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Abstract: To completely comprehend neurodevelopment in healthy and congenitally abnormal fe-
tuses, quantitative analysis of the human fetal brain is essential. This analysis requires the use of
automatic multi-tissue fetal brain segmentation techniques. This paper proposes an end-to-end
automatic yet effective method for a multi-tissue fetal brain segmentation model called IRMMNET. It
includes a inception residual encoder block (EB) and a dense spatial attention (DSAM) block, which
facilitate the extraction of multi-scale fetal-brain-tissue-relevant information from multi-view MRI
images, enhance the feature reuse, and substantially reduce the number of parameters of the seg-
mentation model. Additionally, we propose three methods for predicting gestational age (GA)—GA
prediction by using a 3D autoencoder, GA prediction using radiomics features, and GA prediction
using the IRMMNET segmentation model’s encoder. Our experiments were performed on a dataset
of 80 pathological and non-pathological magnetic resonance fetal brain volume reconstructions across
a range of gestational ages (20 to 33 weeks) that were manually segmented into seven different tissue
categories. The results showed that the proposed fetal brain segmentation model achieved a Dice
score of 0.791± 0.18, outperforming the state-of-the-art methods. The radiomics-based GA prediction
methods achieved the best results (RMSE: 1.42). We also demonstrated the generalization capabilities
of the proposed methods for tasks such as head and neck tumor segmentation and the prediction of
patients’ survival days.

Keywords: multi-view segmentation; fetal brain; fetal age prediction; deep learning; machine learning

1. Introduction

Congenital disorders are some of the leading causes of infant mortality worldwide [1].
Recently, in utero magnetic resonance imaging (MRI) of the fetal brain has emerged as a
valuable tool for investigating the neurological development of fetuses with congenital
disorders to aid in prenatal planning. Fetal MRI requires clinical and technical expertise
and is a challenging imaging modality due to the ability to move freely. T2-weighted
single-shot fast spin echo (ssFSE) sequences, such as ultra-fast MRI sequences, can be used
to attain information in all planes.

Super-resolution (SR) reconstruction algorithms, including outlier rejection and motion
correction strategies [1], can then be applied in order to combine several low-resolution
images into a single high-resolution volume that can be used for further quantitative
analysis. Automated quantification of the highly complex and rapidly changing brain
morphology in MRI data could improve the diagnostic and decision-making processes.

Image segmentation is an early step for the volumetric quantification of the fetal
brain. Shape or volume information could be relevant to the developing cortex, cerebellum,
brainstem, white matter, and cerebrospinal fluid spaces [2,3]. The automatic segmentation
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of the developing human brain is a primary step for analysis, as manual segmentation is
time-consuming and may be prone to human error. However, fetal brain segmentation
based on SR fetal brain volumes is still challenging due to artifacts that are blurry or caused
by motion, rapidly changing fetal brain anatomy, and the effects of partial volume.

Various atlas-based methods have been developed for brain tissue segmentation [4].
However, these methods need an atlas, which now only exists for normally developing
fetuses. Falick et al. [5] used single-class high-resolution fetal brain volumes for fetal brain
segmentation, but multiclass segmentation still needs to be explored. Deep-learning-based
segmentation models have recently been employed to segment the fetal brain into different
tissue types by using low-resolution coronal-direction slices to handle fetal brain tissue
segmentation problems [6].

Faghihpirayesh et al. [7] used an encoder–decoder UNet model with multiple branches
and skip connections to maintain high accuracy while devising a parallel combination of
convolution and pooling operations. They used a private dataset to train their proposed
model. However, they only handled the single-class segmentation problem by using 2D
slices, which is not challenging and quite simple. A 2D segmentation model for volumetric
3D segmentation cannot handle temporal relationships, unlike 3D segmentation models.
Moreover, they used only binary class segmentation, while the proposed model addresses
the problem of multi-tissue fetal brain segmentation. Asis et al. [8] used an end-to-end
generative adversarial neural network (GAN) to segment the fetal brain in functional
magnetic resonance images (rs-fMRI). They segmented the full fetal brain and handled
binary class problems by using a private dataset. Unlike the models in these works, the
proposed multi-view segmentation model can handle the 3D segmentation of volumetric
data by using a stacking approach to multi-view segmentations.

Zhao et al. [9] trained a patch-based 3D segmentation model for fetal brain seg-
mentation by using an in-house dataset. This 3D segmentation model required powerful
computational resources. However, the 3D-CNN holds great potential for fully utilizing
the 3D information from MRI data, which also contain multi-view information. How-
ever, 3D-CNN-based segmentation greatly increases the network scale and computational
cost [10]. It should be noted that the major bottleneck in the development of segmentation
algorithms for medical imaging is the lack of data—either the availability of atlases for
atlas-based segmentation or that of training data for supervised machine learning methods.
In addition, there is still a need to explore and implement deep-learning-based approaches,
as no clear benchmark is available for fetal brain segmentation.

In turn, the dating of the precise gestational age (GA) is essential for assessing preg-
nancy, fetal development, and neonatal care. Before sonography, obstetricians routinely
relied on the last menstrual period for the dating of the gestational age in pre-birth life [5].
The crown-rump length (CRL) method is used in the first trimester to estimate gestational
age. Other methods are used in the last two trimesters, such as brain bi-parietal diameter,
head circumference, femur length, and abdominal circumference. These methods were
reported decades ago and are still used today [5].

Though sonographic assessment during the first trimester is the most well known
and accurate method for estimating the gestational age, it shows large variations in the
second and third trimesters due to the variability in organ size. According to previous
studies, the assessment of gestational age by combining the above-mentioned biometric
data can achieve an accuracy of ±7 to 10 days for the second trimester and ±21 to 30 days
for the third trimester. Various methods, such as the measurement of the cerebellar length
and the transcerebellar diameter, accurately predict gestational age in singleton and twin
pregnancies [11]; however, they require good visualization of the cerebellum by specialized
sonographers.

In summary, estimations made with sonographic measurements are strongly affected
by the inherent variability in organ size and the intrinsic signal properties of ultrasonogra-
phy [12]. The inaccuracy of sonographic assessment has driven the need to find different
approaches that can be used to accurately determine gestational age. MRI is gradually
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being recognized as a powerful helper for ultrasonography in the evaluation of the fetal
brain. MRI-based methods provide a high resolution, soft-tissue contrast, and visibility
of the whole brain independently of fetal presentation [13,14]. As pregnancies advance,
the biological variations among normal fetuses increase, and the ranges of values of each
biometric measurement associated with a specific GA also increase. This means that while
the predictive error at ±10 days GA is considered acceptable in most clinical settings, the
predictive error at ±18 days is estimated to offer little clinical value [15]. Therefore, when
screening occurs in the second and third trimesters, the error margins produced by current
methods are highly increased; thus, they are not clinically useful. Accordingly, there is a
need to develop an alternative technique for estimating the GA.

Fung et al. [16] developed a machine learning (ML) model for estimating the GA
and predicting future growth. They utilized multi-center, international, and population-
based project data from the International Fetal and Newborn Growth Consortium for the
21st Century (INTERGROWTH-21st). Kojita et al. [17] developed VGG-based transfer
learning models for GA prediction. They employed an in-house (private) dataset. The
deep learning model was trained with T2-weighted images from 126 training cases and
29 validation cases. The remaining 29 cases were utilized as test data, with the fetal age
being estimated by the model and by using BPD (biparietal diameter) measurements. They
drew a relationship between the estimated and standard gestational ages by using Lin’s
concordance correlation (ρc). The model’s outcome in terms of concordance was significant
(ρc = 0.964).

