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Abstract: This paper provides elements in support of the random zero-point radiation field (ZPF) as
an essential ontological ingredient needed to explain distinctive properties of quantum-mechanical
systems. We show that when an otherwise classical particle is connected to the ZPF, a drastic,
qualitative change in the dynamics takes place, leading eventually to the quantum dynamics. In
particular, we demonstrate that in parallel with the evolution of the canonical variables of the
particle into quantum operators satisfying the basic commutator [x̂, p̂] = ih̄, also the field canonical
variables are transformed, giving rise to the corresponding creation and annihilation operators
â†, â, satisfying

[
â, â†] = 1. This allows for an explanation of quantum features such as quantum

fluctuations, stationary states and transitions, and establishes a natural contact with (nonrelativistic)
quantum electrodynamics.

Keywords: quantum completeness; quantum ontology; zero-point field; quantization mechanism

1. Introduction

Occasionally, physicists and philosophers of science express their discomfort with
quantum mechanics (QM) by arguing that certain characteristic properties of quantum
systems—of atoms in particular—are not correctly taken into account or explained by
the usual theoretical narrative, or even appear in open contradiction with the empir-
ical facts. A first example that comes to mind is of course Einstein, whose abiding
malaise with quantum theory is well known; other prominent examples are the authors of
Refs. [1–6]. The pertinence of the criticisms raised cannot be negated, although for the
practicing physicist they are normally of marginal importance.

On the other hand, an inspection of the current literature readily reveals the existence
of about two dozen different interpretations of QM, some more popular than others, and
none of them experimentally verified [7]. How can it be that a fundamental theory that
provides the basis for a most significant part of contemporary physics, admits such a variety
of alternative, even contradictory interpretations? No serious physicist or philosopher of
science in his five senses would claim to come up with a better interpretation of Newtonian
mechanics or Maxwellian electrodynamics. Reformulations of a known accepted theory
may appear, of course, but fundamental theories do not accept reinterpretations. Special
relativity did not reinterpret classical mechanics, it extended mechanics to wider domains,
and together with quantum theory helped to specify its range of applicability. We should
conclude that in the case of quantum mechanics, such variety of interpretations is indicative
of a crucial underdetermination of the theory.

To understand the origin of so many different visions about the same fundamental
theory, it is convenient to place ourselves in the context in which QM was born. We recall that
the quantum formalism—its excellent mathematical apparatus that we still use today with
success—was born in the absence of a deep understanding of the quantum phenomenology.
The most important physical guides were Bohr’s 1913 model of the hydrogen atom and
the observed atomic spectra with their numerology, explained in part precisely by Bohr’s

Entropy 2022, 24, 1717. https://doi.org/10.3390/e24121717 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121717
https://doi.org/10.3390/e24121717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6006-1102
https://doi.org/10.3390/e24121717
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121717?type=check_update&version=3


Entropy 2022, 24, 1717 2 of 16

theory, on one hand, and the discovery by de Broglie of the wave aspects associated with
the motion of quantum particles, which almost immediately found empirical verification
(alas not explanation) in the form of particle diffraction, on the other.

It is against this background that Heisenberg worked on his version of the theory,
the matrix mechanics [8]. Heisenberg discovered that the quantum particles have an
unavoidable random behavior. Being persuaded of the completeness of his theory, he took
this randomness for an essential, irreducible trait that neither needs nor admits a deeper
explanation, and referred to it simply as quantum fluctuations. Rather than being received
with skepticism by the community, this denomination found extended and immediate
acceptance, so much so that even today people continue to speak of quantum fluctuations
as an innate phenomenon. An example of how far this conviction has taken ground is
that the quantum fluctuations are made responsible for the formation of galaxies in the
early stages of the universe—without any proof of their early existence. With his postulate,
Heisenberg assigned to his nascent theory a noncausal and indeterministic character. Few
physicists of the time objected to this view.

A few months after the advent of matrix mechanics, Schrödinger’s wave theory
appeared. The new theory helped to get a more complete picture of the quantum world
and was well received by many physicists, particularly those who were not close to the
leaders of the competing theory. A timely contribution of Schrödinger’s work was that it
gave the recipe to construct the matrix elements, which Heisenberg’s mechanics required
but had no means to calculate.

On top of this, the description of the atom as an entity that lives in an abstract,
mathematical space—a Hilbert space, a well-defined mathematical structure—gives no
indication of what is taking place in space-time. A further difficulty is related to the
introduction of ’quantum jumps’ between states, which were (and still are, to a large extent)
taken as a capricious quantum trait, not amenable to further analysis. Strictly speaking, we
rely on a powerful formal description of the atom, with no associated intelligible picture
of it.

Unknowingly, Schrödinger’s wave theory implied the introduction of a new element
into the quantum description. The point is that electron interference patterns are produced
by the accumulation of a high number of point-like events, each one created by a single
electron [9]. A single particle produces an isolated, randomly located bright point on the
detecting screen, the interference—the wave manifestation—becoming evident only after
very many hits. The conclusion—normally one that goes unnoticed—is that Schrödinger’s
wave function refers not to a single particle, but to an ensemble of them. Well interpreted,
Schrödinger theory is intrinsically statistical in nature, and deals with ensembles rather than
individual particles.

Nevertheless, the statistical perspective of the quantum phenomenon was dismissed in
general—and adamantly opposed by the Copenhagen school in particular, which prevails to
date under different guises (the statistical description of quantum mechanics was proposed
and defended by a few authors, Einstein being the most prominent of them. For a more
recent discussion see [10]). This opened the door to another infelicitous ingredient, the
observer. The introduction of an active character in order to ’explain’ the reduction of the
distinctive quantum mixtures to the pure states observed, added a subjective ingredient to
the already odd quantum scheme.

