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Abstract: We evaluate the use of generalized empirical likelihood (GEL) estimators in portfolio
efficiency tests for asset pricing models in the presence of conditional information. The use of
conditional information is relevant to portfolio management as it allows for checking whether asset
allocations are efficiently exploiting all the information available in the market. Estimators from the
GEL family present some optimal statistical properties, such as robustness to misspecifications and
better properties in finite samples. Unlike generalized method of moments (GMM) estimators, the
bias for GEL estimators does not increase with the number of moment conditions included, which
is expected in conditional efficiency analysis. Due to these better properties in finite samples, our
main hypothesis is that portfolio efficiency tests using GEL estimators may have better properties in
terms of size, power, and robustness. Using Monte Carlo experiments, we show that GEL estimators
have better performance in the presence of data contaminations, especially under heavy tails and
outliers. Extensive empirical analyses show the properties of the estimators for different sample sizes
and portfolio types for two asset pricing models.

Keywords: portfolio efficiency; conditional information; efficiency tests; GEL; GMM

JEL Classification: C12; C13; C58; G11; G12

1. Introduction

The efficiency of financial allocations plays a key role in empirical asset pricing frame-
works, with theoretical and practical importance in financial markets. A fundamental
point is to verify empirically if the allocations are efficient, conditional on the full set of
available information. Approaches to constructing efficiency tests under the conditional
point of view have been quickly developing, with the work of Ferson and Siegel [1] being a
fundamental reference. The use of conditional information in efficiency tests has several
advantages in relation to traditional tests. The first advantage is the incorporation of addi-
tional information in the definition of the tests. This allows us to verify if the allocation
was efficient based on the whole set of information available and not only the information
contained in the returns and a limited set of factors. This structure allows us to verify
the impact of dynamic nonlinear strategies on the efficiency of the portfolio, which is not
possible in the tests based on fixed-weight combinations of the tested asset returns, as
discussed in Ferson and Siegel [1].

Although this conditional structure of efficiency tests has several advantages in com-
parison to traditional tests, it introduces some additional complications in terms of statistical
inference. The incorporation of conditional information is accomplished through the use
of an additional set of instruments in the estimation and testing procedures. We need
estimators that allow for the incorporation of this additional information in the parametric
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structure of the model, which in fact corresponds to the use of additional moment condi-
tions. Thus, we are restricted to moment estimators with the possibility of overidentification,
that is, a number of moment conditions greater than the number of fixed parameters of the
model. The natural candidate for this problem is the GMM estimator [2], which appears as
a generalization of the method of moments method for the case of overidentification. As
the GMM estimators do not impose any restrictions on the data distribution, only being
based on assumptions about the moments, this method is widely used in finance. In this
article, we discuss the use of generalized empirical likelihood estimators [3], which can be
seen as a generalization of the GMM estimators, where we use a non-parametric estimate
of the likelihood function as a weighting function for the construction of the expected value
of the moment conditions.

Cochrane [4] even says that the GMM structure fits naturally for the stochastic discount
factor formulation of asset pricing theories due to the easiness of the use of sample moments
in place of population moments. However, the performance of these estimators and
derived tests can be negatively affected under the conditions in which the conditional tests
are performed.

The first difficulty is the use of a large number of instruments related to the incorpo-
ration of conditional information in the efficiency tests. An important result is that in the
instrumental variables of the estimations by the two-stage and iterated GMM estimators,
there is a statistical bias term that is proportional to the number of moment conditions, as
shown in Newey and Smith [3]. Thus, efficiency tests based on conditional information
using GMM estimators are subjected to a bias component, which grows with the number of
moment conditions (conditional information) incorporated into the tests. Hence, the great
advantage of conditional tests, which is the incorporation of information, is affected by the
presence of this component of bias, damaging the statistical properties of these tests.

Financial data in particular stock returns are subject to several problems, such as the
presence of conditional heteroscedasticity, non-Gaussian/asymmetric distributions, and
even measurement error problems due to the impact of transaction costs and the trading
structure itself, which is known as market microstructure noise. GMM estimators are
partially adapted to these problems since, due to their semi-parametric nature, they do
not need to assume a known parametric distribution, and the possibility of using robust
estimators for the presence of serial correlation and heteroscedasticity in the estimation
of weighting matrices makes this method less sensitive to serial dependency problems in
the first two conditional moments. However, GMM estimators can be suboptimal in the
presence of data contaminations such as outliers and heavy tails. The use of higher-order
moment conditions makes these estimators sensitive to these effects (e.g., [5]), and thus
these estimators are not robust to these problems.

This study analyzes the use of generalized empirical likelihood (GEL) estimators, pro-
posed by Qin and Lawless [6], to circumvent the deficiencies existing in the use of the usual
estimators in testing portfolio efficiency in the presence of conditional information. This
class of estimators has some special characteristics that confer better statistical properties,
such as robustness to outliers and heavy-tail distributions, and better finite sample proper-
ties compared to the usual methods based on least squares and the generalized method
of moments. In generalized empirical likelihood and related methods, the bias does not
increase as the number of moment conditions grows (e.g., [7]), which happens with the use
of conditional information. Another important feature is that some estimation methods
in the GEL family of estimators have better properties in terms of robustness to contami-
nations such as outliers, heavy tails, and other forms of incorrect specification (e.g., [5]).
Generalized empirical likelihood estimators are related to information and entropy-based
estimation methods, as discussed by Judge and Mittelhammer [8], and share some of the
good properties of these estimators (see [5,8] for a detailed discussion on the relationship
between GEL and other classes of estimators).

Our work contributes to the portfolio efficiency testing literature by proposing an
econometric structure suitable for the special features introduced by the use of conditional
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information in the model. This inference method is not subject to the finite sample bias prob-
lem generated by the use of additional moment conditions, and by using a non-parametric
estimator for the likelihood function, it is more robust to problems with the incorrect speci-
fication of the process distribution and is efficient in the class of semiparametric models (in
the sense of Bickel et al. [9]). These theoretical characteristics suggest that this method is an
interesting alternative to the traditional GMM method used in the construction of efficiency
tests with conditional information incorporated in the form of moment conditions.

This issue is quite relevant in practical applications in terms of portfolio management
since for fund managers, it is essential to verify that asset allocations are efficiently ex-
ploiting all the information available in the market, which in the context of conditional
information, is made possible by the addition of moments conditional on the realization
of other variables relevant to financial management, such as Treasury-bill and corporate
bond yields, inflation, and growth rates in industrial production. In this way, our work
contributes by analyzing the applied performance of the GEL estimator in the construction
of conditional efficiency tests.

We study the robustness of the tests with the use of GMM and GEL estimators in
a finite sample context. With Monte Carlo experiments, we assess the effects that data
contaminations, such as outliers and the presence of heavy tails in the innovation structure,
can have on the results of efficiency tests. In general, we see that GEL has better performance
when heavy tails are present, whereas regarding the presence of outliers, both the GMM
and GEL can have better robustness depending on the data-generating process (DGP)
we use.