Furthermore, Lu et al. [18] developed machine learning models that could provide
accurate estimations for obstetricians alongside traditional clinical practices and an effi-
cient and effective supporting tool for pregnant women for self-monitoring. A total of
4212 intrapartum recordings were selected, of which 3370 samples were used as the training
set and 842 samples were used as the test set. In addition, several simple and powerful
machine learning algorithms were trained, and their performance was evaluated with real
test data. The experimental results showed an intersection over union (IoU) of 0.64 between
the predicted range of fetal weight at any gestational age from the ensemble model and
that from ultrasound. Using their private dataset, they used simple clinical features with
traditional machine learning models for the prediction of gestational age and weight. No
deep-learning-based models were used as a comparison with the machine learning models.
No efficient feature engineering approaches were used to predict gestational age.

Alliance et al. [19] developed a novel method based on machine learning models
and used each subset of predictors based on an ensemble model constructed by using the
Super Learner algorithm. The resulting model was a weighted average of multivariate
adaptive regression splines, random forests, gradient boosting, support vector machines,
and multiple linear regression. They assessed the diagnostic accuracy by using the re-
ceiver operating curve (AUC) and Bland–Altman analysis. They collected datasets from
population-based cohorts in five countries (Bangladesh, Ghana, Pakistan, Tanzania, and
Zambia). Women at <20 weeks of gestation according to ultrasound-based dating were
used as a study case for the prediction of gestational age. A total of 7428 liveborn infants
were included. This dataset is not publicly available. The resulting model was a weighted
average of multivariate adaptive regression splines, random forests, gradient boosting,
support vector machines, and multiple linear regression. They achieved the highest AUC
of 0.96. They used only clinical features with traditional machine learning models for the
age prediction. No imaging-based features were used to evaluate the performance of the
machine learning or deep learning models for the prediction of gestational age.

Payette et al. [20] employed deep learning models such as ResNet-18 and ResNet-50
with a combination of different layers for the prediction of gestational age. They collected
741 fetal brain MRIs in order to predict fetal gestational age (in days). The authors proposed
a basic ResNet18-based regressor model that used a private dataset, and they did not use any
other segmentation-based or 3D volumetric-based features for gestational age prediction.
They used cropped 2D images covering the fetal area only in the input images to train the
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basic ResNet18 with overall global features, and this could efficiently help in the extraction
of local image features for the prediction of fetal gestational age.

Shen et al. [21] used attention-guided, multi-plane ResNet-50 models trained on
Stanford data to predict the gestational age. They trained various CNN models based
on only imaging features for the prediction of gestational age. Imaging features might
not be sufficient to accurately predict gestational age. However, we used various feature
extraction approaches, including imaging, radiomics, 3D latent space autoencoder-based
features, and deep features extracted from the last layer of multi-view 2D image slices from
segmented brain tissues, to extract more localized features for the prediction of gestational
age. The fusion of multi-scale segment-based deep features achieved better performance
than that of the state-of-the-art methods.

There is a further need to investigate different methods with deep learning models
for GA prediction. The existing methods are based on single-feature extraction techniques
that use basic deep learning models. Correspondingly, the datasets used for the existing
methods are in-house and private. There is a need to set a benchmark on a publicly available
dataset for further comparisons and enhancements in deep learning/machine learning for
the prediction of gestational age and segmentation of the fetal brain.

To solve the above-mentioned issues, we propose effective yet automatic methods
for the segmentation of fetal brain tissue and prediction of gestational age. To the best of
the authors’ knowledge, this is the first paper to propose an end-to-end solution for fetal
brain segmentation in MRI images and GA prediction. Deep learning is the basis for the
proposed fetal segmentation method, IRMMNET (inception residual multi-scale multi-view
network). By effectively combining segmentation maps from the axial, coronal, and sagittal
views to create a 3D segmentation volume, IRMMNET incorporates important insights
from multi-view MRI. IRMMNET consists of several layers with the capacity of reusing
features and information at several scales and depths. The inception residual encoder
block (EB) and the dense spatial attention (DSAM) block are two proposed blocks that
are part of IRMMNET. The EB aids in extracting information from multi-view MRI scans
that is pertinent to multi-scale fetal brain tissue. The DSAM improves feature reuse while
lowering the model’s parameter count. The EB and DSAM help segment small lesions that
have a small number of semantic pixels that are missed by traditional encoder–decoder
networks. Then, we propose three methods for GA prediction—GA prediction using the
IRMMNET segmentation model’s encoder, GA prediction using a 3D autoencoder, and GA
prediction using radiomics features. The implementation of the proposed method will be
available at https://github.com/Moona-Mazher/Fetal-Segmentation-Gestational-Age-
Prediction-Deep-Learning on 20 November 2022.

The following is a list of this paper’s major contributions:

1. Proposal of a novel multi-view multi-scale 3D fetal brain segmentation method named
IRMMNET. It combines the key insights from multi-view MRI, including the axial,
coronal, and sagittal views. IRMMNET comprises different layers with feature reuse
capabilities and with various depths and multi-scale information. An efficient method
for fusing segmentation maps of the axial, coronal, and sagittal views to develop a 3D
segmentation volume is also presented.

2. Presentation of two effective blocks: the inception residual encoder block (EB) and the
dense spatial attention (DSAM) block. The EB helps the fetal brain segmentation net-
work extract multi-scale fetal-brain-tissue-relevant information from multi-view MRI
images. The DSAM block enhances feature reuse and substantially reduces the num-
ber of parameters of the segmentation model. Extensive experiments were performed
with various combinations and settings of the fetal brain segmentation model.

3. Proposal of three approaches to predicting GA: GA prediction by utilizing the IRMM-
NET segmentation model’s encoder, GA prediction by utilizing a 3D autoencoder,
and GA prediction by utilizing radiomics features. The explainability and importance
of the radiomics features are also presented.

https://github.com/Moona-Mazher/Fetal-Segmentation-Gestational-Age-Prediction-Deep-Learning
https://github.com/Moona-Mazher/Fetal-Segmentation-Gestational-Age-Prediction-Deep-Learning
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4. Demonstration of the generalization capabilities of the proposed fetal brain segmenta-
tion and GA prediction methods on two different tasks: the segmentation of head and
neck tumors and the prediction of patients’ survival days.

The rest of this paper is presented as follows: Section 2 introduces the proposed
multi-view multi-scale 3D fetal brain segmentation method and the proposed fetal age
prediction method. Section 3 presents the datasets used in our study, the proposed fetal
brain segmentation model’s results, and the GA prediction method’s results. Section 3.5
discusses the generalization capabilities of the proposed methods. Section 4 discusses the
findings of the study and its limitations. Section 5 concludes the paper and presents the
future work.

2. Methodology

In this section, we explain the proposed multi-view multi-scale 3D fetal brain segmen-
tation method (Section 2.1) and the proposed fetal age prediction method (Section 2.2).

2.1. Proposed Multi-View Multi-Scale 3D Fetal Brain Segmentation Method

Figure 1 presents a schematic diagram of the proposed multi-view multi-scale 3D fetal
brain segmentation method. The three available views—axial, coronal, and sagittal—are
inputted into the proposed segmentation model to generate a 2D segmentation mask
for each view. Then, the resulting segmentation masks are combined to construct a 3D
segmentation map. Specifically, we stack a 2D segmentation mask of each view to form a
predicted 3D segmentation mask. This process can be expressed as follows:

OA = orgmax(Sigmoid(LA)),

OS = orgmax(Sigmoid(LS)),

OC = orgmax(Sigmoid(LC))

(1)

3DV[:, :, A] =
N

∑
i=1

OA,

3DV[:, S, :] =
N

∑
i=1

OS,

3DV[C, :, :] =
N

∑
i=1

OC

(2)

where LA represents linear-layer neurons using the axial view, LS using the sagittal view,
and LC using the coronal axis view.