All in all, such variety of interpretations and re-interpretations indicates that some-
thing of importance is missing in the theory. Having so many variations indicates that
the issue is actually not one of interpretation, but of an essential incompleteness. The
absence of an appropriate guiding ontological element has turned the physical situation
into a mystery. On several occasions people have considered that the solution consists in
reshaping the formalism, or adding some hidden variables to the theory, for instance to
restore causality, as is the case with Bohmian mechanics [11]. However, rather than the
kind of incompletenesses considered by Einstein—any statistical description is incomplete
by nature—we are referring to an essential ingredient that is missing. The point is that
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whatever is to be added to the incomplete theoretical framework should be able to address
simultaneously some of its main puzzles, including not just the nature of quantum fluctua-
tions; atomic stability, quantum transitions, discrete atomic spectra, wavelike phenomena
and the like should find their natural explanation in a coherent scheme.

2. Structure of This Paper

The present paper is one of a series that deals with the development of stochastic
electrodynamics (SED) as a physical foundation for quantum mechanics [12–19]. In previous
work we have shown that, by including the zero-point radiation field (ZPF), SED allows us
to arrive at a consistent description of the stationary states and to derive the (nonrelativistic)
radiative corrections proper for QED [19,20], in addition to providimg a possible explanation
for the so-called quantum jumps [21], along with an understanding of the mechanism of
entanglement [22] and of the electron spin as an emergent property [23]. With this paper,
we take a step forward by revealing a deeper role for the ZPF in relation to quantization.
At the outset, in Section 3 we give arguments in favor of the ZPF as an element needed to
complete the quantum-mechanical ontology. The results presented in the rest of the paper
reaffirm these arguments. By revisiting the physical process that leads to the particle’s
canonical variables x, p being replaced by the corresponding quantum operators x̃, p̂, in
Section 4 we show that the permanent action of the background field on an otherwise
classical charged particle induces a qualitative change in the dynamics. Inspired by this result,
in Section 5 we disclose the proces of quantization of the radiation field in interaction
with matter and the subsequent emergence of the corresponding creation and annihilation
operators â†, â satisfying

[
â, â†] = 1, thus establishing contact with (nonrelativistic) QED.

To illustrate the merits of the present approach, in Section 6 we present the derivation
of the (QED) formula for the Einstein coefficient for spontaneous emissions. Some major
implications of the results obtained are discussed through the course of the paper. The final
section contains a couple of brief concluding remarks.

3. The Missing Principle

Because atomic stability and transitions are electromagnetic processes, the missing
element must be electromagnetic rather than mechanical in nature. This element should
be able to provide at the same time an answer to the questions of quantum causality and
the related fluctuations, and of the wavelike behaviour of particles. A natural answer is
therefore to consider the stochastic electromagnetic zero-point field (ZPF)—the nonthermal
component of the radiation field, introduced by Planck in 1912 [24]—as the most suitable
candidate (on the origin of this field, a proposal is to consider it as a result of the myriad
particles contributing to it along the history of the Universe ([18], Ch. 4). Examples of
alternative proposals may be seen in Refs. [25,26]). This proposal is precisely what has
been guiding the investigations under the name of stochastic electrodynamics (SED). SED was
initiated over half a century ago as a result of the physical intuition of the British physicist
Trevor Marshall [12], of recent parting. The name itself of the theory contains a hint about
the two elements of the prescription, electromagnetic and stochastic. The insertion of the
ZPF into the picture has the additional virtue of bringing the ensuing theory closer to
the successful quantum electrodynamics (QED), as it contains the vacuum fluctuations ab
initio. Yet contrary to QED, SED considers these fluctuations embodied in a real, random
Maxwellian field that fills the entire space with an energy (1/2)h̄ω per normal mode.

Further to providing an explanation for the quantum fluctuations, a most important
problem addressed with the introduction of the ZPF is the atomic stability—as intuited
already at the dawn of quantum mechanics by Nernst [27]. The point is that an atomic
electron, like any electric charge in accelerated motion, radiates, thereby losing energy. Yet
the stationary atomic states have constant energy. The solution is to consider the existence
of a source of energy that can be absorbed by the atoms at the required rate. SED shows
this to be the case: when atoms live immersed in the ZPF, they may reach a stable state
of motion, and they can also make transitions between such states [19,20]. As shown in
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Section 6, the transitions conventionally dubbed spontaneous are correctly explained by
SED, as by QED; not by QM, though, due to its approximate (nonradiative) nature, which
entails the neglect of the ZPF.

By serving as a bridge that connects the individual particles of a system, this field
also serves to generate correlations between their motions even when they do not interact
directly, thus giving rise to an apparently nonlocal behavior, as is manifested, for example,
in quantum entanglement [22].

Coming back to the conceptual, philosophical considerations, we conclude that the
mystery and magic that have accompanied the quantum world over decades may be
dissolved by taking the ZPF as a real, physical field in permanent contact with matter.
Considering this field as an inseparable ingredient of the ontology of any quantum system
allows us to recover determinism (which in the presence of stochasticity is to be understood
as a statistical determinism), causality, locality and a degree of objectivity and realism. Full
realism, i.e., a description of the dynamics of the atom in space-time, remains a subject for
the future.

