08, 0.04) + (0.54, 0.54) =
(0.62, 0.58), which has a capacity of 0.001 .

Now, let t = 0.1, then the channel is given by 0.9(0.8, 0.4)+ 0.1(0.6, 0.6) = (0.72, 0.36)+
(0.06, 0.06) = (0.78, 0.42), which has a capacity of .10 . Note that, unsurprisingly, the cleaner
channel has C(0.8, 0.4) = 0.1246 > C(0.78, 0.42).

What we have been discussing motivates the following our modeling definition.

Definition 3. An agent AX with channel matrix (a, b) requires the receiving resource R for its
channel matrix to be unchanged. If the receiving agent only allocates A, 0 ≤ A ≤ R to Ax, the
channel matrix is modified from (a, b) in the following manner,

(aA, bA) =
A
R (a, b) +

(
1− AR

)(
a + b

2
,

a + b
2

)
. (33)

Thus, A = R corresponds to t = 0 above, and A = 0 corresponds to t = 1 above. As
A decreases, the capacity “travels” the shortest path in the Euclidean metric to the line of
the 0-capacity channels. This is the essence of our modeling assumption.

Note that a channel is a 0-capacity channel iff a = b. However, if we let b = a, then
∀A, (aA, aA) = (a, a).

Theorem 10. For a non-zero channel (a, b), that is, a 6= b, C(aA, bA) decreases as A decreases
fromR to 0.

Proof. If (a, b) is a positive channel, that is, if a > b, we have that aA decreases and bA

increases as A goes fromR to 0. This result is easily shown with algebra, but even more
simply by observation of the line segment. From ([Theorem 4.9] [6]), if (a, b) is a negative
channel, then by symmetry of capacity about the line b = a, that completes the proof.

Corollary 2. If we have a 0-capacity channel (a, b) = (e, e), then the C(eA, eA) is constant at 0
as A decreases.

Proof. Trivial, since the line segment reduces to the point (e, e) is this situation.
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5.1. Resource Allocation Amongst Different Transmitters

Assume that there are two transmitting agents AX1 with matrix (a, b), and AX2 with
matrix (c, d). The difference from before is that the receiver can only allocate total resource
R to the reception by the agents and, further, each agent requires resource R to prevent
degradation to its channel matrix.

If AY allocates A to AX1 , we have the resulting channel matrix Equation (33) as given
above. Then it allocates the remainderR−A to AX2 , resulting in this channel matrix

(cR−A, dR−A) =
(

1− AR

)
(c, d) +

A
R

(
c + d

2
,

c + d
2

)
. (34)

Note that

(aR, bR) = (a, b), with C(aR, bR) = C(a, b), and

(a0, b0) =

(
a + b

2
,

a + b
2

)
, with C(a0, b0) = 0 .

As we have shown in the previous section, we arrive at:

M1,2
2 |A=

(
aA · cR−A aA · cR−A aA · cR−A aA · cR−A
bA · dR−A bA · dR−A bA · dR−A bA · dR−A

)
. (35)

Consider the situation when all of the resource is allocated to one channel; then,
without the loss of generality, we let A = R, giving

M1,2
2 |A=R=

a
(

c+d
2

)
a
(

1− c+d
2

)
ā
(

c+d
2

)
ā
(

1− c+d
2

)
b
(

c+d
2

)
b
(

1− c+d
2

)
b̄
(

c+d
2

)
b̄
(

1− c+d
2

)
 . (36)

Keep in mind that the above result is the channel matrix when we combine a 0-capacity
channel with (a, b). Intuitively, this should not change the capacity from that of C(a, b).
Looking at the channel matrix and thinking in terms of coding, we see that we are affecting
the first and second outputs; as much as the third and fourth. Below, we present the
mathematical details.

Theorem 11. C
(

M1,2
2 |A=R

)
= C(a, b).

Proof. Let us calculate C
(

M1,2
2 |A

)
. We let c+d

2 := γ and q := (ax + bx̄). Thus,

(y1, y2, y3, y4) =
(
γ(ax + bx̄), γ̄(ax + bx̄), γ(āx + b̄x̄), γ̄(āx + b̄x̄)

)
. Then if

(y1, y2, y3, y4) = (γq, γ̄q, γq̄, γ̄q̄) , we find that

H(Y) = h(γ) + h(q) .

Next we examine the conditional entropy:

H(Y|X) = −x

(
aγ log(aγ) + aγ̄ log(aγ) + āγ log(āγ) + āγ̄ log(āγ̄)

)
.

Again use the rule that the log of a product is the sum of the logs to arrive at:

H(Y|X) = H(Y)− H(Y|X) = h(ax + bx̄)− xh(a)− xh(b) .

This result is the same as the mutual information of (a, b). Thus, the maximum of the
mutual information for both cases remains the same.
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Corollary 3. C
(

M1,2
2 |A=0

)
= C(c, d).

Proof. If we swap the two transmitting agents we establish the proof (details are left to
the reader).