3DV[:, :, :] = 3DV[:, :, A] + 3DV[:, S, :] + 3DV[C, :, :] (3)

where OA stands for the output prediction of the proposed model when using axial slices,
OS is the prediction of the proposed model when using the sagittal view, and OC is the
output when using coronal slices; 3DV is the 3D prediction volume that is reconstructed by
stacking up the predicted 2D slices from each 2D view (OA, Os, and Oc).
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Figure 1. A schematic diagram of the proposed method for 3D fetal brain segmentation from the
axial, coronal, and sagittal views.

2.1.1. Multi-View Multi-Scale Segmentation Network

Figure 2 presents the proposed multi-view multi-scale segmentation network. The pro-
posed model is designed based on the concept of an encoder–decoder with skip connections.
The proposed inception residual encoder block (EB) and dense spatial attention (DSAM)
block are used in the encoding path. In contrast, an efficient yet simple 2D convolutional
layer module with 2D upsampling layers, including regularization layers, is used on the
decoding path.

Figure 2. The proposed IRMMNET multi-view multi-scale segmentation network.

In the encoding path, a DSAM block is used in each encoder block, which sends
information at every block from each encoder layer to the bottom layer. The number of
channels is doubled at each EB block, and the input size of the feature maps is reduced
by half based on the depth-wise convolutional layer in the encoding path. An increasing
number of feature map blocks are used in each stage of encoder blocks; the number of EB
blocks progressively increases at each stage of the encoder side. The first encoder block uses
one EB block. Similarly, the second, third, and fourth blocks employ 2, 3, and 4 inception
residual blocks, respectively.

The red lines in Figure 2 highlight the multi-scale feature maps from each encoder
block fed to the model’s bottom layer. This strategy increases the efficiency of the feature
maps by reusing and fusing the feature information at the level of downsampling. In
the proposed segmentation model, the features are extracted from three levels (red lines),
which enables the model benefit from the multi-scale transformation of high-level semantic
information and low-level information of the position and texture. Three downsampling
layers that carry features’ information are passed to the bottom-layer module to guarantee
an improved cross-level feature connection and complementarity in cross-level information.

In the decoding path, the size of the feature maps increases after each 2D upsampling
layer, and the original size of the training input images returns in the output in the final
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layer. The first 2D upsampling layer comprises two efficient convolutional layers (2D 1 × 1
Conv, 2D 3 × 3 Conv) with a BN and ReLU layer. To reconstruct the semantic information,
the feature maps are concatenated with each encoder and decoder block. The BN and
ReLU regularization layers are used with 2D upsampled layers and 2D 3 × 3 Conv layers
for smooth optimization and training of the proposed model. The 1 × 1 Conv layer and
sigmoid activation function are used for the reconstruction of the segmentation map.

Below, we explain the architectures of the proposed EB and DSAM blocks.

2.1.2. Inception Residual Encoder Block (Eb)

Figure 3 depicts the proposed inception residual encoder block. Unlike in the Inception-
Res architecture [22], we introduce a batch normalization (BN) layer after each convolu-
tional layer, except for the bottleneck layers. In addition, we use 1× 1 and 1× 3 kernels
with a 1× 5 kernel branch, which was inspired by the DeepLab architecture [23].

Figure 3. The schematic diagram of the proposed inception residual encoder block (EB).

It should be noted that the batch normalization layer produces smooth training and
can avoid gradient vanishing while retaining the convolutional layers. The feature maps
are aggregated by convolving them with three kernels: 1× 1, 1× 3, and 1× 5. It is assumed
that xl is the input and xl+i is the output of the ith layer. c1×n is a 1× n kernel convolutional
layer and cb represents the batch normalization layer. c1×1 denotes the bottleneck layer.
The output of each EB module from the encoder path can be expressed as follows:

xl+1 = l1 × l2 × l3 × l4 (4)

l1 = (c1×1(k))cb (5)

l2 = Maxpool(c1×1(k)cb) (6)

l3 = cb(c1×3(cb(c1×3(c1×1(k))))) (7)

l4 = cb(c1×5(cb(c1×5(c1×1(k))))) (8)

where k = xl .

2.1.3. The Proposed Dense Spatial Attention Module (DSAM)

It should be noted that the attention modules that are often used in image segmentation
and object detection models are mainly divided into channel-wise attention and point-wise
attention modules, and the representatives of these two attention models are squeeze
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and excitation (SE) and the spatial attention module (SAM) [24]. A channel attention
map exploits features’ inter-channel relationships, and the feature map obtained from the
channel attention is considered a feature detector. The spatial attention module focuses on
what is meaningful given an input image through the benefit of the combination of average
pooling and max pooling. Figure 4 shows a schematic diagram of the DSAM. As shown,
we modified the SAM by replacing the point-wise convolutional layer with a basic dense
layer (DL). We also used the swish activation function instead of the sigmoid function [25],
as swish is less prone to vanishing gradient problems. The swish activation function can be
expressed as follows:

Swish(x) = x.sigmoid(x) (9)

where x is the input feature map.

Figure 4. A schematic diagram of the proposed dense spatial attention module (DSAM). DL is
a basic dense layer. The input x is multiplied by the DL and by the swish activation function
(x ∗ DL ∗ (x/(1 + e− x))).

In the DL, the feature maps of all preceding layers are used as inputs, and their feature
maps are used as inputs for all subsequent layers. The output of each dense block is
concatenated with every previous dense block. The operation of the DL can be expressed
as follows:

DL = [x, B1(x), B2([x, B1(x)]), B3(x, B1(x), B2([x, B1(x)])), . . . ] (10)

where B1(x) is dense block 1, B2 is dense block 2, and so on. x is the input feature map. We
used 12 dense blocks in our case. The output of the proposed DSAM block, DSAMout, can
be formulated as follows:

DSAMout = x ∗ DL ∗ (x/(1 + e−x)) (11)

The key advantages of the DL are (1) the alleviation of the vanishing gradient problem,
(2) the strengthening of feature propagation, (3) the encouragement of feature reuse, and
(4) the substantial reduction in the number of parameters. The feature maps are concate-
nated from the previous layer to the next layer to build the dense block in the proposed
dense layer. The feature maps keep the relevant information from every layer and are
reused in the final layer to get semantic information. The proposed DSAM uses the dense
block to provide better semantic information and improves the flow of gradient informa-
tion for easy training of the proposed model. The DSAM block reduces the problem of
overfitting with smaller training set sizes by using dense connections. DSAM blocks also
provide direct access to the gradients from the loss function and the original input signal,
which leads to implicit deep supervision. It is worth noting that all layer weights in the
proposed model were trained from scratch with the FeTA dataset.
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2.1.4. Loss Function and Implementation Details

In this paper, we employ the Combo loss function [26] to train the proposed model
with multi-class settings for fetal brain tissue segmentation. Combo loss can be expressed
as follows:

L = α

(
− 1

N

N

∑
i=1

β(ti − ln pi) + (1− β)[(1− ti) ln(1− pi)]

)
− (1

−α)
K

∑
i=1

(
2 ∑N

i=1 piti + S

∑N
i=1 pi + ∑N

i=1 ti + S

) (12)

where ti is the one-hot-encoded target or ground truth, pi is the predicted probability, N is
the number of classes multiplied by the number of samples, and the S is a small constant
number that is added to prevent division by zero. α controls the amount contributed by the
Dice term in the loss function L. β ∈[0, 1] controls the level of penalization of the model for
false positives/negatives. The S term is added to prevent division by zero. The S constant
is added in both the denominator and the numerator of the Dice term.