4. Quantization of Matter: The Onset of Operators
4.1. The Equation of Motion of Stochastic Electrodynamics

A usual starting point for the analysis of the (nonrelativistic) particle dynamics in SED

is the equation of motion, known as the Braffort–Marshall equation, which corresponds to
the Abraham–Lorentz equation of electrodynamics in the dipole approximation [12],

mẍ = f (x) + mτ
...x + eE(t), (1)

where f (x) is the external force acting on the particle. As our focus of attention is the
atomic problem, we will generally consider a binding force (for example a Coulomb force).
The radiation reaction force mτ

...x , with τ = 2e2/3mc3, is the term that leads to the Larmor
formula for the power radiated by the accelerated charge. For an electron, τ ≈ 10−23 s. E(t)
represents the electric component of the ZPF taken in the long-wavelength approximation,
whose time correlation is given in the continuum limit by (j, k = 1, 2, 3)〈

Ek(s)Ej(t)
〉
= δkj ϕ(t− s), (2a)

with the spectral function

ϕ(t− s) =
4π

3

∞∫
0

dω ρ(ω) cos ω(t− s).

determined by the spectral energy density corresponding to an energy h̄ω/2 per mode
(notice that this spectral density is Lorentz-invariant and hence is consistent with the law
of inertia; see, e.g., [12])

ρ(ω) =
ω2

π2c3
h̄ω

2
, (2b)

where the first factor is the number of modes per unit volume, whence

ϕ(t− s) =
2h̄

3πc3

∞∫
0

dω ω3 cos ω(t− s). (2c)

Notice that this is the entry point for Planck’s constant, which eventually becomes a
measure of the fluctuations in QM.

Following different statistical procedures, it is possible to show that these equations
lead to both the Schrödinger and Heisenberg formulations of QM (see [19] and references
therein). Here we shall use the same starting point, to address one of the most intriguing
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traits of quantum theory, namely how it is that the dynamical variables become expressed
in terms of operators.

4.2. Evolution of the Dynamics: The Field Takes Over

Let us assume that the particle whose motion we want to study, gets connected to the
ZPF at some instant to. To analyze the effect of the different forces appearing in Equation (1)
on the particle dynamics, we introduce an expansion of x(t) in terms of powers of the
electric charge e [28],

x = x(0) + x(1) + x(2) + ... = x(0) + ∑
s=1

x(s), (3)

where x(s)k stands for the contribution of order es, e being here the coupling factor of the
particle to the field. (For neutral electromagnetic particles the coupling would depend on
the charge distribution, which may influence the times involved in the evolution of the
dynamics.) By inserting (3) in Equation (1) one obtains the hierarchy (summation over
repeated indices is understood)

mẍ(0)i = fi(x(0)) + mτ
...
x (0)

i , (4)

mẍ(1)i =
∂ fi
∂xj

∣∣∣∣∣
x(0)

x(1)j + mτ
...
x (1)

i + eEi(t), (5)

mẍ(2)i −
∂ fi
∂xj

∣∣∣∣∣
x(0)

x(2)j =
1
2

∂2 fi
∂xj∂xk

∣∣∣∣∣
x(0)

x(1)j x(1)k + mτ
...
x (2)

i , (6)

......

In Equation (4) the third-order time derivative may be replaced as customary by the
approximate first-order expression τ(d fi/dt). The solution for x(0) is then seen to decay
within a time lapse of the order of the lifetime τd determined by the value of |d fi/dt| (an
order-of-magnitude calculation of a typical dissipation time gives τd ≈ 10−11s for a system
the size of an atom). This means that the deterministic solution of the homogeneous part
of (1) (i.e., in the absence of the ZPF) disappears within a time of order τd, during which the
system loses the information of its initial conditions.

By the same argument, the solution of the homogeneous part of Equation (5) also
decays after a time of the order of τd. The solution of the inhomogeneous Equation (5)
is a purely stochastic variable, describing a non-decaying motion driven by the electric
component of the ZPF, which may be written in the form

x(1)i = e
∫ t

−∞
dsGik(t, s)Ek(s), (7)

where the Green function Gij(t, s) is a solution of the equation (to simplify the discussion

we omit the term mτ
...
x (1)

i , which represents a small correction)

m
∂2

∂t2Gik(t, s)− ∂ fi
∂xl

∣∣∣∣
x(0)
Glk(t, s) = δ(t− s), (8)

with Glk(t, t) = 0 and

lims→t
∂

∂t
Gik(t, s) =

1
m

δik. (9)
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The solution of Equation (8) satisfying these conditions is

Gik(t, s) =
∂xi(t)
∂pk(s)

∣∣∣∣
x(0)

, (10)

where the derivative ∂xi(t)/∂pk(s), a function of the exact solution of Equation (1), is to be
calculated to zero order in e, i.e., at x(0). The solution of Equation (7) becomes thus

x(1)i = e
∫ t

−∞
ds

∂xi(t)
∂pk(s)

∣∣∣∣
x(0)

Ek(s), (11a)

and its time derivative gives

p(1)i = e
∫ t

−∞
ds

∂pi(t)
∂pk(s)

∣∣∣∣
x(0)

Ek(s). (11b)

These results show that x(1)i (t) and p(1)i (t) evolve in response to the ZPF, at specific rates
determined by the external force.

As is clear from (6) and the subsequent equations of the hierarchy, the higher-order
solutions x(r)i are also controlled (although indirectly) by the field, the external force playing
now an accessory role. Consequently, along the evolution of the system the dynamics
undergoes an irreversible, qualitative change, from behaving deterministically at to under
the action of the applied force, to eventually acquiring indeterministic properties under the
control of the ZPF.