Note that any 0-capacity channel is some (a, b) channel witha 0 resource alloca-
tion. Thus,

Corollary 4. Combining (a, b) with a 0-capacity channel results in a channel with the same
capacity as (a, b).

We arrive at the question at hand—what happens with a partial allocation to each
channel? That is, in general, how does C

(
M1,2

2 |A
)

compare to C(a, b) and C(c, d)? Our
answer follows.

Allocate Resources to (a, b) and a 0-Capacity Channel

In this situation, we know that C
(

M1,2
2 |A=R

)
= C(a, b) and that C

(
M1,2

2 |A=0

)
= C(c, d).

What happens for 0 < A < R? Not surprisingly, we get the following theorem:

Theorem 12. Through allocation if we combine (a, b), the first channel, with (e, e), the second
channel, we find that C

(
M1,2

2 |A
)
= C(aA, bA).

Proof. Trivial from Theorem 9.

5.2. More Examples

We will find the capacity of C
(

M1,2
2 |A

)
by using (35) for variousA and agent matrices.

EXAMPLE Given a 90/10 allocation

The first agent M1
1 = (0.8, 0.4), the second agent M2

1 = (0.7, 0.3), A = 0.9

C(M1
1) = 0.1246, C(M2

1) = 0.1187

(aA, bA) = (0.78, 0.42)

(cR−A, cR−A) = (0.52, 0.48)

C
(

M1,2
2 |A

)
= 0.1012

C
(

M1,2
2 |A

)
< C(M1

1) C
(

M1,2
2 |A

)
< C(M2

1)

EXAMPLE Given a 10/90 allocation, with the same agents as above

The first agent M1
1 = (0.8, 0.4), the second agent M2

1 = (0.7, 0.3), A = 0.1

C(M1
1) = 0.1246, C(M2

1) = 0.1187

(aA, bA) = (0.62, 0.58)

(cR−A, cR−A) = (0.68, 0.32)

C
(

M1,2
2 |A

)
= 0.0967

C
(

M1,2
2 |A

)
< C(M1

1) C
(

M1,2
2 |A

)
< C(M2

1)
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EXAMPLE Given a 90/10 allocation, second agent has little noise

The first agent M1
1 = (0.7, 0.3), the second agent M2

1 = (0.99, 0.01), A = 0.9

C(M1
1) = 0.1287, C(M2

1) = 0.9192

(aA, bA) = (0.6, 0.4)

(cR−A, cR−A) = (0.745, 0.255)

C
(

M1,2
2 |A

)
= 0.2030

C
(

M1,2
2 |A

)
> C(M1

1) C
(

M1,2
2 |A

)
< C(M2

1)

From these results, we see that both

C
(

M1,2
2 |A

)
< min

(
C(M1

1), C(M2
1)
)

, and

min
(

C(M1
1), C(M2

1)
)
< C

(
M1,2

2 |A
)
< max

(
C(M1

1), C(M2
1)
)

are possible. In fact, equalities are also possible by using the special cases examined at the
beginning of this section. However, max

(
C(M1

1), C(M2
1)
)
< C

(
M1,2

2 |A
)

is not possible.

(We show this by a re-wording and then proving that
(

M1,2
2 |A

)
cannot be larger than both

C(M1
1) and C(M2

1).) Thus, we need a lemma.

Lemma 1. For channels (a, b) and (c, d), we find that

C((a, b)⊗ (c, d)) ≤ C(a, b) + C(c, d) , (37)

with equality if a = b or c = d.

Proof. The product channel (a, b)× (c, d) is given by channel matrix
ac ac̄ āc āc̄
ad ad̄ ād ād̄
bc bc̄ b̄c b̄c̄
bd bd̄ b̄d b̄d̄

.

The capacity of this product channel equals the sum of the capacities of its component
channels (a, b) and (c, d) (p. 85 [5]). Removing the middle two rows gives us (a, b)⊗ (c, d),
and, since removing a row never increases capacity, we find that

C((a, b)⊗ (c, d)) ≤ C((a, b)× (c, d)) = C(a, b) + C(c, d).

Theorem 13. If we combine through an allocation (a, b), the first channel, with (c, d), the second
channel, then C(M1,2

2 |A) cannot be greater than both of the individual channel’s component capacities.

Proof. Let

M1
1|A =

(
aA aA

bA bA

)
,

M2
1|R−A =

(
cR−A cR−A

dR−A dR−A

)
,



Entropy 2022, 24, 1719 24 of 26

so that M1,2
2 |A = M1

1|A ⊗ M2
1|R−A. For any input probability distribution held con-

stant, the mutual information is convex with respect to the elements of the channel ma-
trix ([Theorem 2.7.4] [4]). That is, for any given input probability distribution x, for all
a1, a2, b1, b2, t ∈ [0, 1],

I(ta1 + t̄a2, tb1 + t̄b2, x) ≤ t · I(a1, b1, x) + t̄ · I(a2, b2, x),

where I(α, β, x) is the mutual information of channel (α, β) with input distribution x; thus,

C(α, β) = max
x

I(α, β, x), and

∴ ∀x, C(α, β) ≥ I(α, β, x) .