We show that under the null hypothesis, tests using either GEL or GMM estimators
have a tendency to over-reject the hypothesis of efficiency in finite samples. We also
evaluate how efficiency tests based on GEL and GMM estimations can lead to different
decisions using real datasets. The results indicate that, in general, efficiency tests using
GEL generate lower estimates compared to tests using the standard approach based on
GMM. Moreover, for the case that most resembles the features of a finite sample size
used in finance, we see that the results of the efficiency tests are conflicting among the
GEL and GMM methodologies. All these results indicate that efficiency tests based on
estimators from the GEL class perform differently compared to those of GMM, especially
under small samples.

Table 1 presents an overview of recent studies grouped into broad topics on how
empirical likelihood and other proposed related methods have been employed in the
financial economics literature. Empirical likelihood methods have been incorporated into
this field over time, and a few papers explored this family of estimators focusing on this
audience [10,11]. This family of estimators was employed in applications in specific contexts
in asset pricing, such as for valuing risk and option pricing [12–16], and specifically in
portfolio theory [17–19]. On the other hand, to address some of the issues present in the
standard methods of estimation in the portfolio theory literature, Bayesian approaches
were also introduced [20,21]. Alternatively, other studies focused on the statistical tests
used in portfolio theory [22–26].

The structure of this paper is as follows. The next section introduces the methodology,
presenting the asset pricing theory and the econometric models for portfolio efficiency
tests for the GMM and GEL estimation methods, with an emphasis on the latter. Section 3
provides an overview of the data used. Section 4 provides the simulation experiments to
evaluate the robustness of the tests under both methods of estimation. Section 5 presents
the empirical results. Finally, Section 6 concludes the paper.
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Table 1. Synoptic Table.

Method Motivation Findings/Contribution

Topic: Overview of EL for Economics and Finance Audience

Parente and Smith [10] EL Overindentification models in economics and the re-
strictive statistical properties of GMM

Reviewed the statistical aspects of models de-
fined by moment condition restrictions, em-
phasizing the contributions of the GEL class
of estimators

Taniguchi et al. [11] EL EL flexibility and robustness against distributional as-
sumptions for financial data

Applied EL to several financial problems to
illustrate its flexibility

Topic: General EL Applications in Finance

Glasserman et al. [12] EL To capture skewness and other features present in ex-
treme outcomes

Developed a method for selecting and analyz-
ing stress scenarios for financial risk assess-
ment

Yan and Zhang [13] (Adjusted) EL EL robustness to distributional assumptions for the data
or the estimation of the variance

Estimated confidence region for value-at-risk
(VaR) and expected shortfall (ES)

Zhong et al. [14] (Blockwise) EL To circumvent some of the parametric assumptions on
the stochastic process from the Black–Scholes model

Proposed an EL-based option pricing method

Almeida and Garcia [15] EL EL-type estimators’ robustness against distributional
assumptions and whether they possess good statistical
properties

Proposed alternative methods to measure the
degree of the misspecification of asset pricing
models

Camponovo et al. [16] EL To overcome the poor finite sample performance of the
first-order asymptotic approximations

Introduced EL methods for interval estimation
and hypothesis testing on volatility measures
in different high-frequency data environments

Topic: EL Applications in Portfolio Theory

Post and Potì [17] EL +
relative entropy

To account for incomplete information about the prob-
ability distribution due to heterogeneous beliefs, sub-
jective distortion, and/or estimation errors, and avoid
the statistical estimation and numerical inversion of the
error covariance matrix

Formulated a portfolio inefficiency measure
based on the divergence between the given
probabilities and the nearest probabilities

Post et al. [18] EL + stochastic
dominance

To deal with the statistical estimation of the joint return
distribution that affects the optimal weights, and thus
leads to poor performance out of sample

Proposed a two-stage portfolio optimization
method that asymptotically dominates the
benchmark and optimizes the goal function
in probability for a class of weakly dependent
processes

Haley and McGee [19] EL +
Hellinger–Matusita
distance

To deal with investors’ preferences in addition to the
mean and variance as skewness or other higher-order
moments such as kurtosis

Proposed new shortfall-based portfolio selec-
tion rules that are viable alternatives to exist-
ing methods, especially in terms of skewness
preference

Topic: Bayesian Methods in Portfolio Theory and Asset Pricing

Bauder et al. [20] Bayesian statistics Bayesian framework allows for the incorporation of
subjective beliefs on the outcome of a future event

Estimated from a Bayesian perspective the de-
termining parameters of the efficient frontier

Bauder et al. [21] Bayesian statistics To deal with parameter uncertainty in the mean-
variance portfolio analysis, especially in relation to the
extreme weights often seen in the sample efficient port-
folio

Proposed a solution to the investors’ optimiza-
tion problem by employing the posterior pre-
dictive distribution, which takes parameter
uncertainty into account before the optimal
portfolio choice problem is solved

Topic: Statistical Tests in Portfolio Theory and Asset Pricing

Kao et al. [22] Bayesian statistics To overcome the issues associated with sampling er-
rors associated with the ex-post Sharpe ratio of the test
portfolio

Developed a Bayesian test of a test portfolio
mean-variance efficiency

Kresta and Wang [23] Std.
Statistical Test

To address the data-snooping bias and evaluate the
out-of-sample overperformance of different models of
portfolio selection

Proposed an approach to verify the efficiency
of the portfolio strategies by generating many
random portfolios

Kopa and Post [24] Std.
Statistical Test

To deal with the limitation of an efficiency test that fo-
cuses exclusively on the efficiency classification and
gives minimal information about directions for im-
provement if the portfolio is classified as inefficient

Developed a linear programming test to ana-
lyze whether a given investment portfolio is
efficient in terms of second-order stochastic
dominance

Linton et al. [25] Std.
Statistical Test

To overcome issues in previous tests related to statistical
power and the ability to detect inefficient portfolios in
small samples, and allow non-i.i.d. observations

Proposed a test for whether a given portfolio
is efficient with respect to the stochastic domi-
nance criterion

Berger [26] EL To circumvent the need for the relationship between
endogenous and instrumental variables to be known

Proposed a test for the parameters of models
defined by conditional moment restrictions
and a model specification test

A survey of the literature on the main applications of empirical likelihood in asset pricing, portfolio efficiency
tests, and the use of conditional information in the financial economics context.
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2. Methodology
2.1. Incorporating Conditional Information

When testing portfolio efficiency with the use of conditional information, one should
seek to maximize the unconditional mean relative to the unconditional variance, where
the portfolio composition strategies are functions of the information matrix. This is the ap-
proach followed by the unconditional mean-variance efficiency with respect to the information.
It is important to compare this framework with conditional efficiency, where the efficiency
of the mean-variance structure is evaluated under conditional means and variances. Note
that under the unconditional mean-variance efficiency with respect to the information, the
conditional information is used in the construction of the portfolio and then the efficiency
is assessed unconditionally.