4.3. Kinematics of the SED System

The observation just made—that the particle dynamics becomes eventually controlled
by the background field—calls for an analysis of the evolution of the kinematics used to
describe the particle’s response to the field [29]. With this purpose, we set out to calculate
the Poisson bracket of the particle’s canonical variables{

xj(t), pi(t)
}

xp = δij, (12)

with i, j = 1, 2, 3. In this equation, the Poisson bracket is naturally calculated with respect
to the variables at time t.

The full set of canonical variables includes also those of the infinite number of field
modes (a semicolon is used for the set of canonical variables, to avoid confusion with the
Poisson bracket),

{q; p} = {xi, qα; pi, pα}, (13)

with qα, pα the canonical variables corresponding to the mode of the radiation field of
(angular) frequency ωα. (A discrete set of frequencies is considered here, for reasons that
will become clear later.) At the initial time to, when particle and field start to interact, the
full set of canonical variables is given by

{qo; po} = {xio, qαo; pio, pαo}, (14)

with xio,pio the initial values of the particle’s variables, and qαo, pαo corresponding to the
original field modes, which are those of the ZPF alone. Because the system as a whole
is Hamiltonian, the set at any time t, {q; p}, is related to the set {qo; po} via a canonical
transformation, and therefore the Poisson bracket of any two functions f , g can be taken
with respect to either of them,

{ f , g}qp = { f , g}qo po
(15)

= { f , g}xo po
+ { f , g}qαo pαo

.
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At any time the particle variables xi, pj satisfy the condition{
xi(t), pj(t)

}
qp = δij, (16)

whence according to Equation (15),{
xi(t), pj(t)

}
xo po

+
{

xi(t), pj(t)
}

qαo pαo
= δij. (17)

As noted earlier in connection with Equation (4), due to the radiation reaction the
particle loses track of its initial conditions xo, po, after a time of the order of τd, so the first
term in Equation (17) vanishes,{

xi(t), pj(t)
}

qo po
−−→
t>τd

{
xi(t), pj(t)

}
qαo pαo

. (18)

This means that eventually, the particle kinematics becomes defined by the canonical
variables of the field modes with which it interacts,{

xi(t), pj(t)
}

qαo pαo
= δij (t > τd). (19)

Using the rules of transformation from canonical to normal variables,

ωαqo
α =

√
h̄ωα/2(aα + a∗α), po

α = −i
√

h̄ωα/2(aα − a∗α), (20)

as corresponds to the ZPF, we calculate the transformed Poisson bracket with respect
to the new variables. We define the bilinear form [ f , g] in general as this transformed
Poisson bracket,

∑
α

(
∂ f
∂a α

∂g
∂a∗α
− ∂g

∂a α

∂ f
∂a∗α

)
= ih̄{ f , g}qαo pαo

≡ [ f , g]. (21)

Applied to the canonical particle variables, this gives[
xi, pj

]
= ih̄

{
xi, pj

}
qαo pαo

. (22)

According to Equation (19), for times t > τd this bilinear form satisfies the condition[
xi, pj

]
= ih̄δij. (t > τd) (23)

This is a noteworthy result: it indicates that the symplectic relation between the particle
variables xi and pj becomes eventually determined by their functional dependence on the
normal ZPF variables, with the scale given by Planck’s constant. In the following section,
we discuss this drastic change in more detail.

4.4. Disclosing the Origin of the Quantum Operators

As mentioned earlier, by including the ZPF, SED provides for the existence of stationary
states [19]. Given its universal character, Equation (23) may be applied to any state n, be
it the ground state or an excited state. We may therefore tag the variables xi, pj with the
subindex n and write, using (21),

[
xi, pj

]
nn = ∑

α

(
∂xn

∂aα

∂pn

∂a∗α
− ∂pn

∂aα

∂xn

∂a∗α

)
= ih̄δij. (24)

In what follows, we limit the discussion to the one-dimensional case, for simplicity. The
constant value of this bilinear form implies that the variables xn and pn = mẋn are linear
functions of the set {aα, a∗α}. The field modes involved are those to which the particle



Entropy 2022, 24, 1717 8 of 16

responds, namely those that can take the particle from state n to another state, say k. We
therefore write [29] (see also [18], Ch. 10),

xn(t) = ∑
k

xnkanke−iωknt+c.c., pn(t) = ∑
k

pnkanke−iωknt+c.c., (25)

where ank is the normal variable associated with the field mode that connects state n with
state k, and xnk, pnk = −imωknxnk are the respective response coefficients. Introduction of
these expressions into Equation (24) gives

[x, p]nn = 2im ∑
k

ωkn|xnk|2 = ih̄,

where we recognize the well-known Thomas–Reiche–Kuhn sum rule,

∑
k

ωkn|xnk|2 = h̄/2m. (26)

Further, since the field variables ank, an′k connecting different states n, n′ with state k are
independent random variables, by combining Equations (21), (25) and (26) one obtains

[x, p]nn′ = ih̄δnn′ . (27)

The quantities xnk and ank refer to the transition n → k involving the frequency ωkn,
whilst xkn and akn refer to the inverse transition, with ωnk = −ωkn; therefore, from (25),
x∗nk(ωnk) = xkn(ωkn), p∗nk(ωnk) = pkn(ωkn), a∗nk(ωnk) = akn(ωkn), whence Equation (27)
takes the form

∑
k
(xnk pkn′ − pn′kxkn) = ih̄δnn´. (28)

Given the structure of this equation, the coefficients xnk and pnk can be organized as the
elements of matrices x̂ and p̂, respectively, with as many rows and columns as there are
different states, so that (28) becomes

[x̂, p̂]nn′ = ih̄δnn′ , (29)

which is the matrix formula for the quantum commutator

[x̂, p̂] = ih̄. (30)

We see that as a result of the evolution of the kinematics, the Poisson bracket of the particle’s
canonical variables x, p has turned into the quantum commutator. The relationship between
Poisson brackets and commutators established with great insight by Dirac in the early days
of QM finds herewith a possible physical explanation.

