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Abstract: Kaniadakis statistics is a widespread paradigm to describe complex systems in the rela-
tivistic realm. Recently, gravitational and cosmological scenarios based on Kaniadakis (κ-deformed)
entropy have been considered, leading to generalized models that predict a richer phenomenol-
ogy comparing to their standard Maxwell–Boltzmann counterparts. The purpose of the present
effort is to explore recent advances and future challenges of Gravity and Cosmology in Kaniadakis
statistics. More specifically, the first part of the work contains a review of κ-entropy implications
on Holographic Dark Energy, Entropic Gravity, Black hole thermodynamics and Loop Quantum
Gravity, among others. In the second part, we focus on the study of Big Bang Nucleosynthesis in
Kaniadakis Cosmology. By demanding consistency between theoretical predictions of our model and
observational measurements of freeze-out temperature fluctuations and primordial abundances of
4He and D, we constrain the free κ-parameter, discussing to what extent the Kaniadakis framework
can provide a successful description of the observed Universe.

Keywords: Kaniadakis entropy; relativistic theory; gravity; cosmology; big bang nucleosynthesis

1. Introduction

In the last several decades, several approaches of statistical mechanics have been
used in high energy physics to analyze cosmological models [1], particle interactions [2],
Lorentz-violating extensions of the Standard Model [3], black holes and other gravitational
systems [4–6]. Despite the different contexts, a common thread among all of these studies is
the adoption of Boltzmann–Gibbs–Shannon (BGS) entropy, which conducts the celebrated
Maxwell–Boltzmann exponential distribution according to the Jaynes maximum entropy
principle. However, it is well-known that Boltzmann–Gibbs formalism exhibits severe
restrictions when applied to many complex systems, such as out-of-equilibrium, long-
interacting and thermally fluctuating systems [7]. This motivates the introduction of a more
general setting that contains the Maxwell–Boltzmann distribution measure as a special case.

Among the most popular generalizations, evidence from relativistic particle systems [8,9]
has suggested a non-exponential distribution function with power tails that originated
from Kaniadakis entropy [10–12]

Sκ = −∑
i

ni lnκ ni (1)

where the κ-deformed logarithm is defined by (here, and henceforth, we use natural units
kB = } = G = c = 1:)

lnκ x ≡ xκ − x−κ

2κ
− 1 < κ < 1 (2)

and the generalized Boltzmann factor for the i-th level of the system takes the form

ni = α expκ [−β(Ei − µ)]. (3)
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Here, the κ-deformed exponential is given by

expκ(x) ≡
(√

1 + κ2 x2 + κ x
)1/κ

(4)

while
α = [(1− κ)/(1 + κ)]1/2κ 1/β =

√
1− κ2 T . (5)

As shown in [11], the statistical model developed from the generalized functions (2)
and (4) emerges naturally and unequivocally within the framework of special relativity.
Notice that the κ parameter is not fixed by the theory and should be constrained via
theoretical and/or observational analyses. It is straightforward to check that the classical
κ → 0 limit reproduces the ordinary (Maxwell–Boltzmann) statistical mechanics, thus
making Equation (1) a self-consistent relativistic generalization of BGS entropy formula.

By using the definition of microcanonical ensemble, it has been argued that, for the
case of black holes, the κ-entropy (1) can be rewritten in the form [13,14]

Sκ =
1
κ

sinh(κ SBH) (6)

where SBH = A/(4) is the standard Bekenstein–Hawking entropy, which is still recovered
for κ → 0. Since Sκ = S−κ , in what follows, we can restrict to the κ ≥ 0 case without a loss
of generality.

While being expressly formulated for black holes, Equation (6) can also be used within
the cosmological framework in the lines of gravity-thermodynamic conjecture. For instance,
in [15], Drepanou et al. have shown that Holographic Dark Energy based on Kaniadakis
entropy (6) leads to interesting cosmological behavior, retracing the standard thermal
history of the Universe in good agreement with observations [16,17]. Similarly, in [18,19]
(and references therein), Kaniadakis statistics has been used in gravity scenarios to address
the Jeans instability and simulate dark matter-like effects, respectively. Applications of
κ-entropy can also be found in plasma physics, astrophysics, information theory, fluid
dynamics and other fields (see [20] for a recent review). All of this makes Kaniadakis
statistics a very flexible framework that can potentially adapt to the diversity of relativistic
physical contexts where Maxwell–Boltzmann distribution fails, thus motivating a careful
analysis of the subject.

In passing, we mention that, besides Kaniadakis formulation, there exist many other
generalized entropies which are relevant and commonly used in physics, for instance Tsallis,
Abe, Landsberg–Vedral, Sharma–Mittal, Rény and Barrow entropies, among others (see [21]
for a detailed review), all containing the classical BGS entropy as a special case. While
exhibiting some mathematical similarities with κ-deformation, these entropy measures
are better suited to describe statistical properties of long-interacting, dissipative or large-
scale fluctuating systems, but do not work properly in the relativistic realm, which is
the framework of this review. Clearly, one could in principle extend the present study
to the above family of generalized entropies to see how temperature fluctuations, non-
extensive (Tsallis-like) or quantum gravity (Barrow-like) corrections affect ensuing scenarios
in comparison with Kaniadakis conjecture. Some of these research lines have already been
explored in literature [22–26]. However, a systematic investigation of these aspects goes
beyond the scope of the present review and will be considered elsewhere.

Starting from the above premises, in the present manuscript, we focus on the study
of Kaniadakis statistics applied to Gravity and Cosmology. The structure of the work can
be basically divided into two parts: the first one (Section 2) contains a review of recent
advances in the literature. Special care is devoted to examine:

• implications on open stellar clusters: such systems are physically related group of stars
held together by the mutual gravitational attraction. Since their constituents typically
have similar age and chemical composition, they provide very important laboratories
where stellar properties compared to isolated field stars can be studied. In [22], Car-
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valho et al. have shown that the characteristic relaxation mechanism associated with
radial orbital instability cannot be understood in the classical Maxwell–Boltzmann
framework, emphasizing the need of non-Gaussian (Kaniadakis-like) statistics to fit
the distribution of stellar residual radial velocity in some baseline stellar open clusters.

• Jeans instability and gravitational collapse: the dynamical stability of a self-gravitating
system can be described by the Jeans criterion, which states that, if the wavelength
of a density fluctuation inside the system is greater than a certain threshold given
by the Jeans wavelength, then the density will grow in time exponentially, and the
system becomes gravitationally unstable. In [27], this criterion has been revisited
in the context of Kaniadakis statistics, obtaining a κ-deformed critical wavelength
larger than the standard expression. Similar studies have also been developed in
Eddington-inspired Born–Infeld [28] and f (R) [29] gravity, and the dark-baryonic
matter model [30], among others.

• Holographic Cosmology: Holographic Dark Energy (HDE) is a theoretical framework
that arises from the attempt of applying the holographic principle to the dark energy
problem [31]. A crucial ingredient in the construction of this model is the relationship
between the entropy of the Universe (conceived as a thermodynamic system) and its
geometrical properties, such as its radius. The standard HDE scenario is built upon
Bekenstein–Hawking entropy, which arises as the black hole application of the BGS
one. However, in [13–15,32], a generalized HDE based on Kaniadakis entropy has
been investigated along with its implications on the cosmic evolution and thermal
properties of the Universe (see also [23,24,33–35] for further applications). Remarkably,
it has been shown that Kaniadakis dark energy exhibits peculiar features that do not
have any correspondence in the traditional HDE, potentially providing a way to
alleviate the Hubble tension.