Start with the fundamental valuation equation,

E[mt+1Rt+1 − 1] = 0 (1)

where mt+1 is the stochastic discount factor (SDF), and Rt+1 is the gross return of an asset
at time t + 1. Assuming that there exists a subset of observable variables Z̃t from a set
Zt of the available information at t, such that Z̃t ⊂ Zt, and multiplying both sides by the
elements of Z̃t, we obtain the managed portfolios approach. If the instrument zt ∈ Z̃t is
added in the pricing equation as a product, this approach is also known as the multiplicative
approach, being the product Rt+1 ⊗ Z̃t denominated scaled returns):

E[mt+1(Rt+1 ⊗ Z̃t)− (1⊗ Z̃t)] = 0 . (2)

Intuitively, as [1] pointed out, Equation (2) asks the SDF to price the dynamic strategy
payoffs on average, which may also be understood in an unconditional form. Notice that
with managed portfolios, it is possible to incorporate conditional information and still work
with unconditional moments. The main advantages of this structure are that (i) there is no
need to explicitly model the conditional distributions and (ii) it avoids the range problem
of the conditional information under assumption. If it was necessary to incorporate condi-
tional information with the use of conditional moments, from (i), it would be necessary to
formulate parametric models taking the risk of incorrectly defining them, whereas from (ii),
it would be necessary to assume that all investors use the same set Z̃t of instruments that is
included in the conditional model, which clearly incorporates a high degree of uncertainty.

The use of the generalized method of moments (GMM) is the predominant approach
for estimating asset pricing models. This happens primarily because with the GMM, there
is no need to impose any distributions regarding the data, requiring only assumptions
about the population moment conditions. In addition, for the multiplicative approach,
its structure entails that the number of instruments must exceed the moment conditions,
justifying the use of the GMM. Notice that in order to make use of the GMM, all variables
that comprise the moment conditions must be jointly stationary and ergodic in addition
to having finite fourth moments. Thus, the sample moments gT of the managed portfolios
approach can be defined as

gT =
1
T

T

∑
t=1

[mt+1(Rt+1 ⊗ Z̃t)− (1⊗ Z̃t)] . (3)

Denoting θ as the vector of the parameters to be estimated, the GMM estimator can be
defined as

θ̂T(Ŵ) ≡ arg min
θ̂

gT(θ̂)
′ŴT gT(θ̂) , (4)

where Ŵ is the conventional positive weighting matrix q× q for q moment conditions from
the GMM estimation.
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Empirical Likelihood Estimation

Smith [27], Owen [28], and Qin and Lawless [6] introduced a family of estimators
known as generalized empirical likelihood (GEL). Similar to the GMM, this class of estimators
can be expressed in the form of moment conditions. According to [5], GEL is a non-
parametric method with the important advantage of optimal asymptotic and finite sample
properties, allowing more powerful tests, more efficient estimation of the density and
distribution functions, and better bootstrap methods.

Even though GEL and GMM estimators have identical asymptotic properties, in finite
samples they exhibit different behaviors. As [3] discussed, a precise examination should
focus on an analysis of the higher-order asymptotic bias expressions. The authors derived
this higher-order asymptotic bias for the i.i.d. case and concluded that GEL estimation is
preferable to the GMM because GEL has one fewer term in its second-order asymptotic
bias expression. Moreover, they also demonstrated a practical implication when there is a
considerable quantity of instruments. Under this situation, it is not recommended to select
many instruments for a GMM estimation to avoid inflating the bias. Anatolyev [7] reached
similar conclusions when comparing the second-order asymptotic bias for GEL and GMM
estimators in time-series models. In summary, compared to the GMM, estimations based
on GEL imply that the bias should not increase as the number of moment conditions grows.

Following [5], consider a system of restrictions on unconditional moments such as

E[g(w, θ0)] = 0 . (5)

where θ ∈ Θ is a k× 1 vector of the true parameters, w is a vector of observables, {wi}n
i=1

is a random sample, and g(w, θ) is a vector q × 1 of the moment conditions. Let p =
(p1, p2, . . . , pn) be a collection of probability weights assigned to each sample observation.
Thus, we have the following empirical likelihood problem:

maxp,θ
1
n ∑n

i=1 log(pi)

subject to ∑n
i=1 pig(wi, θ) = 0

∑n
i=1 pi = 1 .

(6)

Succinctly, we can say that estimations by GEL seek to minimize the distance between the
vector of probabilities p and the empirical density 1/n in Equation (6). From this constraint
maximization, we obtain the saddlepoint problem, which is given by

max
θ∈Θ

min
λ

1
n

n

∑
i=1
−log(1 + λ′g(wi, θ)) . (7)

From the solution of this problem, it is possible to obtain the empirical likelihood
estimator θ̂ (as well as the GEL multipliers λ̂). If the substitution is made in the saddlepoint
problem in Equation (7) by an arbitrary criterion that is subject to certain shape conditions,
one can obtain the GEL estimator. To do so, let ρ(υ) be a strictly concave smooth function,
which satisfies ρ(0) = 0, ∂ρ(0)/∂υ = ∂2ρ(0)/∂υ2 = −1. Thus, the GEL estimator is given
by θ̂ and the GEL multipliers by λ̂, which are the solution of the saddlepoint problem below:

min
θ∈Θ

sup
λ∈Λn

n

∑
i=1

ρ(λ′g(wi, θ)) , (8)

where Λn = {λ : λ′m(wi, θ) ∈ Υ, i = 1, . . . , n} and Υ is some open set containing zero [3].
GEL moment conditions can be modified to incorporate serially correlated data. This

approach is known as smoothed generalized empirical likelihood (SGEL) [27,29–31]. Let {wt}n
t=1
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be a strictly stationary and ergodic time series. The smoothed moment conditions can be
written as

gw
t (θ) =

t−1

∑
j=t−n

ω(j)(g(w, θ0)) , (9)

and the system of weights is given by ∑∞
j=−∞ ω(j) = 1 and ω(j) = 1

b K(j/b), where
K(u) : (−∞, ∞) → R is a symmetric, continuously differentiable kernel function, with
K(0) 6= 0 and

∫
K(u)du = 1, and b is a bandwidth. Replacing the moment g(w, θ0) in the

saddle point problem in (8) with our smoothed moment gw
t (θ) given in Equation (9), we can

obtain the θ̂SGEL estimator.
Each of the estimators that are within the GEL class uses different metrics to measure

the distance. Owen [28] defined empirical likelihood (EL) as ρ(υ) = ln(1− υ). Kitamura and
Stutzer [30] developed the estimator exponential tilting (ET), where ρ(υ) = −exp(υ). Finally,
we have the continuously updated estimator (CUE), where ρ(υ) is a quadratic function. The
CUE was developed by Hansen et al. [32], but it was Newey and Smith [3] who showed
that this estimator can also be classified in the GEL family.