The rest of the formalism is obtained by introducing the vectors representing the
stationary states of the particle on which the operators act, denoted by |n〉. From this point
on, the Hilbert-space formulation may be completed following the standard procedure [29].

Seen as a component of the operator x̂ acting on the system, xnk represents the response
to the field mode (nk) that takes the system from state n to state k and vice versa, as ex-
pressed by the selection rules for dipolar transitions. An application of these selection rules
is illustrated in Section 6, where the Einstein coefficient corresponding to a (spontaneous)
transition n→ k is shown to depend directly on |xnk|2.

It is clear from the above that the operators x̂, p̂ do not describe particle trajectories,
and no phase-space description is associated with them. The Hilbert-space formalism
represents a compact and elegant way of describing the quantum behavior based on the
transitions between states, at the cost of a space-time description of what happens inside
the atom.
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This result offers a response to a long-standing, intriguing question of QM that sounds
like an oxymoron: how is it possible that the description of a stationary quantum state is
made in terms of a collection of transition amplitudes between states? The suggested func-
tionality of the transition coefficients as the building blocks of the operator representation
has moreover an historical value, since in the hands of Born (and as was unknowingly sug-
gested by Heisenberg) they became the omnipresent elements of the quantum description.

5. Quantization of the Field
5.1. Describing a Field Mode in Interaction with Matter

We now proceed to develop a description of the effect produced on the radiation
field by its interaction with matter, consistent with the above. This means that rather than
assuming that the (free) radiation field is quantized ab initio, or postulating the canonical
quantization of the field by simple analogy, we shift the focus to that part of the field
that is exchanging energy with quantized matter in order to understand how the field
quantization comes about. The description to be developed should serve to express any
electric or magnetic component of the interacting field, be it the ZPF alone or in combination
with an external field.

Initially, when particle and field became coupled, both particle and field were ’free’
and the entire spectrum of field modes was in principle involved in the interaction (see,
however, the discussion in Section 5.5). However, once matter has become quantized as
described above, the field modes in interaction with it belong to the reduced set {α} = {nk}.

The fact that quantized matter interacts selectively with single field modes of well-
defined frequencies allows us to focus on one such mode, which amounts to working with a
single Fourier component of the field, having a momentum k with |k| = ω/c, polarization
ε and angular frequency ω = |ωnk|. The electric and magnetic Fourier components
corresponding to this mode can be expressed, as usual, in terms of the respective canonical
variables q(t), p(t) (see, e.g., [30,31]).

Let us assume that the field mode of frequency ω is in a given state, which we call
n. We denote with qn(t), pn(t) the canonical variables of this mode. and express these in
terms of a set of normal field variables ann′ , with respective coefficients qnn′ , pnn′ :

qn(t) = ∑
n′

qnn′ ann′ e
−iωn′nt+c.c., pn(t) = ∑

n′
pnn′ ann′ e

−iωn′nt+c.c., (31)

where
pnn′ = −iωn′nqnn′ , (32)

and n′ denotes the states of the field mode that can be reached from state n as a result
of its interaction with matter. Since the field mode has a single well-defined frequency
ω, necessarily |ωn′n| = ω, i.e., ωn′n = ±ω. Consequently, only two of the coefficients
qnn′ connecting state n with some other state n′ are different from zero. Since there are no
intermediate states, we may identify the immediately upper state of the field (corresponding
to ωn′n = ω) with n′ = n + 1, and the immediately lower state (corresponding to ωn′n =
−ω) with n′ = n − 1, so that Equation (31) becomes

qn(t) = qnn+1ann+1e−iωt+qnn−1ann−1eiωt + c.c., (33)

pn(t) = −iωqnn+1ann+1e−iωt + iωqnn−1ann−1eiωt + c.c, (34)

and because of (32),

ωqnn+1 − ipnn+1 = 0, ωqnn−1 + ipnn−1 = 0. (35)

In analogy with Equations (25), we identify qnn+1, qnn−1 with the active (or response) coeffi-
cients involved in the change of state of the field in interaction with matter, from n to n + 1
and n− 1, respectively.
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5.2. Genesis of the Field Operators

Let us now take the Poisson bracket of the canonical field variables pertaining to the
single field mode,

{qn(t), pn(t)} = 1, (36)

and calculate it with respect to the complete set of canonical variables at the initial time t0.
By the same argument used in Section 4.3, after a time of order τd, when the system has
lost track of the initial values of the particle variables,

{qn(t), pn(t)}qo po
−−→
t>τd
{qn(t), pn(t)}qαo pαo

. (37)

only the Poisson bracket with respect to the original ZPF quadratures qαo,pαo survives,

{qn(t), pn(t)}qαopαo
= 1. (38)

The similarity transformation from canonical ZPF quadratures to normal field variables
aα, a∗α, Equations (20), leads to the transformed Poisson bracket,

[qn(t), pn(t)] = ih̄. (39)