If we let a1 = a, b1 = b, a2 = b2 = a+b
2 , t = A

R , we have from convexity that

I(aA, bA, x) = I
(A
R a + (1− AR )(

a + b
2

),
A
R b + (1− AR )(

a + b
2

), x
)

≤ A
R I(a, b, x) +

�������������

(1− AR )I
(

a + b
2

,
a + b

2
, x
)
(this last term is 0)

for any input probability distribution x, because I(e, e, x) always equals 0. Now, we let χ
be a capacity achieving input probability (unique except for 0-channels) distribution for
(aA, bA), giving

C(aA, bA) = I(aA, bA, χ) ≤ AR I(a, b, χ) ≤ ARC(a, b).

Therefore,

C(M1
1|A) ≤

A
RC(M1

1),

and by replacing AR with 1− AR and repeating the above convexity argument, we find that

C(M2
1|R−A) ≤

R−A
R C(M2

1).

By Lemma 1,

C(M1,2
2 |A) = C(M1

1|A ⊗M2
1|R−A) ≤ C(M1

1|A) + C(M2
1|R−A) . Thus,

C(M1,2
2 |A) ≤

A
RC(M1

1) +
R−A
R C(M2

1) ≤
(A
R +

R−A
R

)
max(C(M1

1), C(M2
1)) .

Resulting in, C(M1,2
2 |A) ≤ max(C(M1

1), C(M2
1)) .

Thus, we have shown that C
(

M1,2
2 |A

)
≤ max

(
C(M1

1), C(M2
1)
)

and, by using The-
orem 11 and Corollary 3, equality can be obtained by letting A = R or 0, the choice
depending on the underlying original channels.

Results and Discussion

In this section, we showed what happens when we have limited transmission power
and want to distribute it among two transmitting agents. The theorems of this section
capture the physical properties of the power allocation and happily agree with intuition.
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6. Conclusions

We considered the use of Shannon information theory, and its various entropic terms to
aid in reaching optimal decisions that should be made in a multi-agent/Team scenario. Our
metric for agents passing information are classical Shannon channel capacity. Our results
are the mathematical theorems in this article showing how combining agents influences
the channel capacity.

We have put the idea forward of multi-agent communication on a firm information
theoretic foundation. We examined simple scenarios in this paper to lay that strong
foundation. We obtained results that may seem obvious, but are quite difficult to prove.
We ask the reader to keep in mind that there is a big difference between “it is obvious” and
“it has been shown”.

From our perspective we have shown that, except for certain boundary cases, one
can achieve near perfect transmission of Shannon information, provided one has a large
enough number of agents.

We have used most information versus resource (power) allocation as an optimizing
criterion. With regard to resource allocation, our results tell us that the best thing to do
is to just use the strongest channel. This result is not surprising. However, without the
mathematics to prove it, we would be relying on intuition. Furthermore, note that we only
used a simple linear allocation scheme in this section, and we only combined two agents.
Future work will consider non-linear allocation schemes and multiple agents to continue
what we have started in this paper. Going forward, this path is especially meaningful if
we adjust the Riemannian metric to influence the power allocated to each channel. For
example, a geometric region with high noise levels can be reflected in the Riemannian
metric by acknowledging that the E, F, G terms of the metric are functions of a and b. We
will explore this direction in future work.

In addition, in future work, we will also consider more than two agents competing for
the available resources, non-Euclidean Riemannian metrics, and more complicated signal-
ing alphabets and schemes. We are also interested in information flow in the Vicsek [19]
bird flocking model.

7. Notation

We include some of the notation that is used repeatedly throughout the article. The
other notation is variants of what we give here with changes to the indices and is made
clear in its first usage.

MAS Multi-agent System
Ax Agent X
M A channel matrix, that is every row contains non-negative numbers that sum to 1
Mn 2 × 2n channel matrix, representing n (transmitting) Agents
H(V) Entropy of the (discrete) random variable V
H(V|W) Conditional Entropy of the random variable V conditioned on W
I(V, W) Mutual information between the random variables V and W
C Capacity of a generic channel
C2,2 Specifically the capacity of a 1 (transmitting) agent channel

M1
1 A specific 1-agent channel

(
a ā
b b̄

)
. Note: C(a,b):=C(M1

1)

M2
1 Another 1-agent channel

(
c c̄
c d̄

)
M1,2

2 The combined channel (a, b) ⊗ (c, d) with channel matrix
(

ac ac̄ āc āc̄
bd bd̄ b̄d b̄d̄

)
M1,2

2 |A Combined power allocated channel with channel matrix

=

(
aA · cR−A aA · cR−A aA · cR−A aA · cR−A
bA · dR−A bA · dR−A bA · dR−A bA · dR−A

)
M2− =

(
a2 2āa ā2

b2 2b̄b b̄2

)
, formed from the (a, b) channel
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