2.2. Tests of Efficiency

Let ft be a vector with dimension K× 1 for the factors that comprise an asset pricing
model and assume that from now on, we are working with excess returns. For a system
with N assets, we have the following statistical structure for these models:

Rt = α + β ft + εt

E[εt] = 0
E[εε′t] = Σ

Cov[ ft, ε′t] = 0 ,

(10)

where Rt , α e εt have N × 1 dimensions, whereas ft has K × 1 dimensions and β is an
N × K matrix. The theoretical framework for these asset pricing models implies that the
vector α = 0. Therefore, the portfolio defined by K factors derived from a linear pricing
model is said to be efficient only when the N estimated intercepts are not jointly statistically
significant. The test of efficiency to assess whether all pricing errors are jointly equal to
zero can be carried out using a Wald test, where the null and alternative hypotheses are
given by

H0 : α = 0
HA : α 6= 0 .

(11)

whereas the test statistic is given by

JWald = α̂′[Cov(α̂)]−1α̂ , (12)

so that under the null hypothesis, JWald must have a distribution of χ2 with N degrees of
freedom. However, one should remember the limitation of the Wald test that underlies the
large sample distribution theory. According to [4], the test remains valid asymptotically
even if the factor is stochastic and the covariance matrix of the disturbances Σ is estimated.
If, on the one hand, there is no need to assume that the errors are normally distributed, on
the other hand, this test ignores the sources of variation in finite samples. From the central
limit theorem, the test is based primarily on the fact that α̂ has a normal distribution.

Gibbons et al. [33] derived the finite sample distribution of the null hypothesis in
which the alphas are jointly equal to zero. In contrast to the JWald test, this test, denoted as
GRS, recognizes sample variations in the estimated covariance matrix of the disturbances
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Σ̂. However, the test requires the errors to be normally distributed, homoskedastic, and
uncorrelated. This test is defined by

JGRS =
T − N − K

N

(
1 + ET( f )′Ω̂−1ET( f )

)−1
α̂′Σ̂−1α̂ , (13)

where ET(·) is the sample mean, and

Ω̂ =
1
T ∑T

t=1[ ft − ET( f )][ ft − ET( f )]′

Σ̂ =
1
T ∑T

t=1 ε̂t ε̂
′
t .

(14)

Therefore, under i.i.d. and normally distributed errors, the statistic test JGRS has
an unconditional distribution as an F with N degrees of freedom in the numerator, and
T− N− K degrees of freedom in the denominator. Note that by assuming εt ∼ N.I.D., one
can show that α̂ has a normal distribution and Σ̂ has a Wishart distribution. Precisely,

α̂ ∼ N
(

α,
1
T

[
1 + ET( f )′Ω̂−1ET( f )

]
Σ

)
TΣ̂ ∼WN(T − 2, Σ) ,

(15)

which, being the Wishart distribution a multivariate χ2, implies that α̂′[Cov(α̂)]−1α̂ should
result in an F distribution.

3. Data

The data employed can be grouped into different instruments, factors, and portfo-
lios. The common maximum time span for all our data is 720 months (60 years) prior to
December 2014. As for the factors, we used a set of five standard instruments commonly
employed in this type of analysis to measure the state of the economy and form our set
of conditional information. One could say that the chosen lagged variables are part of a
somewhat standard set of instruments for this purpose. The first was the lagged value of the
3-month Treasury-bill yield [34]. The second was the spread between corporate bond yields
with different ratings. This spread was derived from the difference between the Moody’s
Baa and Aaa corporate bond yields [1,35]. Another instrument was the spread between
the 10-year and 1-year Treasury-bill yields with constant maturity [1,36]. Following [34],
we included the percentage change in U.S. inflation measured by the Consumer Price Index
(CPI). Lastly, the monthly growth rate of seasonally adjusted industrial production was
also used, measured by the Industrial Production Index [34]. All data were extracted from
the historical time series provided by the Federal Reserve.

Given that we focused on the CAPM and Fama–French three-factor model, we ex-
tracted the factors for both approaches from the Kenneth R. French website (http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html accessed on 11 Novem-
ber 2022). The market portfolio consists of the weighted return of the value of all companies
listed on the NYSE, AMEX, and NASDAQ. More precisely, the market portfolio consists of
the value-weight returns of all CRSP firms incorporated in the US and listed on the NYSE,
AMEX, or NASDAQ that has a CRSP share code of 10 or 11 at the beginning of month t,
good shares and price data at the beginning of t, and good return data for t. The SMB and
HML factors are computed in accordance with [37]. The first factor is the average return of
three smaller portfolios subtracted from the average return of the three largest portfolios,
whereas the second one is the average return of the two portfolios with high book-to-market
subtracted from the average return of the two portfolios with low book-to-market.

Figures 1 and 2, respectively, present the complete historical series of the lagged state
variables and factors used. From the plots of the five instruments, important events in the
60-year range of our data can be easily seen through the peaks and valleys. The oil crisis

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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and the 2008 Great Recession are examples of events that impacted the lagged variables
of the economy. Table 2 shows some descriptive statistics for the instruments and factors
for the 720-month period. The first-order autocorrelation shows that the instruments were
highly persistent, whereas this was not observed for the factors. Note that for most of the
five instruments, the first-order autocorrelation was 97% or higher. The only instrument
that could not be considered persistent was the Industrial Production Index, which had a
first-order autocorrelation of 37%. The three factors had first-order autocorrelations lower
than 20%.
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Figure 1. Historical series of the instruments for 720 months from January-1955 to December-2014.
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We made use of the six portfolios selected with equal weights by size and book-to-
market (6 Portfolios Formed on Size and Book-to-Market (2 × 3)). The six portfolios are con-
structed at the end of each June as the intersections of two portfolios based on market equity
and three portfolios based on the book-equity to market-equity ratio, and include all NYSE,
AMEX, and NASDAQ stocks, with market equity and positive book data regularly reported
by Kenneth R. French (see http://http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/Data_Library/six_portfolios.html for further details—accessed on 11 November
2022). Table 2 also shows the descriptive statistics of the monthly returns of these six
portfolios for the same sample period. The lagged variables were used to compute the
R2 statistic. Note that the mean ranged from 0.5% to 1.2% and the standard deviation
from 4.7% to 7.2%. The table also presents the first-order autocorrelations, which were
generally low and between 12% and 26%, as well as the R2 from the regressions of the five
instruments on the returns. Note that the adjustment coefficient was very low for all six
assets, being of the order of 2%.
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Figure 2. Historical series of the factors for 720 months from January-1955 to December-2014.

http://http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/six_portfolios.html
http://http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/six_portfolios.html
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Table 2. Descriptive statistics of the lagged variables, factors, and the portfolios’ returns for the
720 months (60 years) from January-1955 to December-2014.