On account of (33) and (34), qn(t) and pn(t) depend only on the normal variables ann±1,
and Equation (39) gives therefore

∑
n′=n±1

(qnn′p
∗

nn′ − pnn′q
∗

nn′) = ih̄. (40)

By applying Equation (33) successively to n and to n′, we note that

q∗nn′(ωn′n) = qn′n(ωnn′), p∗nn′(ωn′n) = pn′n(ωnn′), a∗nn′(ωn′n) = an′n(ωnn′), (41)

so that Equation (40) can be written in the alternative form

∑
n′=n±1

(qnn′pn′n − pnn′qn′n) = ih̄. (42)

By identifying qnn′ and pn′n as the elements of matrices q̂ and p̂, respectively, Equation (42)
becomes

[q̂, p̂] = ih̄, (43)

for any state n of the field.
Equation (43) tells us that after a time lapse of order τd , the (transformed) Poisson

bracket of the canonical field variables q(t), p(t) has evolved towards the canonical field
commutator. The matrix elements of q̂, p̂ represent the transition coefficients (or ’ampli-
tudes’) between field states. Notice that, once more, the Hamiltonian nature of the entire
system ensures the preservation of the symplectic structure in the process of transition from
the initial Poisson bracket to the final commutator.

As just stated, the matrix elements of q̂, p̂ determine the possible changes of state
of the field mode in interaction with matter. Since n′ = n± 1, q̂ and p̂ have off-diagonal
elements immediately above and below the diagonal only. Further, from (32) we have
pnn′ + iωn′nqnn′ = 0. Therefore, the normalized matrix â and its adjoint, defined as

â =
1√
2h̄ω

(ωq̂ + ip̂), â† =
1√
2h̄ω

(ωq̂− ip̂), (44)

have offdiagonal elements either immediately above or immediately below the diagonal,
meaning that they play the role of annihilation and creation operators, respectively. In
terms of these, (43) becomes [

â, â†
]
= 1. (45)
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We recall that the canonical variables qn(t), pn(t), (33) and (34), describe a field mode of
frequency ω with given momentum and polarization (k, ε). Since the normal variables ann′

pertaining to different field modes have independent random phases, we may generalize
Equation (45) to operators âkε, âk′ε′ , and write[

âkε, â†
k′ε′

]
= δ3

kk′δεε′ . (46)

The rest of the quantum formalism is obtained by introducing the vectors representing
the possible states of the field mode on which the operators act, which are denoted by |n〉,
with |0〉 for the ground state, â|0〉 = 0. The result of operating with â or â† on state |n〉 is
obtained by applying (45) iteratively, as usual:

â|n〉 =
√

n|n− 1〉, â†|n〉 =
√

n + 1|n + 1〉. (47)

5.3. On the Meaning of the Quantum Field Operators

The results obtained above are in agreement with the established fact that light and
matter in interaction exchange radiant energy in well-defined quantities, ±h̄ω. By writing
the Hamiltonian operator associated with a single mode as

Ĥ =
1
2

(
ω2q̂2 + p̂2

)
=

h̄ω

2

(
ââ† + â† â

)
, (48)

and using (47), one obtains the well-known expression for the energy expectation value

〈n|Ĥ|n〉 = En =

(
n +

1
2

)
h̄ω, (49)

whence indeed |En − En±1| = h̄ω.
Given that the effect of the operators â, â† is to lower or raise the number n, respectively,

it seems appropriate to identify the separate expressions

Ĥa = h̄ωâ† â, Ĥe = h̄ωââ†, (50)

with the operators corresponding to the field energy available for processes involving either
absorption or emission of radiation by matter, respectively, according to the order of the
individual operators acting on state |n〉,

〈n|Ĥa|n〉 = nh̄ω, 〈n|Ĥe|n〉 = (n + 1)h̄ω. (51)

The operators â, â† are sometimes called the fictitious harmonic oscillators associated
with a given field mode (see, e.g., [30]). However, the electric and magnetic components of
a field mode are real physical entities; they are described in terms of the canonical variables
qn(t), pn(t). In their turn, the operators q̂, p̂ (or â, â†) represent the response of a field mode
to its interaction with quantized matter, which may lead to a change of state of the field
with the concomitant loss, viz gain, of an energy h̄ω.

5.4. On the Quantization of the Free Electromagnetic Field

It is commonly accepted that the description of the radiation field in terms of operators
applies in principle to modes of all frequencies, and that it is only for practical reasons that
a distinction may be convenient when dealing with different parts of the spectrum. As
argued by Mandel and Wolf [31], “in the microwave region of the spectrum, and still at
longer wavelenghts, the number of photons is usually very large, and we are justified in
treating the system classically”.

This prevalent view stands in contrast with the conclusions derived from the present
work. Equations (48)–(51), as all the previous ones, refer to a field mode that exchanges
energy as a result of its interaction with quantized matter. Consequently, they do not tell us
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much about the (quantum or non-quantum) nature of the free radiation field, or the field
emitted or detected by other means. It is certainly tempting to use the elegant quantum
formalism to describe any radiation field of whatever frequency. After all, the quantum
theory of radiation has gained a special status as “the most successful and embracing theory
of optics” [31]. However the conclusions derived from it may not necessarily be applicable
beyond the optical region, or more generally, in cases in which the field is emitted or
detected by a nonquantized source. What is the evidence that low-frequency waves are
quantized? Take for example a beam (or pulse) of radio waves produced by the oscillating
elements of a transmitting antenna, or the radiation emitted by a beam of freely moving,
accelerated charges, which in principle can have a continuous range of energies. We can
only safely say that the radiation is quantized when it is produced (or absorbed) as a result
of a transition between quantum states of matter.