All models were trained using an Adam optimizer with a learning rate of 0.0001,
ρ = 0.95, ε = 1 ∗ 10−8, and decay = 0. Based on the experimental evaluations, it was found
that α = 0.5 for the Dice and cross-entropy terms produced the best results. Different values
of β were tried for all datasets, and it was found that β = 0.5 was the best value for the
proposed dataset for the segmentation task.

2.2. Approaches to the Prediction of Gestational Age (GA)

This subsection proposes three approaches to predicting GA: (1) GA prediction by
utilizing the IRMMNET segmentation model’s encoder, (2) GA prediction by utilizing a 3D
autoencoder, and (3) GA prediction by utilizing radiomics features.

2.2.1. GA Prediction by Utilizing the IRMMNET Segmentation Model’s Encoder

The encoder of the proposed IRMMNET segmentation model can automatically learn
multiple filters in parallel and extract low- and high-level features, such as edges, intensities,
and textures. Different filters capture various characteristics of the input images that are
used in GA prediction. Figure 5 presents the proposed framework for GA prediction by
utilizing the IRMMNET segmentation model’s encoder. As one can see, deep features are
extracted from the trained encoder of each view’s trained segmentation model. Each view’s
encoder generates a feature vector with dimensions of 1× 256. It should be noted that the
feature vectors of all slices of each volume are combined to produce one feature vector that
represents the whole volume. The feature vectors of the three views are concatenated to
form one single feature vector with dimensions of 1× 768. Different regression algorithms
are trained with the extracted feature vector in order to predict the GA.

2.2.2. GA Prediction by Utilizing a 3D Autoencoder

Figure 6 presents the proposed approach to GA prediction by utilizing a 3D autoen-
coder. The 3D autoencoder consists of an encoder- and decoder-based model. A 3D
volume is fed to the proposed 3D autoencoder to extract latent space features. As shown
in Figure 6, the encoder part of the 3D autoencoder consists of a 3D convolutional layer,
batch normalization layer, ReLU layer, and 3D maxpool layer, and the decoder side of the
3D autoencoder comprises a 3D transposed layer at each level on that side along, with a 3D
convolutional layer and a batch normalization layer.

On the encoder side, the volume is reduced at each encoder block, while the volume is
increased at each decoder block. The 3D transposed layer is used to upsample the feature
maps at each decoder block. The bottom layer represents the 3D volume in the lower
dimension. After flattening the lower dimension, a latent vector is produced. Different
regression algorithms are trained with the latent features to predict the GA, as shown in
Figure 6.
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Figure 5. GA prediction by utilizing the IRMMNET segmentation model’s encoder.

Figure 6. GA prediction by utilizing a 3D autoencoder. The latent features are extracted by using
input image volumes for GA prediction.

2.2.3. GA Prediction by Utilizing Radiomics Features

Figure 7 shows the proposed approach to GA prediction by utilizing radiomics features.
Here, we also extract 2D slices of the axial, sagittal, and coronal views from a 3D volume
dataset. We train the proposed segmentation model for the dataset containing the three
views and stack the output of each 2D view to reconstruct a 3D volume. The radiomics
features are extracted from the input volumes of the dataset. The radiomics features used
include shape-based, statistical, and wavelet features. Among the 108 radiomics features, a
set was chosen based on a correlation-based feature selection technique [27]. The selected
radiomics features were elongation, flatness, major axis length, minor axis length, max 3D
diameter, sphericity, surface area, energy, entropy, kurtosis, mean, skewness, coarseness,
contrast, correlation, inverse-diff moment, complexity, and strength. The radiomic features
were extracted from Feta MRI images by using the Pyradiomics package [28]. Different
regression algorithms were trained with the extracted radiomics features to predict the GA.

2.2.4. Regression Techniques for GA Prediction

Different regression techniques were tested on the features extracted with the three
approaches mentioned above for the prediction of the GA. We found that four regression
techniques give acceptable results: random forest (RF) [29], regression trees (RT), linear
regression (LR), and extreme gradient boosting (XGB) [30]. RF is supervised by traditional
machine learning and is widely used for classification and regression problems. It uses a
bootstrapped dataset as a subset, picks random subsets of features, and runs random trees in
parallel while building the trees. We set the number of trees to be from 100 to 1000 to create
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the forest. LR is a linear model that builds a linear relationship between input variables
and a single output variable. RT is a tree-based regression model that trains a model by
observing the input object’s features and generating a continuous output. The gradient-
boosting regressor is a method that uses an additive forward model and allows arbitrary
differentiable loss functions for optimization during training. The gradient-boosting model
is an ensemble model that can be used for regression, classification, and predictive modeling
problems. Extreme gradient boosting (XGB) is an open-source approach to gradient-
boosting regression.

Figure 7. GA prediction by utilizing radiomics features.

3. Experimental Results and Discussion

In this section, we explain the dataset used in our study (Section 3.1), present and
discuss the results of the proposed fetal brain segmentation model (Section 3.3), and analyze
the results of the GA prediction models (Section 3.4).

3.1. Dataset Description

The dataset included 80 T2-weighted fetal brain reconstructions with a corresponding
label map that was manually segmented into seven different tissues/labels [20]. The seven
labels were external cerebrospinal fluid (ECF), fluid gray matter (FGM), white matter (WM),
ventricles (VCs), cerebellum (CBM), deep gray matter (DGM), and brainstem (BSTM). The
dataset consisted of clinically acquired fetal brain reconstructions of both neurotypical and
pathological brains with a range of gestational ages. The data were acquired using 1.5T and
3T clinical GE whole-body scanners (Signa Discovery MR450 and MR750) with either an
eight-channel cardiac coil or a body coil. T2-weighted single-shot fast spin echo sequences
were acquired with an in-plane resolution of 0.5 mm× 0.5 mm and a slice thickness of
3 to 5 mm. The sequence parameters were the following: TR: 2000–3500 ms; TE: 120 ms
(minimum); flip angle: 90◦; sampling percentages: 55%.

Figure 8 shows the class-mapping function for the axial, sagittal, and coronal slices.
The different colors show the seven classes used to predict fetal tissue segmentation.

Two different methods were used to create a super-resolution reconstruction of the
fetal brain for each case from the acquired low-resolution axial, coronal, and sagittal
images. Equal numbers of cases were used in the training and the evaluation datasets
for each reconstruction method. For each case, the gestational age in weeks and the
neurotypical/pathological label was given, in addition to the label maps.

The dataset was divided into 80% for training and 20% for testing. There were totals
of 64 subjects in training and 16 subjects in the testing phase.
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Figure 8. The class-mapping function for the axial, sagittal, and coronal slices.

3.2. Evaluation Metrics

In this study, four metrics were used to assess the performance of the fetal brain
segmentation models: Dice (DSC), Hausdorff distance (HD95), sensitivity, and specificity,
which are are commonly used for the validation of medical volume segmentation ap-
proaches [31]. This is also called the overlap index. It measures the overlap between
ground-truth (GT) and predicted segmentation masks. For the GT and predicted masks,
DSC is defined as follows:

Dice(X, Y) = 2|X ∩Y|/|X ∪Y| (13)

Hausdorff distance (HD95): The HD95 is calculated as the mean of two directed 95%
Hausdorff distances:

HD95 =
~dH, 95(X, Y) + ~dH, 95(Y, X)

2
(14)

where X is the ground truth (GT) and Y is the predicted mask. HD is the maximum distance
between the sets of points X and Y and between Y and X.