Mean Std. Dev. Min Max ρ1 R2

Lagged Variables
3-month Treasury-Bill Yield 0.047 0.030 0.000 0.163 0.99
Industrial Production Growth 0.002 0.009 −0.042 0.062 0.37
Spread Corporate Bonds 0.010 0.004 0.003 0.034 0.97
Spread Treasury Bills 10 year/1 year 0.010 0.011 −0.031 0.034 0.97
U.S. Inflation Consumer Price Index (CPI) 0.003 0.003 −0.018 0.018 0.61

Factors
Market (Mkt) 0.005 0.044 −0.232 0.161 0.08
Small minus Big (SMB) −0.002 0.030 −0.169 0.216 0.06
High minus Low (HML) −0.000 0.027 −0.130 0.135 0.16

Six portfolios based on size and book-to-market (2 × 3)
Small 1 (Low) 0.005 0.072 −0.329 0.434 0.19 0.02
Small 2 0.010 0.056 −0.286 0.316 0.22 0.02
Small 3 (High) 0.012 0.057 −0.273 0.359 0.26 0.02
Big 1 (Low) 0.006 0.053 −0.265 0.205 0.12 0.02
Big 2 0.007 0.047 −0.242 0.218 0.13 0.02
Big 3 (High) 0.009 0.049 −0.209 0.264 0.12 0.02

Descriptive statistics of the 5 lagged variables, the 3 factors from the asset pricing models, and the monthly returns
of the 6 portfolios based on size and book-to-market (2 × 3). The ρ1 column is the first-order autocorrelation. We
also show the adjusted coefficients of determination R2 from the regressions of the monthly portfolios’ returns on
the lagged instruments. The sample period is January 1955 through December 2014 (720 observations).

4. Evaluating Robustness with Monte Carlo Simulations

In order to evaluate robustness, we assessed the statistical properties of the efficiency
test statistics using GMM and GEL estimators in a finite sample context. The main goal
here was to analyze the size of the Wald and GRS tests under different specifications. The
robustness properties were of special interest since contaminations such as heavy tails and
outliers may be present in this type of data. Specifically, we were interested in assessing
their robustness under (i) finite samples; (ii) data contaminations, such as the presence of
outliers and heavy tails in the data; and (iii) increasing numbers of moment conditions.

In our Monte Carlo experiments, we restricted the DGP of the artificial returns to be
efficient. This is achieved by defining our generating process to be a function of a specific
number of factors with no intercepts (i.e., setting α = 0). By defining different processes for
the disturbance term in this DGP, we can generate data with certain features that we are
interested in assessing. We constructed four different scenarios to try to incorporate some
patterns seen in real financial data. Then, we analyzed the robustness of the estimators
through the size properties of the tests presented in the previous section.

To build a dataset of artificial returns, we used the actual returns from the six portfolios
based on size and book-to-market and the factors from the Fama–French three-factor model.
Seeking to analyze the behavior of our estimators in a finite sample context, we set the
sample size to T = 120. We used monthly data spanning the 120 months (10 years) prior to
December, 2014. We worked with managed portfolios to assess the impact of a higher number
of moment conditions during the estimation process. A HAC covariance matrix was used
for the GMM. In order to deal with serially correlated data, we used smoothed moment
conditions for GEL as in Equation (9). We used the set of five instruments from Section 3 to
form our set of conditional information.

For each portfolio, we ran OLS regressions of the excess returns Ri,t on the three fac-
tors from the Fama–French model, yielding three estimated coefficients of the parameters
βi,1, βi,2, βi,3. Using these estimates, we built six artificial series of returns with 120 observa-
tions, each defining a process for the disturbance ε̂Sim*

i,t . In summary, our simulations shared
the following common structure:
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RSim*
i,t = β̂OLS

i,1 Mktt + β̂OLS
i,2 SMBt + β̂OLS

i,3 HMLt + ε̂Sim*
i,t , t = 1, . . . , 120

i = 1, . . . , 6 .
(16)

All four scenarios used this generating process, where only the disturbance term ε̂Sim*
i,t

differentiated them. We carried out 500 artificial returns dataset simulations for each of the
four scenarios. We chose to run 500 simulations due to the computational burden related
to the estimation of the parameters for the efficiency tests since GEL, in particular, has a
high computational cost. Below, we describe the four different scenarios we considered for
defining the different processes for the error term.

Scenario 1—Gaussian Shocks: The first scenario was our baseline. We sought to
assess the efficiency tests for both estimators (GMM and GEL) in the presence of Gaussian
innovations. The generating process for ε̂Sim*

i,t is defined by

ε̂Sim*
i,t = ξ̂Sim1

i,t , t = 1, . . . , 120 ; i = 1, . . . , 6
ξ̂Sim1

i,t ∼ N(0, σ̂2 OLS
i ) .

(17)

Scenario 2—Shocks from a t distribution: In the second scenario, we wanted to eval-
uate the efficiency tests under the presence of heavy tails. As heavy tails are characterized
by more extreme values in the disturbance term, an appropriate way to model them is
by using innovations drawn from a t-Student distribution. We set the parameter of this
distribution to have 4 degrees of freedom in order to have fatter tails. The DGP for ε̂Sim*

i,t is
given by

ε̂Sim*
i,t = ν̂Sim2

i,t , t = 1, . . . , 120 ; i = 1, . . . , 6
ν̂Sim2

i,t ∼ t(4) .
(18)

Scenario 3—Outlier on a fixed date: The third and fourth simulation scenarios sought
to evaluate the Wald and GRS tests when outliers were present in the data. In the third case,
we modeled the generating process to plug a large-magnitude shock on a fixed date in our
sample. Arbitrarily, we chose to add an error in the middle of the sample, i.e., when t = 60.
Following the structure of the previous scenarios, the beta coefficients of each asset in the
portfolio were estimated by OLS, and when t = T/2 = 60, there was a negative shock
of 5 standard deviations randomly drawn from a normal distribution, with the variance
calculated using the original data. In this case, ε̂Sim*

i,t is defined as

ε̂Sim*
i,t = 1t=T/2(κ̂

Sim3
i,t ), t = 1, . . . , 120 ; i = 1, . . . , 6

1t=T/2(κ
Sim3
i,t ) =

{
−κ̂Sim3

i,t , if t = T/2
0 , if t 6= T/2

κ̂Sim3
i,t ∼ N(0, 5σ̂2 OLS

i ) .

(19)

Scenario 4—Outlier with 5% probability: The fourth scenario took another approach
to simulating outliers. We used a probability process of extreme events, arbitrarily assuming
that the probability of an outlier occurring in each period was 5%. In case of success, we
added an outlier with 5 standard deviations randomly drawn from a normal distribution,
with the variance estimated from the original data. In this case, the DGP of ε̂Sim*

i,t is given by

ε̂Sim*
i,t = ξ̂Sim4

i,t − 1p̂i,t<0.05(κ̂
Sim4
i,t ), t = 1, . . . , 120 ; i = 1, . . . , 6

1p̂i,t<0.05(κ
Sim4
i,t ) =

{
κ̂Sim4

i,t , if p̂Sim4
i,t < 0.05

0 , if p̂Sim4
i,t ≥ 0.05

p̂Sim4
i,t ∼ unif(0, 1)

ξ̂Sim4
i,t ∼ N(0, σ̂2 OLS

i )

κ̂Sim4
i,t ∼ N(0, 5σ̂2 OLS

i ) .