• Entropic gravity: Verlinde’s conjecture of entropic gravity [36] presents gravitational
force as an emergent (rather than fundamental) force caused by changes in the in-
formation associated with the positions of material bodies. Starting from this idea,
an effective gravitational constant can be derived and used to introduce Kaniadakis
statistics, the ensuing method being a simpler alternative to the usual procedure
employed in non-Gaussian statistics. In [25], such a formalism has been applied to
infer Kaniadakis-induced corrections to the Jeans criterion for self-gravitating systems,
as well as to establish a connection with deviations of Newton’s law arising in a
submillimeter range (for the sake of transparency, it must be said that the issue of
whether Newton’s law exhibits deviations from inverse square behavior in submil-
limeter regime is quite controversial. For instance, in [37], it has been found that there
are still no deviations in separation down to O(102) µm.) [38].

• Black hole thermodynamics: inspired by a dual Rény entropy [39,40], in [41], Abreu et al.
have suggested and applied a dual Kaniadakis entropy to black hole thermodynamics.
In this way, a generalized equipartition theorem has been derived, leading to a κ-
modified black hole temperature and heat capacity. In addition, it has been argued
that black holes in Kaniadakis statistics could exhibit a thermally stable phase, thus
opening new glimpses into the study of black hole thermodynamics at both theoretical
and phenomenological levels [41].

• Loop Quantum Gravity (LQG): this is a well-known non-perturbative and background
independent theory of gravity which aims to merge Quantum Mechanics and General
Relativity [42]. One of the characteristic parameters of LQG is the so-called Immirzi
parameter [43], which is an arbitrary number that measures the size of the quantum
of area in Planck units. By using Kaniadakis statistics, Abreu et al. have derived a
non-trivial relation between the Immirzi parameter, the κ deformation parameter and
the area of a punctured surface [44], which is a topological two-sphere with defects
carrying spin quantum numbers endowed by the edges of the spin network that
represents the bulk quantum geometry. The question arises as to whether Kaniadakis
statistics might play any role in the context of quantum gravity.
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On the other hand, the second part of the manuscript (Section 3) provides the original
contribution of this work. Here, we study consequences of Kaniadakis Holographic Dark
Energy (KHDE) on Big Bang Nucleosynthesis (BBN). Specifically, we constrain the defor-
mation κ-parameter by requiring consistency between theoretical predictions of our model
and observational data of primordial abundances and freeze-out temperature fluctuations,
which only allow for very tiny deviations from General Relativity. Finally, in Section 4,
we summarize results and discuss some possible future challenges of Kaniadakis statis-
tics aimed at both broadening the current research lines and opening novel prospects in
this field.

2. Gravity and Cosmology in Kaniadakis Statistical Theory: Recent Advances

In this section, we discuss some recent findings pertaining to Gravity and Cosmology
in Kaniadakis statistics. Our aim is to highlight the advantages of Kaniadakis model
in describing some phenomena which are not well framed (or not even understood) in
Maxwell–Boltzmann theory.

2.1. Open Stellar Clusters

Open stellar clusters are a type of star cluster made of up to a few thousand stars that
have roughly the same age and composition, being formed from the same giant molecular
cloud. The knowledge of the different properties of these clusters, such as the distribution
of dispersion velocity and phase density, is needed to establish the statistical laws and the
relaxation mechanisms that rule their evolution.

There are essentially three main mechanisms: collisional relaxation, which is char-
acterized by a Maxwell-like distribution; the Lynden–Bell relaxation, leading to a Fermi
distribution; and a relaxation associated with radial orbit instability that attains a non-
monotonic distribution. While the first two mechanisms are well described by the standard
statistical mechanics, the last one is not well-understood yet.

The above issue has been examined in [22] in the background of Kaniadakis statis-
ticsSpecifically, Carvalho et al. have investigated the effects of non-Gaussianity on the
distribution of stellar residual radial velocity in some open clusters’ samples. The general-
ized κ-distribution function they find for the radial velocity vr has the form

φκ(vr) = Aκ

√1 + κ2
(

v2
r

σ2
κ

)2

− κ
v2

r
σ2

κ

1/κ

= Aκ expκ

(
− v2

r
σ2

)
, (7)

where Aκ is a constant, and σκ denotes the characteristic distribution width. In the second
step, we have used the definition (4). For κ → 0, this expression reduces to the standard
Gaussian distribution

φ(vr) = A exp
(
− v2

r
σ2

)
, (8)

as expected.
By using the Kolmogorov–Smirnov statistical test, the best φκ(vr) has been obtained

for each observed cumulative distribution of the residual radial velocities. As a result, it
has been shown that the generalized Kaniadakis distribution fits data much better than the
standard Gaussian does, provided that one allows the κ parameter to be varying with the
stellar-cluster ages. Below, we will show that a similar running behavior is supported by
completely independent arguments in the framework of Kaniadakis Cosmology.
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2.2. Jeans Instability and Gravitational Collapse

Jeans criterion provides a condition to establish whether a self-gravitating system
is stable under the effects of its internal gas pressure. The so-called Jeans length that
represents the watershed between stable and unstable systems is given by [45]

λJ =

√
πT

µmHρ0
(9)

where T is the temperature, µ the mean molecular weight, mH the hydrogen atomic mass
and ρ0 the equilibrium mass density of the system, respectively.

According to Jeans instability, if the wavelength λ of a density perturbation is higher
than λJ , then the density grows exponentially, giving rise to an unstable system. Otherwise,
stability is kept. The same criterion can also be expressed in terms of a critical mass for
self-gravitating systems (see Section 2.4).

The condition (9) follows from the canonical equipartition theorem in Maxwell–
Boltzmann statistics. Nevertheless, motivated by relativistic considerations, in [27], Abreu
et al. have shown that the critical density λJ gets non-trivially modified in the context of
Kaniadakis statistics. In particular, by using the κ-generalized equipartition theorem

Eκ =
1
2

N
(
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ −

1
4

) T (10)

and Verlinde formalism of entropic gravity [36], the following expression for the κ-deformed
critical wavelength has been exhibited

λκ
c =

√√√√√ (
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ −

1
4

) λJ (11)

where Γ is the Gamma function. From this equation, we infer that Jeans instability is
modified in such a way that:

- for κ = 0 =⇒ λκ
c = λJ , i.e., the classical criterion is restored;

- for 0 < κ < 2/3 =⇒ λκ
c > λJ ;

- for κ → 2/3− =⇒ λκ
c → ∞, which means that the self-gravitating systems are

always stable (notice that for κ ≥ 2/3 the modified equipartition law based on
Kaniadakis statistics diverges, thus making the derivation of the generalized Jeans
criterion meaningless.).

Apart from the limit case κ = 0, we then see that the modified critical wavelength
is always larger than the corresponding Maxwell–Boltzmann value. In other terms, Ka-
niadakis statistics predicts self-gravitating systems to be more stable compared to the
classical scenario.