Sensitivity is used to compute the positive portion of voxels by using the ground-truth
(GT) and predicted segmentation masks.

Sensitivity = TRP = TP/(TP + FN) (15)

where TRP is the true positive rate, TP is true positive, and FN is false negative.
Specificity is also called the true negative rate (TNR), and it is used to compute

performance based on the GT and predicted segmentation masks.

Specificity = TNR = TN/(TN + FP) (16)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
In addition, we use the root-mean-square error (RMSE) and concordance (C-index)

to evaluate the GA prediction models. The C-index is used to compute the correlation
between the predicted gestational age and ground-truth gestational age. The RMSE can be
expressed as follows:

RMSE =

√
∑(GApre − GAGT)2

N
(17)

The C-index can be formulated as follows:

C-index = concordance− index(GAGT , GApre) (18)
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where GApre is the predicted value, GAGT is the ground-truth value for the ith observation
in the dataset, and N is the sample size.

3.3. Performance Analysis of the Proposed Segmentation Model
3.3.1. Ablation Study

Table 1 tabulates the DSC, HD95, sensitivity, and specificity values of the proposed
segmentation model, IRMMNET, with the axial, sagittal, and coronal views (IRMMNET-
Axial, IRMMNET-Sagittal, and IRMMNET-Coronal). IRMMNET-Coronal obtained better
performance for all classes than IRMMNET with the axial and sagittal planes. It achieved
DSC, HD95, sensitivity, and specificity scores of 0.789, 21.56, 0.818, and 0.976, respectively.

Table 1. Performance of the proposed segmentation model with the axial, sagittal, and coronal views.

Model DSC HD95 Sensitivity Specificity

IRMMNET_Axial 0.778 24.06 0.8126 0.974
IRMMNET _Sagittal 0.781 22.80 0.817 0.974
IRMMNET _Coronal 0.789 21.56 0.818 0.976

Figure 9 shows the proposed IRMMNET model’s segmentation maps for the axial,
sagittal, and coronal planes. In addition, 2D and 3D volumetric views of the segmentation
images are shown in Figure 9 for the axial, sagittal, and coronal planes. It can be visibly
noticed that the coronal-view model generated accurate segmentation masks, in which the
predictions for the deeper and smaller classes were close to the GT. It should be noted that
the proposed model was initially tried on the 2D axial slices, but the predicted segmented
images yielded a bad prediction for the deep classes. Therefore, the proposed segmentation
model was applied to the three views’ 2D slices (axial, sagittal, and coronal) for fetal brain
segmentation. Among the predicted segmentation results for the fetal brain, the 2D coronal
view produced the best results.

Figure 9. The segmentation maps of the proposed model with different views.

In Table 2, we compare the proposed model with different segmentation models.
Specifically, the basic UNet (BaseUNet) for 2D brain tissue segmentation was trained
by using the axial, coronal, and sagittal views (BaseUNet-Axial, BaseUNet-Sagittal, and
BaseUNet-Coronal). As one can see, BaseUNet-Coronal yielded the highest DSC score
(0.728) and the lowest HD95 score (29.042). In addition, different ResUnet models were
trained by using the axial, coronal, and sagittal views (ResUnet-Axial, ResUnet-Sagittal,
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and ResUnet-Coronal) for 2D brain tissue segmentation. In the ResUnet model, the residual
blocks were added to the base UNet model. The results of the three ResUnet models were
better than those of the BaseUNet models. Finally, we added squeeze-and-excitation (SE)
blocks into ResUNET (SE-ResUNet) and trained it on the three views, yielding SE-ResUNet-
Axial, SE-ResUNet-Sagittal, and SE-ResUNet-Coronal. However, SE-ResUNet-Coronal had
an improved DSC score compared to that of ResUnet-Coronal; its HD95 and specificity
values were worse. As shown in Table 2, the proposed IRMMNET model comparatively
produced a better performance with the axial and sagittal views. However, IRMMNET-
Coronal achieved a DSC score of 0.789 and HD95 score of 21.565, which were better than
those of all models used for comparison.

Table 2. Comparing IRMMNET with different segmentation models.

Model DSC (%) HD95 (mm3) Sensitivity (%) Specificity (%)

BaseUNet-Axial 0.727 29.401 0.806 0.952
BaseUNet-Sagittal 0.723 31.381 0.790 0.947
BaseUNet-Coronal 0.728 29.042 0.813 0.963
ResUNet-Axial 0.748 26.111 0.827 0.968
ResUNet-Sagittal 0.756 27.334 0.818 0.969
ResUNet-Coronal 0.752 26.014 0.828 0.977
SE-ResUNet-Axial 0.762 28.262 0.809 0.973
SE-ResUNet-Sagittal 0.769 28.888 0.808 0.978
SE-ResUNet-Coronal 0.773 27.101 0.879 0.969
IRMMNET-Axial 0.778 24.062 0.819 0.972
IRMMNET-Sagittal 0.781 22.801 0.817 0.974
IRMMNET-Coronal 0.789 21.565 0.818 0.976

To enhance the proposed model’s prediction, we fused the axial, sagittal, and coronal
outputs of the proposed model to create a so-called multi-view model, which provided
a 3D segmentation map. Later, the performance was evaluated by using the predicted
3D segmentation map achieved with our three multi-view models and a GT segmenta-
tion map. It resulted in a better estimation in terms of the Dice, HD95, sensitivity, and
specificity scores. We constructed a 3D segmentation map from the three views of the
proposed model and evaluated the performance by using the predicted 3D segmentation
map (achieved with our three multi-view models) and ground-truth segmentation map.
Table 3 presents an ablation study of the proposed IRMMNET. Although the baseline Multi-
view-2D-Inception+Residual model achieved optimal performance, its performance was
upgraded when the DSAM module (i.e., Multi-view-2D Inception + Residual + DSAM) was
systematically added. However, adding the multi-scale feature approach to the Multi-view-
2D-Inception+Residual+DSAM model with the fusion of multiple views (i.e., IRMMNET)
produced the highest performance scores in comparison with those of all of the state-of-art-
methods and the baseline model for the fetal brain segmentation task when using the FeTA
2021 dataset. IRMMNET achieved DSC, HD95, sensitivity, and specificity scores of 0.791,
21.66, 0.819, and 0.980, respectively.

Table 3. Performance of various configurations of the proposed IRMMNET model.

Model DSC HD95 Sensitivity Specificity

UNet 0.733 28.58 0.817 0.968
Multi-view_2D Inception + Residual 0.778 25.42 0.8178 0.967
Multi-view_2D Inception + Residual + DSAM 0.783 23.26 0.8101 0.976
IRMMNET 0.791 21.66 0.819 0.980

We also studied the efficacy of different loss functions with the proposed model. As
tabulated in Table 4, the proposed Combo loss function achieved better performance than
that of the binary cross-entropy (BCE) and Dice loss functions. No big improvements were
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noticed when we combined the Dice loss and BCE loss. However, the Dice loss produced
the lowest scores.

Table 4. Performance of IRMMNET with different loss functions.

Loss Function DSC (%) HD95 (mm3) Sensitivity (%) Specificity (%)

BCE 0.789 23.88 0.671 0.812
Dice 0.776 24.51 0.668 0.795
BCE + Dice 0.780 22.83 0.682 0.809
Combo 0.791 21.66 0.691 0.818

The training and validation times were also estimated for the proposed and the state-
of-the-art methods for a comparison of the computational costs. The training time of our
proposed solution was 55 min, and the time taken for validation was less than 2 min. The
computational times for training and validation are given in Table 5.

Table 5. Estimations of the training and validation times for the proposed and state-of-the-art methods.