(20)



Entropy 2022, 24, 1705 13 of 30

5. Results
5.1. Sampling Distributions of the Test Statistics

To analyze the results of the Monte Carlo experiments, we used the graphical method
proposed by Davidson and MacKinnon [38]. First, we assessed the p-value plot that reports
the empirical distribution function (F̂(xi)) of the p-values from the Wald and GRS tests
against xi for any point xi in the (0, 1) interval. The empirical distribution function in this
case is given by

F̂(xi) ≡ 1
N ∑N

j=1 1pj≤xi

1pj≤xi =

{
1 , if p∗j ≤ xi

0 , if p∗j > xi ,

where p∗j is the p-value of the J tests, i.e., either pWald
j or pGRS

j . If the distributions of the
tests JWald and JGRS used to calculate the p-values p∗j are correct, then each p∗j must be

distributed uniformly (0, 1). This implies that the F̂(xi) chart against xi should be as close as
possible to a 45° line. Hence, with a p-value plot, it is possible to quickly evaluate statistical
tests that systematically over-reject, under-reject, or reject about the right proportion of
the time. Having the actual size in the vertical axis and the nominal size in the horizontal
axis, for a well-behaved test for any nominal size, its p-value plot should always lie close
to the 45° line, as the actual size of the said test should be close enough to its nominal
size, with the chance of observing a small deviation equally likely (thus, close to a uniform
distribution). This feature is what makes it very easy to distinguish between tests that work
well and tests that work badly. Additionally, as with these plots we are presented with
how a given test performs for all nominal sizes, they are particularly useful for comparing
tests that systematically over- or under-reject, or a combination of both, as one can easily
identify the nominal size ranges in which the deterioration of the test occurs.

For situations where the test statistics being studied behaved close to the expected
behavior, i.e., with graphs being close to the 45-degree line, the authors proposed the p-value
discrepancy plot. This chart plots F̂(xi)− xi against xi. According to the authors, there are
advantages and disadvantages to this representation. Among the advantages of this chart,
it presents more information than the p-value plot when the statistics of the tests are well
behaved. However, this information can be spurious as it is just a result of the randomness
of the experiments conducted. Furthermore, there is no natural scale for the vertical axis,
which could cause some difficulties in interpretation. For the p-value discrepancy plot, if the
distribution is correct, then each p∗j must be distributed uniformly (0, 1) and the graph of

F̂(xi)− xi against xi should be near the horizontal axis.
The results for the first simulated scenario derived from a Gaussian disturbance are

shown in Figure 3. By analyzing the p-value plot, we can see that GEL provided better
p-values than the GMM for both the Wald and GRS tests under the null hypothesis. We
can see that both GEL and the GMM over-rejected for any nominal sizes. For instance,
taking a 5% nominal size for the Wald test, the GMM showed an actual size (proportion
of rejections under the validity of the null hypothesis) of 40.36%, whereas the size of GEL
was less than half of this (15.8%). For the same 5% nominal size, the GRS test derived for
the finite samples indeed performed better for both the GMM and GEL. However, GEL
still had better performance. Regarding the p-value discrepancy plot, we can observe similar
results. Based on these graphs, it is possible to observe the superiority of GEL compared
to the GMM for estimating the parameters for the JWald and JGRS tests when Gaussian
shocks exist.
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Figure 3. Simulation scenario 1 with Gaussian innovations (ε̂Sim*
i,t = ξ̂Sim1

i,t ) in Wald and GRS tests (model =
Fama–French, N = 6, T = 120, 500 simulations). The left column shows the simulations for the JWald test, whereas
the right column shows the simulations for the JGRS test. The top two graphs are the empirical distribution
function (EDF) of the p-values obtained via the GMM and GEL for both tests. The two graphs in the middle are
the p-value plots, whereas the bottom two are the p-value discrepancy plots. In order to facilitate the visualization, in
the EDF and p-value plot charts, we use dashed lines to represent the 45◦ line. For the p-value discrepancy plots, the
dashed lines represent the x-axes.

The results for the second scenario with shocks from a t distribution are presented in
Figure 4. The structure of the graphs is the same. In this scenario, by adding a shock from a
t distribution, we investigated the tests’ robustness for data with heavy-tail distributions.
Clearly, the tests based on the GMM performed badly in the finite samples for distributions
with long tails. For a 5% nominal size, the Wald test using the GMM had an actual size
of 43.68%, whereas that using GEL was slightly more than half of this (23.2%). For the
GRS test, the performance of both estimators improved. For the same 5% nominal size,
the GMM had an actual size of 36.47 and that of GEL was 17.8. However, although one
can say that the GMM performed poorly in finite samples with heavy tails compared to
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GEL, these results cannot hide the fact that both estimators generally over-rejected under
these circumstances. Even if we consider that GEL performed better, having an actual size
of nearly 5 times the 5% nominal size for the Wald test, and an actual size of more than
3 times the 5% nominal size for the GRS test, we cannot necessarily conclude that their
performance was satisfactory.
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Figure 4. Simulation scenario 2 with shocks from a t distribution (ε̂Sim*
i,t = ν̂Sim2

i,t ) in the Wald and GRS tests (model
= Fama–French, N = 6, T = 120, 500 simulations). The left column shows the simulations for the JWald test, whereas
the right column shows the simulations for the JGRS test. The top two graphs are the EDF of the p-values obtained
via the GMM and GEL for both tests. The two graphs in the middle are the p-value plots, whereas the bottom two
are the p-value discrepancy plots. In order to facilitate the visualization, in the EDF and p-value plot charts, we use
dashed lines to represent the 45◦ line. For the p-value discrepancy plots, the dashed lines represent the x-axes.

Figure 5 shows the results for the third scenario, with great magnitude shocks in the
middle of the sample. The goal was to check robustness in the presence of outliers. Here,
the evidence was similar, indicating that the GMM had worse performance than GEL under
the null hypothesis. Note that both estimators always over-rejected when we added a
random shock with 5 standard deviations in the middle of the sample.
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Figure 5. Simulation scenario 3 with shocks at t=T/2 defined by ε̂Sim*
i,t = 1t=T/2(κ̂

Sim3
i,t ) in the Wald and GRS tests

(model = Fama–French, N = 6, T = 120, 500 simulations). The left column shows the simulations for the JWald test,
whereas the right column shows the simulations for the JGRS test. The top two graphs are the EDF of the p-values
obtained via the GMM and GEL for both tests. The two graphs in the middle are the p-value plots, whereas the
bottom two are the p-value discrepancy plots. In order to facilitate the visualization, in the EDF and p-value plot
charts, we use dashed lines to represent the 45◦ line. For the p-value discrepancy plots, the dashed lines represent
the x-axes.