Furthermore, one can show that the κ-deformed entropy also affects the physical
temperature of gravitating systems and the velocity of the propagation of sound inside
them. The resulting expressions are [27]

Tκ =

(
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ −

1
4

) T vs
κ =

√
Tκ

m
. (12)

These results have been tested considering 16 galaxy clusters. It has been found that
Boltzmann–Gibbs statistics are consistent with data, although non-Gaussian effects cannot
be completely ruled out, constraining 0 ≤ κ ≤ 0.034 at the 2σ confidence level.
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It is worth mentioning that Jeans criterion in Kaniadakis statistics has also been
addressed in other different contexts. For instance, in [28], Jeans instability has been re-
visited in the framework of Eddington-inspired Born–Infeld gravity, showing that the
κ-deformed distribution may have non-negligible effects on the Jeans modes of the colli-
sionless Eddington-inspired Born–Infeld gravitational systems. In a similar fashion, the
influence of the κ-generalized Jeans criterion has been examined in [29] in f (R) gravity for
both high and low frequency density perturbations. As a result, it has been proven that
the range of the unstable modes and the growth rates decrease with increasing values of κ.
A further step forward has been taken in [30], where implications of Kaniadakis statistics
have been explored on gravitational systems composed also by dark and baryonic matter.
The analysis of the κ-modified dispersion equation for such systems has pointed out that
Jeans instability is suppressed comparing to the standard case, implying that Kaniadakis
corrections oppose the gravitational collapse. Clearly, all of the above outcomes disclose
a new class of phenomena and/or mechanisms, which potentially allow us to highlight
signatures of Kaniadakis statistics in gravitational systems.

2.3. Holographic Dark Energy

Holographic Dark Energy is a dynamical model of dark energy built on the usage
of the holographic principle and Bekenstein–Hawking area law. Although cosmological
applications of HDE have been extensively considered in the past literature [46–48], its
shortcomings in reproducing the thermal history of the Universe have motivated some
tentative changes over the years [14,15,49–53]. Among these generalizations, promising
results have been provided by HDE based on Kaniadakis entropy (Kaniadakis Holographic
Dark Energy, KHDE). Several models of KHDE have been proposed: here, we refer to the
approach of [14], which correctly reduces to the usual HDE in the κ → 0 limit and does not
involve large deviations from standard entropy to describe the Universe evolution, as it
should be according to Equation (2). For other possible extensions, see also [13,32,33].

Starting from the entropy (6) and using the gravity-thermodynamic conjecture, in [14],
Lymperis et al. have derived modified Friedmann equations ruling the evolution of a
homogeneous and isotropic Friedmann–Robertson–Walker (FRW) geometry filled with
matter and dark energy fluids and bounded by the apparent horizon (see Section 3). In
turn, these equations allow for computing characteristic cosmic parameters, such as the
Equation of State (EoS) parameter, the deceleration parameter, the squared speed of sound
and the Hubble parameter, to be compared with the theoretical predictions of the Λ-CDM
model of Cosmology. A more detailed experimental analysis of KHDE has been carried out
in [15–17], showing that KHDE predictions do agree with observational data and might
contribute to alleviate the H0 tension too. In particular, concerning the dark energy EoS
parameter, it has been found to exhibit a phenomenology richer than standard HDE, being
quintessence-like, phantom-like, or experiencing the phantom-divide crossing in the past
or in the future. In addition, observations from Supernovae type Ia and Baryon Acoustic
Oscillations data enable constraining the Kaniadakis parameter around the vanishing value,
consistently with the expectation of small deviations from Gaussian-like statistics in nature.

2.4. Entropic Gravity

In the entropic gravity formalism by Verlinde [36], gravitational force is conceived as
an entropic force caused by changes in the information associated with the positions of
material bodies. This conjecture combined with the generalized Kaniadakis’ equipartition
law gives an effective gravitational constant in the form [25]

Gκ =

(
1 + 3

2 κ
)
2κ(

1 + κ
2
) Γ

(
1

2κ + 3
4

)
Γ
(

1
2κ −

1
4

)
Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

)G (13)

where here we have restored the gravitational constant G for the sake of clarity.
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In the same spirit as Section 2.2, Equation (13) can be used to describe Kaniadakis
statistics effects on Jeans mass criterion in self-gravitating systems. Specifically, Abreu et al.
have derived an expression for the modified Jeans critical mass as [25]

Mκ
J =

 (
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ −

1
4

)
3/2

MJ , (14)

where

MJ =

(
5 T
m

)3/2( 3
4πρ

)1/2
(15)

is the usual Jeans mass in Maxwell–Boltzmann framework, while all other quantities are
defined as in Section 2.2. As before, one can distinguish three possible regimes given by:
(i) κ = 0, which implies instability for M > Mκ

J = MJ ; (ii) 0 < κ < 2/3, which entails
M > Mκ

J > MJ ; and (iii) κ → 2/3−, in which Mκ
J → ∞, giving rise to an always stable

gravitational system. This confirms the previous result that Kaniadakis entropy opposes
gravitational collapse.

Another important physical quantity considered in [25] is the free fall time

tFF =

√
3

2πρ
, (16)

which is defined as the time necessary to the system to finally collapse. In the case of
Kaniadakis statistics, this turns out to be modified as [25]

tκ
FF =

 (
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ −

1
4

)
1/2

tFF . (17)

which indicates that tκ
FF > tFF, except for the κ = 0 case, where equality is recovered. Thus,

the self-gravitating system in Kaniadakis scenario takes more time to collapse comparing
to the Gaussian framework.

As a further application, in [25], a connection has been studied between the modifica-
tions of Newton’s law induced by the generalized gravitational constant (13) and possible
deviations arising in a submillimeter range, which are parameterized by [38]

G(r) = G
[
1 + α

(
1 +

r
λ

)
e−r/λ

]
, (18)

where α is a dimensionless parameter and λ gives the energy (or length) scale at which
departures of Newton’s law from the standard inverse square behavior should occur.

In so doing, Abreu et al. have obtained a relationship between α and the Kaniadakis
parameter in the form

α =

(
1 + 3

2 κ
)
2κ(

1 + κ
2
) Γ

(
1

2κ + 3
4

)
Γ
(

1
2κ −

1
4

)
Γ
(

1
2κ −

3
4

)
Γ
(

1
2κ + 1

4

) − 1 . (19)

This result opens up the tantalizing possibility of probing Kaniadakis-like devia-
tions from Gaussianity via tests of the gravitational inverse square law in experimentally
accessible regions.
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2.5. Black Hole Thermodynamics

Inspired by a novel type of Rény entropy proposed in [40], Abreu et al. have introduced
a dual Kaniadakis entropy in the form [41]

S∗κ =
1
κ

log
(

κ SBH +
√

1 + κ2 S2
BH

)
= log[expκ(SBH)], (20)

where SBH is the Bekenstein–Hawking entropy defined below Equation (6).
Based on the above equation, one can derive a modified Hawking temperature and

heat capacity of black holes as [41]

T =

√
1 + 16κ2π2M4

8πM
(21)

CBH = −
8πM2(1 + 16κ2π2M4)1/2

1− 16κ2π2 M4 (22)

where M denotes the black hole mass. Notice that both of the above expressions reproduce
the semiclassical Hawking results

T = 1/(8πM) CBH = −8πM2 (23)

in the κ → 0 limit, as it should be.
Remarkably, from Equation (22), we see that CBH takes negative (positive) values for

M < [2(κπ)1/2]−1 (M > [2(κπ)1/2]−1), leading to a thermally unstable (stable) black hole.
Such a result implies that it is possible for a phase transition to occur in the dual Kaniadakis
statistics framework—a result which has no correspondence in the Maxwell–Boltzmann
scenario. This points out the potential relevance of dual Kaniadakis entropy in the analysis
of black hole thermodynamics.

2.6. Loop Quantum Gravity

Implications of Kaniadakis statistics have also been analyzed in Loop Quantum Grav-
ity, which arises from the effort to grasp what quantum spacetime is at the fundamental
level. More specifically, this formalism is characterized by quantum operators for areas and
volumes that exhibit discrete spectra.