5.5. A Note on the Reality of the Vacuum Field

In quantum theory, the vacuum (or vacuum fluctuations) is conventionally considered
as fictitious, or as a virtual entity created spontaneously by particle–antiparticle pairs.
Without this notion conditioning the validity of the results presented here, we favor the
perspective of the vacuum as a real Maxwellian electromagnetic field in its ground state.
Precisely because it represents the ground state of the complete radiation field, no energy can
be effectively extracted from it by means of atomic transitions, as indicated in (51) with n = 0;
hence, it does not activate optical detectors, and no direct spectroscopic evidence is available
to prove its existence. The fact that it is not part of the photonic field, however, neither invalidates
its reality nor diminishes the consequences of its permanent action on matter, as illustrated in the
present work. A number of other important results widely reported in the literature, including
the Casimir effect [32], the Van der Waals forces [14,33], diamagnetism [14,34] and the Lamb
shift ([32,35] and [19] ch. 6), not to mention the emergence of characteristic quantum
phenomena such as entanglement and atomic stability [19], speak to the inescapable reality
of this field.

As observed by Milonni and Smith [36], the zero-point contributions are essential to
their derivation of the van der Waals interaction. The vacuum fluctuations are introduced
in [36], as is normally done, in passing from a classical description of the field to a quantized
one—in contrast to SED, where they are present from the start. Ref. [37] contains further
examples of effects that stem from the electromagnetic zero-point fluctuations within a
quantum framework. From the usual QED perspective, as mentioned in [37], the SED use
of a real ZPF—considered as a semiclassical approximation—has merely the advantage of
physical transparency. Nevertheless, the effects produced by the zero-point fluctuations are
unquestionably real.

This automatically leads us to the problem of the infinite energy content of the
ZPF, when the spectral energy density given by Equation (2b) is integrated over the
entire spectrum,

E =

∞∫
0

dω ρ(ω) =
h̄

2π2c3

∞∫
0

dω ω3. (52)

It is not our intention to address here this well-known and not yet resolved problem that
has beset modern physics (see, e.g., [4]), and for which alternative solutions have been
advanced (e.g., [38]). Nevertheless, in the light of the perspective gained with the work
on stochastic electrodynamics reported in Refs. [12–19] and the results we have presented
here, it is clear that at least at the level of the present description, Equation (52) poses no
problem. The capacity of massive particles to respond to the radiation field is limited by
their inertia, meaning that they become transparent and are unable to respond to infinitely
high-frequency field modes and, for the same reason, they are unable to radiate at such
high frequencies. Further, when already in the quantum regine, atomic matter interacts
with field modes of frequencies lying within a limited range, as discussed above, and may
be considered to be transparent to the rest of the spectrum. In addition, the cutoff frequency
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(of the order of Compton’s frequency mc2/h̄) frequently introduced in QED and leading to
numerically correct results for the radiative corrections, signals the existence of a physical
limit to the frequencies at which particles and field modes exchange energy, beyond which
other kinds of phenomena take place. Do physical phenomena still occur at even higher
frequencies? Where does the radiation spectrum end? These are still open questions, to
which cosmologists and high-energy physicists may eventually find an answer.

6. Energy Balance: Atomic Stability and Contact with QED

Let us apply the results presented here to a problem of interest, to get a feeling for
the kind of conclusions that may be drawn from them. We are interested in knowing what
happens with the average energy of the particle once its response has become controlled
by the field. We shall assume that the particle is in a stationary state n, which may be the
ground state or an excited state. The equation of evolution for its average energy is obtained
by multiplying the dynamical Equation (1) with p and averaging over the ensemble [20,28],

d
dt
〈H〉n = τ〈p · ...x 〉n +

e
m
〈p·E(t)〉n. (53)

The first term on the r.h.s. represents the average power lost by radiation reaction, and the
second term represents the average power absorbed by the particle from the field.

For an explicit calculation of these terms, we use the results of Section 4. Specifically,
we observe that in Equation (11) the arguments under the integral contain factors of the
form ∂xi(t)/∂pj(s), ∂pi(t)/∂pj(s), which may be written in terms of Poisson brackets,

∂xi(t)/∂pk(s) = {xk(s), xi(t)}xp, ∂pi(t)/∂pk(s) = {xk(s), pi(t)}xp, (54)

According to what we have learned, for times s, t larger than τd these Poisson brackets
should be replaced by the corresponding quantum commutators,

{xk(s), xi(t)}xp →
1
ih̄
[x̂k(s), x̂i(t)], {xk(s), pi(t)}xp →

1
ih̄
[x̂k(s), p̂i(t)]. (55)

By setting to = −∞, the initial contribution to the integral for to ≤ s ≤ to + τd may be safely
neglected, and Equation (11) take therefore the form

x(1)i =
e
ih̄

∫ t

−∞
ds[x̂k(s), x̂i(t)]Ek(s), (56a)

p(1)i =
e
ih̄

∫ t

−∞
ds[x̂k(s), p̂i(t)]Ek(s). (56b)

Writing the commutator in terms of the matrix elements corresponding to state n with
the help of Equations (25) and (26) gives