Finally, in Figure 6, we can see the results for the fourth scenario in which we also
sought to evaluate robustness to outliers. Here, we obtained interesting results that differed
from the earlier ones. The JWald and JGRS tests based on the GMM estimations showed
better results than those based on GEL for any nominal size we choose. However, note that
this superiority was tenuous, being more discernible for nominal values below 10%. Taking
a 5% nominal size, the Wald test with the GMM has an actual size of 90.34%, whereas that
using GEL was 95.6%. For the GRS test, assuming the same 5% nominal size, the size of
the GMM was 86.5% and that of GEL was 93%. By analyzing the p-value discrepancy plots,
we can observe a similar pattern with an important feature; for both tests, both the GMM
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and GEL estimations tended to consistently improve performance after reaching a peak of
discrepancy around a nominal size of 5%.
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Figure 6. Simulation scenario 4 with shocks defined by ε̂Sim*
i,t = ξ̂Sim4

i,t − 1p̂i,t<0.05(κ̂
Sim4
i,t ) in the Wald and GRS tests

(model = Fama–French, N = 6, T = 120, 500 simulations). All three left panels are the simulations for the JWald test,
whereas the three right panels are the simulations for the JGRS test. The two top panels are the EDF graphics of the
p-values obtained via the GMM and GEL for both tests. The two central panels are the p-value plots, whereas the
two bottom panels are the p-value discrepancy plots. In order to facilitate the visualization, in the EDF and p-value
plot charts, dashed lines represent the 45◦ line. For the p-value discrepancy plots, the dashed lines represent the
x-axes.

In summary, by analyzing all the results presented in this section, it is possible to
observe that efficiency tests in finite samples with GEL estimations tend to have better
performance compared to estimations via the GMM. Furthermore, tests using GEL are more
robust to the presence of heavy tails. To assess the robustness for outliers, depending on
the generating process assumed, both the GMM and GEL can be advantageous. However,
these results also demonstrate that whatever estimator and test we evaluate, in general, the
Wald and GRS tests have a tendency to over-reject.
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5.2. Empirical Analysis

Briefly, in this section, we show how efficiency tests based on the GEL and GMM
estimations can lead to different decisions using real datasets. We evaluated both methods
(i) with no conditional information and (ii) when a managed portfolios structure was used.
To do so, the analysis was conducted by comparing the test results for the different sample
sizes, as well as for the two asset pricing models (CAPM and the Fama–French three-factor
model), employing the efficiency tests defined according to Section 2.2. For all portfolios,
testing their efficiency should be seen as testing whether the factors from each of the asset
pricing models explain the portfolios’ average returns. For the CAPM, the interpretation
was made by assessing whether using the individual historical returns with a unique risk
factor (i.e., the Mkt factor) yielded an efficient portfolio (i.e., when the estimated intercepts
are not jointly statistically significant), whereas for the Fama–French three-factor model,
we evaluated whether the three risk factors used in Equation (11) (namely, Mkt, SMB, and
HML) yielded a similar statistical conclusion when jointly evaluating the vector of the
estimated alphas.

Table 3 presents the estimation results of the GMM and GEL when no conditional
information was used in the asset pricing moments for an increasing sequence of months,
starting with the last 60 months and extending the window up to 1020 months. Each
sample begins in January of a given year and ends in December 2014. The table also
presents the estimations of the two asset pricing models of interest for each time interval,
the capital asset pricing model (CAPM) and the Fama–French (FF) three-factor model.
Initially, by examining the test results using either the GMM or GEL, we noticed that for
all periods over 180 months, both the CAPM and Fama–French models showed strong
evidence for rejecting the hypothesis of efficiency for each model. However, for a short T,
we observed strong disagreement between both methodologies, whereas for T = 60 (i.e.,
5 years), we saw no evidence for rejecting the efficiency using either the GMM or GEL for
both models, and in the tests for T = 90, T = 120, and T = 150, the GMM and GEL pointed
in opposite directions.

For 90 months, the GMM rejected efficiency at a 5% significance level for the CAPM
using either the Wald or GRS tests. We did not observe the same results using GEL for the
same sample size. For the Fama–French model, we did not see such a strong disagreement
between them. For 120 months, we saw similar results. With GEL, the p-values for the
Wald and GRS tests were 0.30 and 0.35, respectively, for the CAPM model. With the GMM,
these p-values were much smaller and provided evidence against the null hypothesis that
the alphas were jointly equal to zero at a standard 5% significance level. For the Fama–
French model, the p-values generated by the GMM and GEL were very similar: 0.02 and
0.05 (Wald) and 0.04 and 0.08 (GRS), respectively. For T = 150 months, the same pattern
was repeated. The p-value for the CAPM using GEL of the Wald statistic was 0.29, whereas
the p-value of the F distribution under the assumption of normality given by the GRS test
was 0.33. The GMM provided much smaller p-values, with both tests showing evidence
for rejecting the efficiency hypothesis for a significance level of 5%. For the Fama–French
model, the difference between the p-values using either GEL or the GMM was smaller.
Thus, the divergence between them was more tenuous.

In Table 3, overall, we can see some evidence to endorse the simulation results pre-
sented in Section 4, as the GMM over-rejected the null hypothesis compared to tests
conducted via GEL, especially in a finite sample context.

Table 4 presents the results of the efficiency tests for the multiplicative approach. Here,
we use managed portfolios, where five lagged variables were used as instruments. In the
Appendix A, we extend the analysis to different portfolios with higher numbers of assets
(e.g., N = 25 and N = 49).
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Table 3. Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2 × 3) for
9 selected periods of time.

Months Wald Test GRS Test Wald Test GRS Test

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value

CAPM FF

GMM 60 10.5 0.104 1.5 0.180 9.8 0.132 1.4 0.236
90 14.7 0.022 2.3 0.045 12.4 0.054 1.9 0.098

120 15.0 0.020 2.4 0.035 14.6 0.023 2.3 0.043
150 13.7 0.033 2.2 0.048 17.6 0.007 2.8 0.015
180 20.3 0.002 3.3 0.005 31.2 0.000 4.9 0.000
240 28.4 0.000 4.6 0.000 64.4 0.000 10.3 0.000
360 60.6 0.000 9.9 0.000 137.7 0.000 22.4 0.000
480 73.0 0.000 12.0 0.000 219.3 0.000 35.9 0.000
600 74.2 0.000 12.2 0.000 274.8 0.000 45.1 0.000
720 78.5 0.000 13.0 0.000 285.8 0.000 47.0 0.000
840 81.6 0.000 13.5 0.000 277.6 0.000 45.8 0.000
960 83.2 0.000 13.8 0.000 268.5 0.000 44.3 0.000
1020 70.2 0.000 11.6 0.000 242.7 0.000 40.1 0.000

GEL 60 7.5 0.279 1.1 0.374 8.3 0.218 1.2 0.335
90 8.0 0.239 1.2 0.300 11.6 0.071 1.7 0.122

120 7.2 0.304 1.1 0.351 12.5 0.052 1.9 0.083
150 7.3 0.291 1.2 0.329 17.0 0.009 2.7 0.018
180 17.3 0.008 2.8 0.013 27.1 0.000 4.3 0.000
240 26.0 0.000 4.2 0.000 51.6 0.000 8.3 0.000
360 54.0 0.000 8.8 0.000 109.6 0.000 17.8 0.000
480 61.0 0.000 10.0 0.000 185.6 0.000 30.4 0.000
600 51.5 0.000 8.5 0.000 221.6 0.000 36.4 0.000
720 56.8 0.000 9.4 0.000 236.6 0.000 38.9 0.000
840 56.6 0.000 9.4 0.000 227.4 0.000 37.5 0.000
960 72.7 0.000 12.0 0.000 176.6 0.000 29.2 0.000
1020 47.6 0.000 7.9 0.000 171.9 0.000 28.4 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2 × 3) for 9 selected periods of
time: T = 60 (5 years), T = 90 (7.5 years), T = 120 (10 years), T = 150 (12.5 years), T = 180 (15 years), T = 240
(20 years), T = 360 (30 years), T = 480 (40 years), T = 600 (50 years), T = 720 (60 years), T = 840 (70 years),
T = 960 (80 years), and T = 1020 (85 years). The tests are conducted based on both estimations’ methodologies,
with the GMM results on the top and the GEL results on the bottom. Tests of efficiency under the CAPM are on
the left, whereas tests under the Fama–French three-factor model (represented as “FF”) are on the right. This table
presents the statistics and p-values of the Wald and GRS tests for each case.