One of the peculiar parameters of LQG is the so-called Immirzi parameter, which is a
free dimensionless quantity that provides the size of a quantum of area in Planck units. A
way to compute this parameter is by counting the number of microstates of a given system
in LQG. For black holes, this is typically accomplished by use of the Bekenstein–Hawking
entropy area law, which roots its origin in the BGS entropy. As a result, one obtains [43]:

γ =
log 2
π
√

3
. (24)

This expression can be straightforwardly generalized to the background of Kaniadakis
statistics by using the κ-deformed entropy in the microcanonical ensemble. Calculations
have been carried out in [44] for a generic system of surface area A, leading to

γκ = γ
κA
4

log
[

κA
4 +

√
1 + κ2 A2

16

]

= γ
A
4

log
[
expκ

(
A
4

)] (25)
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which correctly reduces to γ for κ → 0. Since the extra factor appearing in the above
relation is greater than unity, we have γκ > γ, resulting in a larger size of the quantum of
area in Planck units.

The outlined κ-dependence of the Immirzi parameter reveals a non-trivial interplay
between LQG and Kaniadakis statistics. Hence, much effort is needed to better understand
the potential rôle of Kaniadakis entropy within the framework of quantum gravity.

3. Big Bang Nucleosynthesis in Kaniadakis Statistics

In physical Cosmology, Big Bang Nucleosynthesis (BBN) refers to the sequence of
nuclear processes which synthesized primordial light elements, such as Hydrogen H,
Deuterium D, Helium isotopes 3He and 4He and Lithium isotope 7Li [54]. Clearly, since
BBN drives the whole evolution of Universe’s chemical composition, BBN parameters
must be very tightly constrained to be consistent with current observations. Therefore, this
phenomenon provides an unparalleled arena to test cosmological models and constrain
related parameters with great accuracy.

An interesting issue to address is how relativistic degrees of freedom of the early
Universe affect BBN when described in the more proper framework of Kaniadakis statistics.
To solve the problem, let us first derive modified Friedmann equations in Kaniadakis
Cosmology. For this purpose, we mainly refer to [14,15], though we feature κ-induced
corrections in a slightly different way.

Consider a homogeneous and isotropic FRW flat geometry of metric

ds2 = −dt2 + a2(t)
(

dr2 + r2dΩ2
)

, (26)

where a(t) is the scale factor and t the cosmic time. In addition, we assume that the Universe
is filled up with with a matter perfect fluid of equilibrium mass density ρ0 and pressure
p0 = wρ0, where −1 ≤ w ≤ 1/3 is the EoS parameter.

Invoking the gravity-thermodynamic conjecture, we can think of our Universe as a
thermodynamic system bounded by an apparent horizon ra = 1/H = a/ȧ and endowed
with a temperature and entropy obeying the same rules as for black holes (in our notation,
the dot indicates a derivative with respect to the cosmic time) [55]. In this scenario, by
using the energy–momentum tensor of matter content, the continuity equation and BH
entropy area law, we are led to the canonical Friedmann equations

−4π (ρ0 + p0) = Ḣ (27)

8π

3
ρ0 = H2 (28)

where cosmological constant effects have been neglected.
The question now arises as how Equations (27) and (28) get modified when using the

κ-deformed entropy (6) instead of BH entropy. Following the same recipe as above, one
arrives to the Kaniadakis–Friedmann equations [14]

−4π(ρ + p) = cosh
(

κ
π

H2

)
Ḣ (29)

8π

3
ρ = cosh

(
κ

π

H2

)
H2 − κπ shi

(
κ

π

H2

)
, (30)

where ρ and p now denote the total energy density and pressure including Kaniadakis
corrections, and

shi(x) ≡
∫ x

0

sinh(x′)
x′

dx′ . (31)

Notice that the classical scenario is easily recovered for κ → 0.
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To make the κ-dependence of the l.h.s. in Equations (29) and (30) explicit, let us recast
the total energy density and pressure as

ρ = ρ0 + δρκ (32)

p = p0 + δpκ (33)

where we have separated out Kaniadakis-induced corrections δρκ and δpκ , respectively.
We then expand cosh(x) and shi(x) in Equations (29) and (30) for small κ, which is

indeed the case, since departures from Maxwell–Boltzmann statistics are expected to be
small. We obtain the leading order

−4π(ρ0 + p0 + δρκ + δpκ) ' Ḣ
(

1 +
π2

2
κ2

H4

)
, (34)

8π

3
(ρ0 + δρκ) ' H2 − π2

2
κ2

H2 (35)

which gives [56]

δρκ ' − 9
128

κ2

ρ0
, (36)

δpκ ' 21
128

κ2

ρ0
. (37)

For our next purposes, it is now convenient to rewrite the modified Friedmann
Equation (35) in the equivalent form

H(ρ) ≡ H(ρ0) Zκ(ρ) (38)

where H(ρ0) is the unmodified Hubble parameter obeying Equation (28) and

Zκ(ρ) ≡ 1 +
9

256
κ2

ρ2 . (39)

This can be further manipulated by resorting to Equations (32) and (36) and expressing
the equilibrium energy density ρ0 as a function of the temperature according to

ρ0(T) =
π2 g(T)

30
T4 (40)

where g(T) denotes the effective number of degrees of freedom of the Universe at temper-
ature T. Since in the following we shall focus on the radiation dominated epoch, we can
roughly set g(T) ' 10. In so doing, we obtain

H(ρ)→ H(T) =
2π

3

√
π g(T)

5
T2 Zκ(T) (41)

where

Zκ(T) ≈ 1 +
2025
64 π4

κ2

g2(T)T8 . (42)

Before going further, we point out that, in the ordinary Cosmology based on GR and
BH entropy, the Z function takes unit value, as it can be seen by considering the κ → 0 limit.
In general, departures of Z− 1 from zero could emerge from either extended formulations
of gravity, including alternative geometric frameworks and/or different entropic scenarios,
or by introducing extra particle degrees of freedom in the standard theory. Since in the
present work we are interested in effects induced by Kaniadakis statistics, we focus on the
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first setting, neglecting corrections brought about by exotic particles. A similar analysis has
been recently proposed in [57,58] in the context of Tsallis statistics and generalizations of
the Heisenberg principle induced by gravity, respectively.

3.1. Freeze-Out Mechanism

According to the BBN model, the current abundances of the first very light atomic
nuclei were already nearly defined few minutes after the initial Big Bang, when the energy
and number density were still dominated by relativistic degrees of freedom—leptons and
photons [59]. Owing to their continuous and repeated collisions, such particles were in
thermal equilibrium. In turn, protons and neutrons were kept in equilibrium through
the reactions

(a) νe + n ←→ p + e− (43a)

(b) e+ + n ←→ p + ν̄e (43b)

(c) n ←→ p + e− + ν̄e . (43c)

In this scenario, neutron abundance can be estimated by computing the rate of conver-
sion λpn(T) of protons into neutrons and its inverse

λnp(T) = e−Q/Tλpn(T) (44)

where Q = mn −mp ' 1.29 MeV, with mn(p) being the neutron (proton) mass. The rate
λnp(T) is given by the sum of the three rates for the processes (a), (b) and (c), i.e.,

λnp(T) = λa(T) + λb(T) + λc(T) . (45)

The reactions (43) went on until the decreasing temperature and density content
of the Universe caused them to become too slow, at about the freeze-out temperature
T0 f ' 0.6 MeV. In compliance with [59], we require that T during the freeze-out period
was low enough compared to the typical energy scale for the processes (43). In addition, we
assume to neglect the electron mass me with respect to the electron and neutrino energies.
Under these hypotheses, one obtains [59]

λa(T) ' qT5 +O
(
Q
T

)
= λb(T) (46)

where q ' 10−10 GeV−4. On the other hand, λc(T) is roughly three orders of magnitude
lower than λa(T) and can in principle be neglected.