Segmentation Models Training Time (min) Validation Time (min)

BaseUNet-Axial 45 2
BaseUNet-Sagittal 50 2.1
BaseUNet-Coronal 55 2.01
ResUNet-Axial 60 2.23
ResUNet-Sagittal 62 2.45
ResUNet-Coronal 61 2.11
SE-ResUNet-Axial 63 2.53
SE-ResUNet-Sagittal 65 1.95
SE-ResUNet-Coronal 64 1.88
IRMMNET-Axial 53 1.3
IRMMNET-Sagittal 55 1.4
IRMMNET-Coronal 52 1.5

We applied a Mann–Whitney U test or Wilcoxon Rank Sum test to compute the
p-values between the predicted masks and their corresponding ground truths [32,33]. In
segmentation tasks, the p-value needs to be higher than 0.05 to be statistically significant,
unlike in classification tasks. A comparison of the statistical analyses of the proposed
IRMMNET and the state-of-the-art methods is given in Table 6. In the table, a p-value that
is greater than 0.05 represents a greater similarity between the predicted and ground-truth
segmentation maps. Similarly, a higher p-value also represents an accurate segmentation,
and vice-versa. The table shows that the proposed IRMMNET had consistent results, and it
statistically validates the segmentation results.

To validate the results of the proposed fused model (i.e., Multi-view-IRMMNET), we
also applied the same fusion technique to the ResUNet and SE-ResUNet models, which
yielded Multi-view-ResUNET and Multi-view-SE-ResUNET. The predicted 2D slices and
3D volumes of the proposed model, ResUnet, and SE-ResUNet are shown in Figure 10.
Although ResUNet and SE-ResUNet successfully predicted outer classes, such as external
cerebrospinal fluid (ECF), they failed to predict inner/deeper classes, like deep gray matter
(DGM). It is conspicuous that the proposed model’s predictions for all classes were close to
the given GT.



Entropy 2022, 24, 1708 16 of 26

Table 6. Comparison of the statistical analyses of the proposed IRMMNET and the state-of-the-art
methods.

Segmentation Models p-Value

BaseUNet-Axial 0.65
BaseUNet-Sagittal 0.68
BaseUNet-Coronal 0.72
ResUNet-Axial 0.89
ResUNet-Sagittal 0.87
ResUNet-Coronal 0.97
SE-ResUNet-Axial 1.15
SE-ResUNet-Sagittal 1.10
SE-ResUNet-Coronal 1.01
IRMMNET-Axial 1.63
IRMMNET-Sagittal 1.7
IRMMNET-Coronal 1.9

Figure 10. The segmentation results for the proposed Multi-view-IRMMNET, Multi-view-ResUNET,
and Multi-view-SE-ResUNET models.

Table 7 presents the Dice, HD95, sensitivity, and specificity scores of the proposed
Multi-view-IRMMNET, Multi-view-ResUNET, and Multi-view-SE-ResUNET models. The
proposed Multi-view-IRMMNET model achieved the best segmentation results with a
DSC of 0.791, HD95 of 21.66, sensitivity of 0.819, and Specificity of 0.980. The Multi-view-
ResUNET model achieved less performance scores than those of Multi-view-IRMMNET.
This model achieved a DSC of 0.758, and Multi-view-SE-ResUNET achieved a maximum
DSC of 0.772. We can conclude that our proposed Multi-view-IRMMNET achieved the
highest DSC score in comparison with the other models, namely, Multi-view-ResUNET
and Multi-view-SE-ResUNET. Similarly, Multi-view-IRMMNET achieved the lowest HD95
score of 21.66, as compared to those of Multi-view-ResUNET and Multi-view-SE-ResUNET.
Figure 11 shows the box plots of the DSC, HD95, sensitivity, and specificity scores of the pro-
posed Multi-view-IRMMNET, Multi-view-ResUNET, and Multi-view-SE-ResUNET models.
Multi-view-IRMMNET showed the highest Q3 quartile in the DSC and specificity plots. In
contrast, Multi-view-IRMMNET’s median and maximum values remained higher in all
plots compared to those of the Multi-view-ResUNET and Multi-view-SE-ResUNET models.
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Table 7. Comparing the segmentation results of the proposed Multi-view-IRMMNET, Multi-view-
ResUNET, and Multi-view-SE-ResUNET models.

Model Dice HD95 Sensitivity Specificity

Multi-view_ResUNET 0.758 27.39 0.826 0.97
Multi-view_SE-ResUNET 0.772 27.56 0.812 0.973
Multi-view_ IRMMNET 0.791 21.66 0.819 0.980

Figure 11. Box plots of the DSC, HD95, sensitivity, and specificity scores of the proposed Multi-view-
IRMMNET, Multi-view-ResUNET, and Multi-view-SE-ResUNET models.

Figure 12 overlays the density plots of the predicted 2D DSCs of the proposed Multi-
view-IRMMNET, Multi-view-ResUNET, and Multi-view-SE-ResUNET models for each
class. First, the distribution of the predicted 2D DSCs for Multi-view-IRMMNET was
always significantly different from those of the Multi-view-ResUNET and Multi-view-SE-
ResUNET models for all classes. This was especially the case for VC, CBM, DGM, and
BSTM, which were the classes opposite to EFC, FGM, and WM. It is worth noting that
when a class was absent in a segmented slice, the predicted 2D DSC was zero for that slice.
This showed a small trend of zero appearing for all classes, especially for deep classes, such
as VC, CBM, DGM, and BSTM.

Similarly, the distribution scores of all classes with Multi-view-IRMMNET were greater
than those with Multi-view-ResUNET and Multi-view-SE-ResUNET. However, regardless
of the class, the 2D DSC distributions of the Multi-view-ResUNET and Multi-view-SE-
ResUNET models were always significantly different, were more shifted to the left, and had
a larger standard deviation compared to that of the distribution of the proposed solution.
The proposed solution was always shifted toward the higher values on the right.

3.3.2. Comparing the Proposed Segmentation Model with Existing Methods

There has not been much research on the FeTA dataset and fetal brain segmentation,
as private datasets are most commonly used in research. Table 8 compares the performance
of the proposed Multi-view-IRMMNET with that of two state-of-the-art methods called
DA_FaBiAN_Baseline [34] and TopoCP (2D) [35] in terms of DSC scores. As shown,
Multi-view-IRMMNET achieved the best results, with a DSC score of 0.791. However,
DA_FaBiAN_Baseline and TopoCP (2D) produced the same DSC score (0.70), but TopoCP
(2D) obtained the smallest standard deviation.
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Figure 12. Density plots of the predicted 2D DSC for the proposed Multi-view-IRMMNET, Multi-
view-ResUNET, and Multi-view-SE-ResUNET models.

Table 8. Comparison of the performance of the proposed Multi-view-IRMMNET model with that of
two existing methods—DA_FaBiAN_Baseline and TopoCP (2D).

Model DSC (%)

DA_FaBiAN_Baseline [34] 0.70 ± 0.24
TopoCP (2D) [35] 0.70 ± 0.14
Multi-view-IRMMNET 0.791± 0.18

3.4. GA Prediction Results
3.4.1. Analyzing the Performance of GA Prediction Models

As mentioned in Section 2.2, three different methods were used to extract features
from the MRI images of the fetal brain, and then these features were fed into a regression
algorithm to predict the GA. Four different regression techniques were used for the regres-
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sion of the input features: LR, XGB, RF, and RT. The first feature set, which was called
IRMMNET Deepfeat, was extracted from the last encoder layer of the proposed IRMMNET
model, as depicted in Figure 5. The second feature set, the so-called 3D deep autoencoder
features, was extracted from the autoencoder depicted in Figure 6. The third feature set
included radiomics features (Figure 7).