[x̂i(s), p̂i(t)]nn = 2im ∑
i

∑
k
|xink|2ωikn cos ωikn(t− s), (57)

whence from Equations (2) and (56b),

e〈p · E〉n =

=
4me2

3πc3 ∑
i

∑
k
|xink|2ωikn

∞∫
0

dω ω3
∫ t

−∞
ds cos ω(t− s) cos ωikn(t− s)

=
2me2

3c3 ∑
i

∑
k
|xink|2ω4

ikn[δ(ω−ωikn)− δ(ω + ωikn)]. (58)
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On the other hand, the average power lost by radiation reaction is readily calculated using
Equation (25),

τ(p · ...x )n = −2e2

3c3 ∑
i

∑
k
|xink|2ω4

ikn. (59)

With Equations (58) and (59) introduced into (53) one obtains

d
dt
〈H〉n = −4e2

3c3 ∑
i

ωink>0

∑
k
|xink|2ω4

ikn. (60)

When the particle is in its ground state, there is no net contribution to the sum in
Equation (60): the energy lost by radiation is compensated in the mean by the energy
extracted from the ZPF, and the system remains in the ground state. By contrast, when
the particle is in an excited state, both terms are negative for ωink > 0 and contribute to
Equation (60). This gives for the rate of change of the energy ([20] and [19] Ch. 6)

d
dt
〈H〉n = −∑

i

ωink>0

∑
k

h̄ωink Aink, (61a)

with

Aink =
4e2

3h̄c3 ∑
i
|xink|2ω3

ikn, (61b)

which is the QED formula for the Einstein spontaneous emission coefficient. This serves
to demonstrate that the radiation reaction and the ZPF contribute the same amount to the
spontaneous emission rate (see [32] for a discussion of this point in the context of QED).
That the result of the SED calculation is in agreement with QED is due to the fact that—in
contrast with QM—the ZPF is included from the beginning in the description.

As just noted, energy balance is achieved when both particle and field are in their
ground state, in which case the terms on the right-hand side of Equation (53) cancel
each other,

τ〈p · ...x 〉o = −
e
m
〈p·E(t)〉o, (62)

meaning that the ground state of the particle is absolutely stable in the absence of external
radiation. This conclusion applies to any binding potential, in particular to the Coulomb po-
tential. In this connection, it is worth mentioning a series of detailed numerical calculations
carried out for the H atom within the SED framework, which have led to the conclusion
that the atom immersed in the ZPF ionizes eventually, in contradiction with the above
results and with experiment; see, e.g., [39,40]. This discrepancy stems from the difference
in approaches: in the latter works the calculations are carried out under the assumption
that the effect of the ZPF on the particle dynamics can be obtained perturbatively. However,
a perturbative approach cannot produce qualitative changes of the dynamics, such as those
described in this paper. A similar consideration applies to the interesting and elaborate
calculational work reported in Ref. [41].

Although the nonperturbative SED approach furnishes a correct description of the
quantum regime as a result of the driving effect of the ZPF, the detailed electrodynamical
description of the transition to this regime is an open problem. In this connection, the
work carried out in the field of hydrodynamic quantum analogs (HQAs) may be illustrative
(see [42] and references therein). On one hand, the walking-droplet systems studied in
HQA, being macroscopic in nature, lend themselves to direct visualization. On the other
hand, several mathematical coincidences have been noted between the HQA and the SED

cases, suggesting interesting parallels. One may speculate that, just as has been observed
in the HQA case, the nonlinearity of the exact equations for the particle-field system may
lead to complex chaotic behavior.
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7. Final Comments and Conclusions

By recognizing the electromagnetic ZPF as an essential part of the quantum ontology,
we have addressed several longstanding issues of quantum mechanics. In particular, its
presence assigns a physical cause to the quantum fluctuations and thus accounts for the
(statistical) indeterministic nature of the quantum phenomenon. The introduction of the
ZPF is shown to change the (apparently) mechanical nature of the quantum problem into
an electrodynamic one, and to induce a drastic, qualitative change in the behavior of an
otherwise classical system. Ironically, the ZPF itself disappears from the picture at the level
of QM, leaving only its ghost behind, in the form of Planck’s constant.

We have come to identify the ZPF as a key player. Instead of merely adding the ZPF

as a recourse to induce a stochastic behavior in an otherwise classical motion, we have
placed the emphasis on its deeper role, which is to induce a qualitative change of behavior,
leading eventually to QM. Because no perturbative calculation to any order will give rise to
a qualitatively different behavior; the new situation entails a shift of approach.

By introducing the ZPF into the picture we are considering that atomic matter is made
of electric charges (or electromagnetic particles, more generally) that fill the space with
radiation as a result of their permanent wiggling. This does not preclude the possibility
that other fields should be required at some point to complete the quantum ontology; to
arrive at quantum mechanics, however, the electromagnetic vacuum proves to be sufficient.
In any case, the image of an isolated atom or a quantum particle in empty space appears
as an idealization with no real counterpart. If it were experimentally feasible to introduce
an atom in a volume completely free of radiation including the ZPF, this could provide
a valuable possibility to subject the theory to testing. Partial results in this regard were
achieved some time ago by introducing atoms in a cavity that modifies the distribution of
modes of frequencies of atomic interest, and observing a concomitant effect on the natural
decay times of excited states (for early experimental work, see [43–45]). As discussed in
Section 6, these decay times are determined jointly by the radiation reaction and the ZPF.

From the perspective gained with the present work, one may say that quantum
dynamics is a variant and extension of classical physics into the stochastic domain, which
finds a place of its own, both because of the distinctive behavior of quantum systems and
for the wealth of phenomena and applications to which it gives rise.
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