Let us now observe that the 4He mass fraction of the total baryonic mass is [60]

Yp ≡ γ
2x(t f )

1 + x(t f )
(47)

where
γ = e−(tn−t f )/τ ' 1. (48)

Here, t f ' 1 s and tn ' 20 s are the freeze-out and nucleosynthesis times, respectively, while
τ ' 877 s is the neutron mean lifetime. Moreover, we have denoted the neutron-to-proton
equilibrium ratio by x(t f ) = e−Q/T(t f ).

Fluctuations of Yp are related to variations of the freeze-out temperature δTF by
(see [57] and references therein)

δYp = Yp

[(
1−

Yp

2γ

)
log
(

2γ

Yp
− 1
)
−

2t f

τ

]
δTf

Tf
. (49)
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Observational measurements from 4He emission lines in extragalactic HII regions
enable estimating [61]

Yp = 0.2449 |δYp| . 10−4 . (50)

By plugging these values into Equation (49) and solving for δTf , we are led to the
following variation of the freeze-out temperature∣∣∣∣∣ δTf

Tf

∣∣∣∣∣ . 10−4 . (51)

We now have all the ingredients to constrain the Kaniadakis parameter. Indeed,
following [57], we can evaluate the freeze-out temperature in the Kaniadakis framework
by imposing that the interaction rate (45) is of the same order as (or small than) the Hubble
rate (41), and setting δTf = Tf ,κ − T0 f = Tf ,κ − 0.6 MeV, where we have denoted by Tf ,κ
the Kaniadakis-corrected freeze-out temperature. The resulting equation has the form

y T11
f ,κ = κ2 x + z T8

f ,κ (52)

where

y ≡ 384
√

5π4 g2 q (53)

x ≡ 4050π3/2√g (54)

z ≡ 128π11/2 g5/2 . (55)

Equation (52) cannot be solved analytically. However, we can infer an upper bound on
the Kaniadakis parameter by resorting to numerical evaluation. In order for Tf ,κ to satisfy
Equation (51), we must have

|κ| . 10−92 (56)

which shows that the Kaniadakis parameter must be tightly constrained around zero to be
consistent with experimental measurements of freeze-out temperature. More comments on
the obtained result can be found at the end of the next subsection.

3.2. Primordial Abundances of 4He and Deuterium D

Based on the previous considerations, let us now investigate implications of Kani-
adakis statistics on the primordial abundances of Helium isotope 4He and Deuterium D.
To this aim, we recall that the sequence of nuclear processes leading to the generation of
these elements is

n + p → D + γ (57)

D + D → 3He + n (58)

D + D → T + p . (59)

In the final stage, Deuterium and Tritium T or Deuterium and Helium isotope 3He
combine to give

D + T → 4He + n (60)

D + 3He → 4He + p . (61)

From [62], we know that the primordial 4He abundance is constrained by the numerical
best fit to the value

Yp = 0.2485± 0.0006 + 0.0016[(η10 − 6) + 100(Z− 1)], (62)
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where the baryon density number is given by η10 ≡ 1010ηB ' 6, with ηB being the baryon-
to-photon ratio [62]. Of course, here we have to consider Z equal to Equation (42) to study
Kaniadakis entropy effects on 4He abundance. For Z = 1 (standard GR value), we get back
Yp = 0.2485± 0.0006, according to the predictions of the traditional BBN model.

Now, as shown in [57], the requirement of consistency between Equation (62) and
observational measurements of 4He abundance gives

δZ ≡ Z− 1 . O(10−2) . (63)

By taking Z = Zκ , the above equation allows us to constrain the κ deformation parameter to

|κ| . 10−88 (64)

where we have considered T ' 10 MeV.
We can repeat the same considerations as above for the case of D abundance. The best

numerical fit from [63] gives in this case

yDp = 2.6(1± 0.06)
(

6
η10 − 6(Z− 1)

)1.6
(65)

which still leads to the standard BBN prediction yDp = 2.6± 0.16 for η10 = 6 and Z = 1.
Observational measurements of D abundance combined with Equation (65) set again
δZ . O(10−2) [57,64], thus leading to the same bound as in Equation (64).

It is worth noting that the constraint (64) is less tight than both the bound in Equation (56)
and than results obtained in [16] via cosmic chronometers/Supernovae type Ia (|κ| ' 10−124)
and Baryon Acoustic Oscillations (|κ| ' 10−125) measurements. Although not contem-
plated in the original formulation by Kaniadakis, such an apparent incompatibility could
be understood by allowing Kaniadakis parameter to be running in time. This scenario
would not be surprising in Kaniadakis Cosmology: in fact, it is legitimate to expect that the
Universe degrees of freedom encoded by holographic entropy may evolve from an initial
description obeying relativistic (Kaniadakis-like) laws to a classical (Boltzmann-like) picture
at present time, just as it happens for matter–energy degrees of freedom. In this framework,
departures from the standard BGS entropy would be quantified by a time-dependent, or
equivalently, temperature-dependent parameter κ ≡ κ(t) ≡ κ(T), such that κ substantially
differs from zero at high T (early stages of the Universe), while it recovers the classical
κ → 0 behavior as the Universe cools down. This would justify why the bound (56), which
has been derived for the phase of the Universe corresponding to T ' 0.6 MeV, is more
stringent than that in Equation (64), associated with T = 10 MeV.

We emphasize that the possibility of a running κ has already been discussed in [56].
Here, we have found further confirmation of this hypothesis. In addition, we point out
that a similar proposal has been recently put forward in the context of Tsallis generalized
statistics in [65–69], among others.

4. Discussion and Conclusions

In this work, we have discussed recent advances of Gravity and Cosmology in Kani-
adakis statistical theory. Special care has been devoted to review effects of generalized κ
entropy on open stellar clusters, Jeans instability and gravitational collapse, Holographic
Dark Energy, Entropic Gravity formalism, Black hole thermodynamics and Loop Quan-
tum Gravity. For each of these frameworks, we have shown that Kaniadakis statistics
manifests through non-trivial modifications of characteristic theoretical predictions, such
as the distribution of residual radial velocity of open clusters (Equation (7)) [22], the
critical Jeans wavelength/mass (Equations (11) and (14)) [27], the gravitational constant
(Equation (13)) and free fall time (Equation (17)) [25], the black hole temperature and
heat capacity (Equation (21)) [41] and the Immirzi parameter (Equation (25)) [43]. The
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ensuing κ-dependent expressions unveil potential mechanisms to test Kaniadakis-induced
deviations from Boltzmann statistics in Gravity and Cosmology scenarios.

On the other hand, we have focused on the study of Holographic Dark Energy in Kani-
adakis Cosmology. Although this model is well-established in literature at both theoretical
and observational levels [13–17], here we have followed an alternative procedure to treat
the κ-modified Friedmann equations ruling the evolution of the Universe in Kaniadakis
Cosmology (see Equations (34) and (35)). These equations have been used to analyze BBN
and, in particular, the freeze-out mechanism and the generation of primordial elements. By
demanding consistency between theoretical predictions of our model and observational
constraints on freeze-out temperature fluctuations and abundances of 4He and D, we have
constrained departures from BGS entropy, showing that the κ parameter must be tightly
bounded around the vanishing value to be consistent with phenomenology. Remarkably,
it has been found that different stages of the Universe evolution correspond to different
upper bounds on κ (see Equations (56) and (64)). This result opens up the possibility that
a realistic description of the history of the Universe in Kaniadakis Cosmology is allowed,
provided that one considers a running κ. Clearly, in order to substantiate this paradigm,
the above analysis should be carried out by assuming an ab initio time- (or temperature-)
dependent κ. This requires further investigation and will be presented elsewhere.