Table 9 shows that the RF regressor produced the lowest RMSE values with the
radiomics, IRMMNET Deepfeat, and 3D deep autoencoder features. The RF regressor
achieved the best GA prediction results with the radiomics features, with an RMSE score
of 1.42 and a C-index score of 0.888. These results indicate that the proposed radiomics
features used with the RF regressor were the most reliable method for predicting GA.

Table 9. Analyzing the performance of different feature types and regression techniques for GA pre-
diction.

Models
LR XGB RF RT

RMSE C-Index RMSE C-Index RMSE C-Index RMSE C-Index

Radiomics 1.70 0.837 1.477 0.854 1.42 0.888 1.44 0.858

IRMMNET Deepfeat 4.56 0.465 4.10 0.252 3.46 0.371 5.97 0.542

3D deep autoencoder features 4.51 0.418 3.71 0.427 3.26 0.512 4.64 0.517

Figure 13 presents Kaplan–Meier plots of the radiomics, IRMMNET Deepfeat, and 3D
deep autoencoder features. These plots show the gestational days predicted by the proposed
GA prediction model in comparison with the ground truth for the validation datasets.
Figure 13a shows the days predicted with the radiomics features with RF, Figure 13b shows
the days predicted with the IRMMNET Deepfeat with RF, and Figure 13c shows the days
predicted with the 3D deep autoencoder features with RF. As shown, the curves of the
predicted days were very close to the GT curve for the radiomics-based features, unlike the
curves for the IRMMNET Deepfeat and 3D deep autoencoder features. The curve of the
predicted days that was produced based on the 3D deep autoencoder features was far from
the curve based on the GT days. Hence, these curves prove the efficacy of the proposed GA
prediction method based on radiomics features and RF.

Figure 13. Kaplan–Meier plots of the radiomics, IRMMNET Deepfeat, and 3D deep autoencoder
features with RF.
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3.4.2. Analyzing the Explainability of the Radiomics Features

As shown above, the radiomics features yielded the best GA prediction results. Here,
we employ the SHAP explainability method (SHapley Additive exPlanations) in order to
analyze the most explainable radiomics features and their importance. SHAP is a game-
theoretic approach to explaining the output of any machine learning model [36]. Figure 14
shows the feature importance of the radiomics features for the further analysis of the
approach to using the radiomics features for GA prediction. We used the 18 best-explainable
radiomics features with RF and obtained better scores than with all 108 extracted radiomics
features. It was shown that the max 3D diameter and major axis length had the highest
feature importance. We can say that the max 3D diameter and minor axis length were the
most important features for GA prediction in comparison with the other features, which
can help in future planning.

Figure 14. Feature importance of the radiomics features for GA prediction. The colors from red to
blue represent the significance of the features in model prediction.

3.5. Generalization Capabilities of the Proposed Fetal Brain Segmentation and GA
Prediction Models

To demonstrate the generalization capabilities of the proposed fetal brain segmentation
model, we tested it on the Hecktor 2021 dataset [37]. A total of 224 training samples were
provided. This dataset also contained clinical values and imaging samples. The dataset was
divided into 80% for training and 20% for testing. The Hecktor 2021 dataset was converted
into axial, coronal, and sagittal views. We trained the proposed IRMMNET fetal brain
segmentation model with the axial, coronal, and sagittal views from a head and neck tumor
dataset. Each volume in the Hecktor 2021 dataset had a spatial resolution of 144× 144× 144.
The segmentation masks of the IRMMNET model for each view were fused to construct
the 3D segmentation of the tumors in the head and neck dataset. Table 10 compares the
results of the proposed model with those of existing state-of-the-art methods in terms of
the DSC and HD95 scores. IRMMNET achieved a DSC score of 0.77 and an HD95 score of
3.02, which were better than those of the methods used for the comparison.

In addition, the proposed GA prediction method was tested on the the Hecktor 2021
dataset for the prediction of the patients’ survival days. The progression-free survival
outcomes for all patients were provided in the CSV files with their clinical data and with
various clinical variables. The head and neck tumor progression was based on the RECIST
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criteria: either an increased size of a known tumor (change in N and/or T) or the existence
of a new tumor (change in M and/or N). Death due to a specific disease was also considered
the progression of a disease that was previously considered stable.

Table 10. Analysis of the generalization capabilities of the proposed fetal brain segmentation model
on the Hecktor 2021 dataset.

Method DSC (%) HD95 (mm)

IRMMNET 0.77 3.02
[37] 0.65 4.07
[38] 0.75 3.27

Clinical variables, such as the patient age, patient gender, center ID, TNM group, M-
stage, N-stage, T-stage, TNM edition, and chemotherapy status, were given with different
values, and some variables had missing values. We used imputation to complete the
missing values for all clinical features. We mapped integer values to each the individual
N-, M-, and T- staging datum as follows: T-stage (Tx: 0, T1: 1, T2 : 2, T3: 3, T4: 4, T4a: 5,
T4b: 6), N-stage (N0: 0, N1: 1, N2:N2a: 3, N2b: 4, N2c: 5, N3: 6), and M-stage (Mx: 0, M0:
0, M1:1). In addition, the TNM group was also mapped to an ordinal categorical variable,
which was based on the corresponding TNM stage information (7 I: 0, 8 I: 0, 7 II: 1, 8 II: 1, 7
III: 2, 8 III: 2, 7 IV: 3, 8 IV: 3, 7 IVA: 4, 8 IVA: 4, 7 IVB: 5, 8 IVB: 5, 7 IVC: 6, 8 IVC: 6).

The min/max normalization method provided by the scikit-learn Python package was
used to normalize the clinical features’ values. A scaler was instantiated by using only the
training data and then applied to the test set.

In these experiments, the RF regression technique was employed. As tabulated in
Table 11, the clinical features obtained a C-index of 0.692. However, the C-index of the
clinical features was lower than those of the radiomics, DeepFeat (deep features extracted
from the encoder of the proposed IRMMNET model), and 3D deep autoencoder features,
but it was better than those in existing studies, such as [39,40]. The Clinical + DeepFeat +
Radiomics combination led to a C-index of 0.786, which was lower than the Deep-Features
+ Radiomics combination, meaning that we could achieve accurate predictions of patients’
survival days without employing clinical data. Table 11 also demonstrated that the features
based on radiomics and DeepFeat achieved the highest C-index scores (0.821) compared to
those of methods that were specially designed for the prediction of patients’ survival days,
such as [38–41].

Table 11. Analysis of the generalization capabilities of the proposed feature extraction methods on
the Hecktor 2021 dataset for the prediction of patients’ survival days.

Method C-Index

Clinical features 0.692
Radiomics 0.791
DeepFeat 0.771
3D deep autoencoder features 0.723
Deep-Features + Radiomics 0.821
Clinical + DeepFeat + Radiomics 0.786
[38] 0.810
[39] 0.470
[40] 0.690

4. Discussion

Image segmentation is the first stage in the volumetric quantification of the developing
fetal brain, which is used to examine the neurological growth of fetuses with congenital
abnormalities and inform prenatal planning. The predicted delivery date is crucial for
an accurate estimation of gestational age when managing any pregnancy. The timing of
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appropriate obstetric treatment and the scheduling and interpretation of some antepartum
diagnostics that assess the appropriateness of fetal growth and measures of development
in order to prevent preterm births and associated morbidities depend heavily on accurate
knowledge of the gestational age. We must create an automated, accurate, and precise
procedure for fetal brain segmentation and gestational age calculation.