Other aspects are to be explored. Here, we present a list of some possible future challenges:

- as a first extension of the above analysis, it would be interesting to search for signatures
of inflationary perturbations propagated during the hypothetical Kaniadakis cosmic
epoch in present/upcoming experiments on primordial gravitational waves, such as
VIRGO, LIGO or LISA. This work is already in progress.

- It has been recently argued that Holographic Dark Energy construction might alleviate
the H0 tension [70], the reason being that it could lead to the phantom regime for dark
energy. Since KHDE has been shown to exhibit this feature [15], it is worth going more
deeply into the problem to understand whether KHDE may provide a good candidate
toward a solution to the H0 tension.

- In [58], BBN has been studied by using the Generalized Uncertainty Principle (GUP),
which emerges from the phenomenological attempt to embed gravity corrections in
quantum mechanics so as to predict a minimal length at Planck scale (see [71–73]
and references therein). Specifically, it has been shown that GUP enters Friedmann
equations through a deformation of the entropy area law, which in turn modifies
the density/temperature dependence of Hubble constant. Primordial abundances
evaluated in this way exhibit a non-trivial dependence on the GUP deformation
parameter. Given the formal analogies between such a result and those obtained in
the present context, the question naturally arises as to whether any kind of connection
between Kaniadakis statistics and GUP can be established at a more fundamental level.
We expect that this study could also pave the way toward formulating a relativistic
model of GUP.

- As argued in Section 2.5, the analysis of black holes thermodynamics from a dual
Kaniadakis entropy reveals a possible thermally stable phase in Kaniadakis statistics,
a fact that cannot be noticed when working in Boltzmann theory. This shows that
κ-deformed entropy not only generalizes standard results, but also predicts features
that do not have any correspondence in the ordinary black hole thermodynamics.
Without a doubt, a thorough examination of this framework is needed to find out all
peculiarities of black holes in Kaniadakis statistics.

- In the recent study of [30], effects of Kaniadakis statistics on the Jeans instability
have been analyzed for gravitational systems composed by dark and baryonic matter.
As a result, it has been found that instability is suppressed in comparison with the
background of Maxwell distribution and, thus, opposes the gravitational collapse
of such systems. An appealing extension of this work is to consider Kaniadakis
implications on Jeans instability of partially ionized dusty plasma and discuss their
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relevance in the formation of planetesimals and collapse of interstellar clouds in star
forming regions.

- Based on the quantum tunnelling concept and Boltzmann statistics, one can derive the
critical Gamow temperature TG at which the star-burning process occurs. The problem
has been recently addressed in the context of Kaniadakis statistics [26], showing
that Gamow temperature decreases with respect to the standard value. Therefore,
stars whose burning temperature differs from TG might be signals of deviations from
Gaussian statistics in stellar sciences. This provides a challenging framework where to
test the Kaniadakis theory experimentally.

- In [34], Abreu et al. have derived a κ-modified version of the Tully–Fisher relation,
which connects the rotation velocity of galaxies to their mass. In contrast to the
classical formula, this new relation contains a dependence on the distance of the star
to the center of the galaxy. By virtue of this result, it would then be interesting to study
whether Kaniadakis statistics can shed any new light on the dark-matter problem.

- Kaniadakis entropy has also been applied to the context of quantum information. In
particular, in [74], it has been found to exhibit suitable properties to be a candidate
for a generalized quantum information theory. Along this direction, a demanding
perspective is to explore the possible relevance of Kaniadakis information theory
in solving some puzzles arising in quantum gravity scenarios, such as the black
hole information paradox and the firewall paradox (see [75] for a recent review on
the topic).

The investigation of these and other issues will be performed in separate projects.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Giorgio Kaniadakis for useful comments on the original
manuscript. He also acknowledges the Spanish “Ministerio de Universidades” for the awarded Maria
Zambrano fellowship and funding received from the European Union–Next, GenerationEU. He is
grateful for participation in the COST Association Action CA18108 “Quantum Gravity Phenomenol-
ogy in the Multimessenger Approach” and LISA Cosmology Working group. He would finally like to
express his thanks for the kind hospitality of Hotel Goya, where most of this work has been conceived
and written.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

KHDE Kaniadakis Holographic Dark Energy
BGS Boltzmann–Gibbs–Shannon
BBN Big Bang Nucleosynthesis
GR General Relativity
BH Bekenstein–Hawking

References
1. Bernstein, J. Kinetic Theory in the Expanding Universe; Cambridge University Press: Cambridge, UK, 1988.
2. Giovannini, A.; Lupia, S.; Ugoccioni, R. Thermodynamics of clan production. Phys. Rev. D 2002, 65, 094028. [CrossRef]
3. Colladay, D.; McDonald, P. Statistical mechanics and Lorentz violation. Phys. Rev. D 2004, 70, 125007. [CrossRef]
4. Lee, H.K. Thermodynamic constraint on the primordial black hole formation in the radiation dominated epoch. Phys. Rev. D

2022, 66, 063001. [CrossRef]
5. Husain, V. Probing entropy bounds with scalar field spacetimes. Phys. Rev. D 2004, 69, 084002. [CrossRef]
6. Bhaduri, R.K.; Tran, M.N.; Das, S. Microcanonical entropy of a black hole. Phys. Rev. D 2004, 69, 104018. [CrossRef]
7. Yalcin, G.C.; Beck, G. Generalized statistical mechanics of cosmic rays. Sci. Rep. 2018, 8, 1764. [CrossRef] [PubMed]
8. Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys.

Res. 1968, 73, 2839–2884. [CrossRef]

http://doi.org/10.1103/PhysRevD.65.094028
http://dx.doi.org/10.1103/PhysRevD.70.125007
http://dx.doi.org/10.1103/PhysRevD.66.063001
http://dx.doi.org/10.1103/PhysRevD.69.084002
http://dx.doi.org/10.1103/PhysRevD.69.104018
http://dx.doi.org/10.1038/s41598-018-20036-6
http://www.ncbi.nlm.nih.gov/pubmed/29379055
http://dx.doi.org/10.1029/JA073i009p02839


Entropy 2022, 24, 1712 16 of 17

9. Hasegawa, A.; Kunioki, A.M.; Duong-va, M. Plasma Distribution Function in a Superthermal Radiation Field. Phys. Rev. Lett.
1985, 54, 2608. [CrossRef]

10. Kaniadakis, G. Non Linear Kinetics underlying Generalized Statistics. Phys. A 2001, 296, 405–425. [CrossRef]
11. Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [CrossRef]
12. Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [CrossRef] [PubMed]
13. Moradpour, H.; Ziaie, A.H.; Kord Zangeneh, M. Generalized entropies and corresponding holographic dark energy models. Eur.

Phys. J. C 2020, 80, 732. [CrossRef]
14. Lymperis, A.; Basilakos, S.; Saridakis, E.N. Modified cosmology through Kaniadakis horizon entropy. Eur. Phys. J. C 2021, 81, 1037.

[CrossRef]
15. Drepanou, N.; Lymperis, A.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis holographic dark energy and cosmology. Eur. Phys. J.

C 2022, 82, 449. [CrossRef]
16. Hernández-Almada, A.; Leon, G.; Magaña, J.; García-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis-

holographic dark energy: observational constraints and global dynamics. Mon. Not. R. Astron. Soc. 2022, 511, 4147–4158.
[CrossRef]

17. Hernández-Almada, A.; Leon, G.; Magaña, J.; García-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K.; Millano, A.D.
Observational constraints and dynamical analysis of Kaniadakis horizon-entropy cosmology. Mon. Not. R. Astron. Soc. 2022, 512,
5122–5134. [CrossRef]

18. Chen, H.; Zhang, S.; Liu, S. Jeans Gravitational Instability with kappa-Deformed Kaniadakis Distribution. Chin. Phys. Lett. 2017,
34, 075101. [CrossRef]

19. Sadeghnezhad, N. Gravity and Cosmology in Kaniadakis Statistics. arXiv 2021, arXiv:2111.13623.
20. Kaniadakis, G. New power-law tailed distributions emerging in κ-statistics. EPL (Europhys. Lett.) 2021, 133, 10002. [CrossRef]
21. Beck, C. Generalised information and entropy measures in physics. Contemp. Phys. 2009, 50, 495. [CrossRef]
22. Carvalho, J.C.; Silva, R.; do Nascimiento, J.D., Jr.; Soares, B.B.; De Medeiros, J.R. Observational measurement of open stellar

clusters: A test of Kaniadakis and Tsallis statistics. EPL (Europhys. Lett.) 2010, 91, 69002. [CrossRef]
23. Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A. Tsallis and Kaniadakis statistics from a point of view of the holographic

equipartition law. EPL (Europhys. Lett.) 2018, 121, 45002. [CrossRef]
24. Jawad, A.; Sultan, A.M. Cosmic Consequences of Kaniadakis and Generalized Tsallis Holographic Dark Energy Models in the

Fractal Universe. Adv. High Energy Phys. 2021, 2021, 5519028. [CrossRef]
25. Abreu, E.M.C.; Ananias Neto, J.; Barboza, E.M.; Nunes, R.C. Tsallis and Kaniadakis statistics from the viewpoint of entropic

gravity formalism. Int. J. Mod. Phys. A 2017, 32, 1750028. [CrossRef]
26. Moradpour, H.; Javaherian, M.; Namvar, E.; Ziaie, A.H. Gamow Temperature in Tsallis and Kaniadakis Statistics. Entropy 2022,

24, 797. [CrossRef] [PubMed]
27. Abreu, E.M.C.; Ananias Neto, J.; Barboza, E.M.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis’ statistics.

EPL (Europhys. Lett.) 2016, 114, 55001. [CrossRef]
28. Jang, W.; Xiong, Y.; Chen, H.; Liu, S. Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired

Born–Infeld gravity. Chin. Phys. B 2020, 29, 11041.
29. He, K.R. Jeans analysis with κ-deformed Kaniadakis distribution in f (R) gravity. Phys. Scr. 2022, 97, 025601. [CrossRef]
30. Jang, W.; Xiong, Y.; Chen, H.; Liu, S. Jeans instability of dark-baryonic matter model in the context of Kaniadakis’ statistic

distribution. J. Taibah Univ. Sci. 2022, 16, 337–343.
31. Li, M. A Model of holographic dark energy. Phys. Lett. B 2004, 603, 1. [CrossRef]
32. Sharma, U.K.; Dubey, V.C.; Ziaie, A.H.; Moradpour, H. Kaniadakis holographic dark energy in non-flat universe. Int. J. Mod. Phys.

D 2022, 31, 2250013. [CrossRef]
33. Rani, S.; Jawad, A.; Sultan, A.M.; Shad, M. Cosmographic and thermodynamic analysis of Kaniadakis holographic dark energy.

Int. J. Mod. Phys. D 2022, 31, 2250078. [CrossRef]
34. Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.; Bonilla, A.; De Paula, R.M. Cosmological considerations in Kaniadakis statistics. EPL

(Europhys. Lett.) 2018, 124, 30003. [CrossRef]
35. Ghaffari, S. Kaniadakis holographic dark energy in Brans–Dicke cosmology. Mod. Phys. Lett. A 2022, 37, 2250152. [CrossRef]
36. Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. JHEP J. High Energy Phys. 2011, 4, 029. [CrossRef]
37. Tan, W.H.; Yang, S.Q.; Shao, C.G.; Li, J.; Du, A.B.; Zhan, B.F.; Wang, Q.-L.; Luo, P.-S.; Tu, L.-C.; Luo, J. New Test of the Gravitational

Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation. Phys. Rev. Lett. 2016, 116, 131101.
[CrossRef] [PubMed]

38. Adelberger, E.G.; Heckel, B.R.; Nelson, A.E. Tests of the Gravitational Inverse-Square Law. Ann. Rev. Nucl. Part Sci. 2003, 53, 77.
[CrossRef]

39. Dong, X. The Gravity Dual of Renyi Entropy. Nat. Commun. 2016, 7, 12472. [CrossRef]
40. Czinner, V.G.; Iguchi, H. Rényi Entropy and the Thermodynamic Stability of Black Holes. Phys. Lett. B 2016, 752, 306. [CrossRef]
41. Abreu, E.M.C.; Neto, J.A. Black holes thermodynamics from a dual Kaniadakis entropy. EPL (Europhys. Lett.) 2021, 133, 49001.

[CrossRef]
42. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004.
43. Immirzi, G. Quantum gravity and Regge calculus. Nucl. Phys. B Proc. Suppl. 1997, 57, 65. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.54.2608
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.72.036108
http://www.ncbi.nlm.nih.gov/pubmed/16241516
http://dx.doi.org/10.1140/epjc/s10052-020-8307-x
http://dx.doi.org/10.1140/epjc/s10052-021-09852-9
http://dx.doi.org/10.1140/epjc/s10052-022-10415-9
http://dx.doi.org/10.1093/mnras/stac255
http://dx.doi.org/10.1093/mnras/stac795
http://dx.doi.org/10.1088/0256-307X/34/7/075101
http://dx.doi.org/10.1209/0295-5075/133/10002
http://dx.doi.org/10.1080/00107510902823517
http://dx.doi.org/10.1209/0295-5075/91/69002
http://dx.doi.org/10.1209/0295-5075/121/45002
http://dx.doi.org/10.1155/2021/5519028
http://dx.doi.org/10.1142/S0217751X17500282
http://dx.doi.org/10.3390/e24060797
http://www.ncbi.nlm.nih.gov/pubmed/35741518
http://dx.doi.org/10.1209/0295-5075/114/55001
http://dx.doi.org/10.1088/1402-4896/ac485e
http://dx.doi.org/10.1016/j.physletb.2004.10.014
http://dx.doi.org/10.1142/S0218271822500134
http://dx.doi.org/10.1142/S021827182250078X
http://dx.doi.org/10.1209/0295-5075/124/30003
http://dx.doi.org/10.1142/S0217732322501528
http://dx.doi.org/10.1007/JHEP04(2011)029
http://dx.doi.org/10.1103/PhysRevLett.116.131101
http://www.ncbi.nlm.nih.gov/pubmed/27081964
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1038/ncomms12472
http://dx.doi.org/10.1016/j.physletb.2015.11.061
http://dx.doi.org/10.1209/0295-5075/133/49001
http://dx.doi.org/10.1016/S0920-5632(97)00354-X


Entropy 2022, 24, 1712 17 of 17

44. Abreu, E.M.C.; Ananias Neto, J.; Mendes, A.C.R.; de Paula, R.M. Loop Quantum Gravity Immirzi parameter and the Kaniadakis
statistics. Chaos Solitons Fractals 2019, 118, 307. [CrossRef]

45. Lang, K.R. Astrophysical Formulae; Springer: Berlin/Heidelberg, Germany, 1974.
46. Enqvist, K.; Hannestad, S.; Sloth, M.S. Searching for a holographic connection between dark energy and the low-l CMB multipoles.