This paper tackled the tasks of fetal tissue segmentation and gestational age prediction.
The 2D-based multi-view (axial, coronal, and sagittal) models were analyzed for fetal
brain tissue segmentation. The end-to-end fetal tissue segmentation and GA prediction
models were trained and tested with the FeTA 2021 MRI dataset. Initially, we trained
our segmentation model on only axial slices. However, the results were not convincing,
especially in brain tissues in which the number of class pixels was small. In addition, we
acquired all axial, sagittal, and coronal slices from the 3D fetal brain input volume. We
trained the model on those particular view slices. The coronal view model performed better
than the sagittal and axial models based on the experimental results and observations.
Later, the fusion of the predictions of the axial, sagittal, and coronal views were combined
to enhance the model’s outcome.

Various regression techniques were developed for GA prediction by using different
feature extraction methods, including a 3D autoencoder, radiomics features, and features
extracted from the IRMMNET encoder. The IRMMNET encoder’s features were used with
different regressors (LR, RF, RT, and XGB) to predict gestational age. Radiomics- and 3D-
autoencoder-based features were also used for GA prediction. Extensive experiments were
performed to achieve the optimal performance in optimal segmentation and gestational age
prediction. Metrics such as those of the Kaplan–Meier and the SHAP explainability methods
were used to study the explainability of the proposed GA models. Different comparisons
and datasets were utilized to validate the generalization of the proposed models.

The main limitation of our study is that the sample size for each GA period in the
held-out validation dataset was relatively small. Therefore, validating the proposed GA
estimation model with data from larger populations and settings will be critical in order
to extend the current use of this MRI-based biometric measurement prediction model to
clinical application scenarios. Since fetal growth is influenced by each mother’s previ-
ous gestational history, body condition, and composition, future studies should consider
mothers’ demographics as variables or covariables in their models, which might be useful
for improving the precision of gestational dating. We chose multi-view multi-scale deep
learning segmentation models in order to deliver the complete volumetric information and
to provide an efficient application to fetal brain segmentation, gestational age prediction,
and head and neck tumor segmentation and survival analysis. Our proposed approach
consisted of various modules for predicting 3D segmentation maps with a limited dataset
and lower computational resources. Our proposed approach produced a more efficient
and faster response on the validation dataset for the task of fetal brain segmentation. The
imaging features might not be sufficient to accurately predict gestational age. However,
we used various feature extraction approaches, which included imaging, radiomics, 3D
latent space autoencoder-based features, and deep features extracted from the last layer of
multi-view 2D image slices from segmented brain tissues, to extract more localized features
for gestational age prediction. The fusion of multi-scale segment-based deep features
achieved better performance than that of state-of-the-art methods. There is a further need
to investigate different methods with deep learning models for GA prediction. The existing
methods are based on single-feature extraction techniques that use basic deep learning
models. Correspondingly, the datasets used in existing methods are in-house and private.
There is a need to set a benchmark on a publicly available dataset for further comparisons
and enhancements in deep learning/machine learning for gestational age prediction and
fetal brain segmentation.

We chose multi-view multi-scale deep learning segmentation models in order to de-
liver the complete volumetric information and to provide an efficient application to fetal
brain segmentation, gestational age prediction, and head and neck tumor segmentation
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and survival analysis. Our proposed approach consisted of various modules for predicting
3D segmentation maps with a limited dataset and lower computational resources. Our pro-
posed approach produced a more efficient and faster response on the validation dataset for
the task of fetal brain segmentation. We developed a couple of imaging-based features and
validated them on two different medical imaging datasets for segmentation, fetal age predic-
tion, and head and neck survival analysis. This is a comprehensive end-to-end solution for
fetal brain segmentation and gestational age prediction. Three types of features—radiomics
features, clinical features, and latent features from the 3D autoencoder—were used for the
prediction of gestational age with various regression models. These regression models were
applied together with various feature fusion combinations for the prediction of gestation
age. Our proposed model was also used in head and neck cancer segmentation. The head
and neck segmentation features were used in the prediction of the survival age, and the
performance of the proposed model was compared with the performance of state-of-the-art
models for the tasks of head and neck cancer segmentation and survival prediction. We
developed a couple of imaging-based features and validated them on two different medi-
cal imaging datasets for segmentation, fetal age prediction, and head and neck survival
analysis. This is a comprehensive end-to-end solution for fetal brain segmentation and
gestational age prediction. Three types of features—radiomics features, clinical features,
and latent features from the 3D autoencoder—were used for the prediction of gestational
age with various regression models. These regression models were applied together with
various feature fusion combinations for the prediction of gestation age. Our proposed
model was also used in head and neck cancer segmentation. The head and neck segmenta-
tion features were used in the prediction of the survival age, and the performance of the
proposed model was compared with the performance of state-of-the-art models for the
tasks of head and neck cancer segmentation and survival prediction.

5. Conclusions and Future Work

This paper proposed an end-to-end, fully automated, and effective method for multi-
tissue fetal brain segmentation called IRMMNET. It is a multi-view segmentation model
with significantly fewer parameters thanks to the inception residual encoder block (EB)
and the dense spatial attention (DSAM) block, making it easier to extract information from
multi-view MRI images that is pertinent to multi-scale fetal brain tissue and to improve
feature reuse. In addition, this paper presented three approaches to the estimation of
gestational age (GA). The first approach was based on a 3D autoencoder, the second
approach was based on radiomics features, and the third approach was based on the
IRMMNET segmentation model’s encoder.

Extensive experiments and analyses were provided, and these included the study
of different configurations of the proposed segmentation model and the analysis of the
impacts of various loss functions. We also examined the effect of applying the proposed
fusion technique to other existing segmentation models, such as the UNet, ResUNet, and
SE-ResUNet models. We found that the proposed fetal brain segmentation model obtained
the best results with the Combo loss function, achieving a DSC score of 0.791 and an
HD95 score of 21.66, outperforming other models. In addition, the density plot analysis
demonstrated that with the proposed segmentation model, the distribution scores of all
classes were greater than those with other models.

In the GA estimation task, different regression techniques (LR, RF, RT, and XGB)
were assessed in combination with three feature extraction approaches (3D autoencoder,
radiomics, and IRMMNET encoder). We found that when used with with RF, the radiomics
features led to the best GA prediction results, with an RMSE score of 1.42 and a C-index
score of 0.888. In addition, the analysis of the Kaplan–Meier plots proved the efficacy of
the proposed GA prediction method based on the radiomics features and RF. Further, we
studied the explainability and the importance of the radiomics features, and we found
that the max 3D diameter and minor axis length were the most important features in GA
prediction in comparison with the other features.
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Finally, we studied the generalization capabilities of the proposed fetal brain segmenta-
tion and GA prediction methods for two tasks, namely, head and neck tumor segmentation
and the prediction of patients’ survival days. When applied to head and neck tumor seg-
mentation, we found that the proposed segmentation model outperformed existing models
that were specifically designed for this task. In addition, we found that the proposed fea-
tures based on radiomics and deep features extracted from the IRMMNET encoder achieved
higher C-index scores (0.821) than those of the methods that were specially designed for
the prediction of patients’ survival days.

The presented approach to segmenting the fetal brain and estimating gestational age
and delivery dates could be utilized to accurately quantitatively analyze the human fetal
brain and to determine the gestational age and expected delivery date, both of which
are crucial for management decisions in any pregnancy. For the timing of appropriate
obstetric care, scheduling, and the interpretation of several antepartum diagnostics, precise
information on the gestational age is essential.

In future work, we will use different patch-based 3D segmentation models and 3D
transformers for the task of fetal brain segmentation in order to further enhance the system’s
performance. In addition, we will validate the GA estimation method with data from larger
populations and settings.
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