JCAP J. Cosmol. Astropart. Phys. 2005, 2, 004. [CrossRef]
47. Setare, M.R. Holographic tachyon model of dark energy. Phys. Lett. B 2007, 653, 116–121. [CrossRef]
48. Srivastava, S.; Sharma, U.K. Barrow holographic dark energy with Hubble horizon as IR cutoff. Int. J. Geom. Meth. Mod. Phys.

2021, 18, 2150014. [CrossRef]
49. Tavayef, M.; Sheykhi, A.; Bamba, K.; Moradpour, H. Tsallis Holographic Dark Energy. Phys. Lett. B 2018, 781, 195. [CrossRef]
50. Saridakis, E.N. Barrow Holographic Dark Energy. Phys. Rev. D 2020, 102, 123525. [CrossRef]
51. Luciano, G.G.; Gine, J. Baryogenesis in non-extensive Tsallis Cosmology. Phys. Lett. B 2022, 833, 137352. [CrossRef]
52. Luciano, G.G. Cosmic evolution and thermal stability of Barrow holographic dark energy in nonflat Friedmann-Robertson-Walker

Universe. Phys. Rev. D 2022, 106, 083530. [CrossRef]
53. Luciano, G.G.; Giné, J. Generalized interacting Barrow Holographic Dark Energy: Cosmological predictions and thermodynamic

considerations. arXiv 2022, arXiv:2210.09755.
54. Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.H. Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 015004.

[CrossRef]
55. Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260. [CrossRef] [PubMed]
56. Luciano, G.G. Modified Friedmann equations from Kaniadakis entropy and cosmological implications on baryogenesis and

7Li-abundance. Eur. Phys. J. C 2022, 82, 314. [CrossRef]
57. Ghoshal, A.; Lambiase, G. Constraints on Tsallis Cosmology from Big Bang Nucleosynthesis and Dark Matter Freeze-out. arXiv

2021, arXiv:2104.11296.
58. Luciano, G.G. Primordial big bang nucleosynthesis and generalized uncertainty principle. Eur. Phys. J. C 2021, 81, 1086. [CrossRef]
59. Bernstein, J.; Brown, L.S.; Feinberg, G. Cosmological helium production simplified. Rev. Mod. Phys. 1989, 61, 25. [CrossRef]
60. Kolb, E.W.; Turner, M.S. The Early Universe. Front. Phys. 1990, 69, 1.
61. Aver, E.; Olive, K.A.; Skillman, E.D. The effects of He I λ10830 on helium abundance determinations. JCAP 2015, 07, 011.

[CrossRef]
62. Kneller, J.P.; Steigman, G. BBN for pedestrians. New J. Phys. 2004, 6, 117. [CrossRef]
63. Steigman, G. Neutrinos In addition, Big Bang Nucleosynthesis. Adv. High Energy Phys. 2012, 2012, 268321. [CrossRef]
64. Bhattacharjee, S.; Sahoo, P.K. Big bang nucleosynthesis and entropy evolution in f (R, T) gravity. Eur. Phys. J. Plus 2020, 135, 350.

[CrossRef]
65. Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 2019,

79, 242. [CrossRef]
66. Luciano, G.G. Tsallis statistics and generalized uncertainty principle. Eur. Phys. J. C 2021, 81, 672. [CrossRef]
67. Luciano, G.G.; Blasone, M. q-generalized Tsallis thermostatistics in Unruh effect for mixed fields. Phys. Rev. D 2021, 104, 045004.

[CrossRef]
68. Luciano, G.G.; Blasone, M. Nonextensive Tsallis statistics in Unruh effect for Dirac neutrinos. Eur. Phys. J. C 2021, 81, 995.

[CrossRef]
69. Jizba, P.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Decoherence limit of quantum systems obeying generalized uncertainty

principle: New paradigm for Tsallis thermostatistics. Phys. Rev. D 2022, 105, L121501. [CrossRef]
70. Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui,

L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological
tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49. [CrossRef]

71. Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995,
52, 1108. [CrossRef]

72. Scardigli, F. The deformation parameter of the generalized uncertainty principle. J. Phys. Conf. Ser. 2019, 1275, 012004. [CrossRef]
73. Luciano, G.G.; Petruzziello, L. Generalized uncertainty principle and its implications on geometric phases in quantum mechanics.

Eur. Phys. J. Plus 2021, 136, 179. [CrossRef]
74. Ourabah, K.; Hamici-Bendimerad, A.H.; Tribeche, M. Quantum entanglement and Kaniadakis entropy. Phys. Scr. 2015, 90, 045101.

[CrossRef]
75. Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. Rev. Mod. Phys. 2021,

93, 035002. [CrossRef]

http://dx.doi.org/10.1016/j.chaos.2018.11.033
http://dx.doi.org/10.1088/1475-7516/2005/02/004
http://dx.doi.org/10.1016/j.physletb.2007.08.011
http://dx.doi.org/10.1142/S0219887821500146
http://dx.doi.org/10.1016/j.physletb.2018.04.001
http://dx.doi.org/10.1103/PhysRevD.102.123525
http://dx.doi.org/10.1016/j.physletb.2022.137352
http://dx.doi.org/10.1103/PhysRevD.106.083530
http://dx.doi.org/10.1103/RevModPhys.88.015004
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://www.ncbi.nlm.nih.gov/pubmed/10060248
http://dx.doi.org/10.1140/epjc/s10052-022-10285-1
http://dx.doi.org/10.1140/epjc/s10052-021-09891-2
http://dx.doi.org/10.1103/RevModPhys.61.25
http://dx.doi.org/10.1088/1475-7516/2015/07/011
http://dx.doi.org/10.1088/1367-2630/6/1/117
http://dx.doi.org/10.1155/2012/268321
http://dx.doi.org/10.1140/epjp/s13360-020-00361-4
http://dx.doi.org/10.1140/epjc/s10052-019-6740-5
http://dx.doi.org/10.1140/epjc/s10052-021-09486-x
http://dx.doi.org/10.1103/PhysRevD.104.045004
http://dx.doi.org/10.1140/epjc/s10052-021-09797-z
http://dx.doi.org/10.1103/PhysRevD.105.L121501
http://dx.doi.org/10.1016/j.jheap.2022.04.002
http://dx.doi.org/10.1103/PhysRevD.52.1108
http://dx.doi.org/10.1088/1742-6596/1275/1/012004
http://dx.doi.org/10.1140/epjp/s13360-021-01161-0
http://dx.doi.org/10.1088/0031-8949/90/4/045101
http://dx.doi.org/10.1103/RevModPhys.93.035002

	Introduction
	Gravity and Cosmology in Kaniadakis Statistical Theory: Recent Advances
	Open Stellar Clusters
	Jeans Instability and Gravitational Collapse
	Holographic Dark Energy
	Entropic Gravity
	Black Hole Thermodynamics
	Loop Quantum Gravity

	Big Bang Nucleosynthesis in Kaniadakis Statistics
	Freeze-Out Mechanism
	Primordial Abundances of 4He and Deuterium D

	Discussion and Conclusions
	References