A quick inspection of the results of the tests shows us compelling evidence for rejecting
the efficiency for all intervals of 180 months and above for all tests and models based on
estimations from either the GMM or GEL. Although for longer periods the p-values were
virtually zero, for T = 60, T = 120, and T = 150 months, the inference tests using the GMM
and GEL were conflicting. Singularity problems may have occurred during the estimations,
impeding the inversion of the covariance matrix. These cases are shown as “NA”. For
T = 90, we could not perform the tests for both models using the GMM. Even though we
obtained estimates for the CAPM coefficients using the GMM, we were not able to invert
the covariance matrix and perform the tests. For the CAPM, GEL showed no indication
to reject the efficiency (for T = 120 and T = 150), whereas the GMM did (p-values were
practically zero for the Wald and GRS tests). The results are similar to the case in Table 3
where no instruments were used.

With the use of instruments, the tests of efficiency for the Fama–French model did
not necessarily provide different inferences regarding the rejection of the null hypothesis.
However, we still saw that the GMM generated smaller p-values for both tests than GEL.
However, for T = 60, the GMM and GEL strongly disagreed, where the GMM generated
p-values higher than 10% and GEL had p-values practically equal to zero.

In order to connect these results with those from the Monte Carlo experiments per-
formed under the different data contamination scenarios from Section 4, there are some
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particularities to be taken into consideration, as the results shown in Table 4 might be
influenced, unlike those of the controlled Monte Carlo experiments. In fact, there is a
range of complexities to be controlled in order to be able to make a fair comparison. First,
embodied in our empirical results is the fact that the true DGP that generated the real data
used in this analysis is unknown; we just relied on the most common factor specifications
for the pair of models employed. In the case of the incompleteness of the risk factors, this
inherently affects the results of any of the tests as the power and size might be impacted
in distinctive ways, independently of the estimation procedure employed. Similarly, the
correct test specification is fundamental (see [39] for a discussion of an alternative formu-
lation of the GRS test). All of these issues could naturally lead to conclusions in either
direction with regard to the observed rejections, given the true unknown DGP. In light of
these points, the results here for the comparable cases in both analyses in which we used
managed portfolios with a sample size of T = 120 evaluated under the Fama–French model
show only marginal differences (slightly higher GMM p-values than GEL ones). Given this
magnitude of divergence in the p-values, one cannot argue in favor of the validation or not
of the previous results solely based on these cases.

Table 4. Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market for managed
portfolios for selected periods of time.

Months Wald Test GRS Test Wald Test GRS Test

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value

CAPM FF

GMM 60 NA NA NA NA 10.3 0.113 1.5 0.211
90 NA NA NA NA NA NA NA NA

120 128.0 0.000 20.1 0.000 15.7 0.015 2.4 0.031
150 39.3 0.000 6.2 0.000 57.2 0.000 9.0 0.000
180 63.2 0.000 10.1 0.000 45.3 0.000 7.2 0.000
240 32.1 0.000 5.2 0.000 97.5 0.000 15.6 0.000
360 79.0 0.000 12.9 0.000 209.7 0.000 34.1 0.000
480 111.5 0.000 18.3 0.000 310.4 0.000 50.8 0.000
600 111.1 0.000 18.3 0.000 398.1 0.000 65.3 0.000
720 102.4 0.000 16.9 0.000 380.0 0.000 62.5 0.000

GEL 60 45.2 0.000 6.7 0.000 65.6 0.000 9.3 0.000
90 38.4 0.000 5.9 0.000 17.3 0.008 2.6 0.024

120 5.6 0.466 0.9 0.509 16.3 0.012 2.5 0.025
150 7.6 0.271 1.2 0.308 22.8 0.001 3.6 0.003
180 32.2 0.000 5.2 0.000 46.3 0.000 7.3 0.000
240 31.6 0.000 5.1 0.000 82.3 0.000 13.2 0.000
360 63.3 0.000 10.3 0.000 174.9 0.000 28.4 0.000
480 78.9 0.000 13.0 0.000 275.2 0.000 45.0 0.000
600 72.2 0.000 11.9 0.000 241.8 0.000 39.7 0.000
720 76.0 0.000 12.5 0.000 332.5 0.000 54.7 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2 × 3) for 6 selected periods of
time: T = 60 (5 years), T = 90 (7.5 years), T = 120 (10 years), T = 150 (12.5 years), T = 180 (15 years), T = 240
(20 years), T = 360 (30 years), T = 480 (40 years), T = 600 (50 years), and T = 720 (60 years). The tests are
evaluated using conditioning information when instruments are incorporated into the pricing equation. The
lagged variables consisting of the conditioning information are the (i) 3-month Treasury-bill yield, (ii) industrial
production growth, (iii) yield spreads of low-grade over high-grade corporate bonds, (iv) yield spreads of long-
term over short-term Treasury bills (10 year/1 year), and (v) U.S. inflation (CPI). The tests are conducted based on
both estimations’ methodologies, with the GMM results on the top and the GEL results on the bottom. Tests of
efficiency under the CAPM are on the left, whereas tests under the Fama–French three-factor model (represented
as “FF”) are on the right. This table presents the statistics and p-values of the Wald and GRS tests for each case.
“NA” represents situations in which singularity problems occurred, impeding the inversion of the covariance
matrix. For both models, when T = 90, even though we obtained estimates for the coefficients through the GMM,
we were not able to invert the covariance matrix and perform the tests.
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6. Conclusions

We evaluate the behavior of the GMM and GEL estimators in tests of portfolio effi-
ciency. We argue that both estimators have different statistical features, and therefore, tests
of portfolio efficiency based on them may reflect these differences.

First, we assess the robustness of the tests with the use of the GMM and GEL estimators
in a finite sample context. Defining different DGPs to incorporate different specifications,
we perform several Monte Carlo experiments to examine the effects that distortions in
the data can have on tests of efficiency, and consequently, on decisions based on these
results. In general, we see evidence that GEL estimators have better performance when
heavy tails are present. Depending on the characteristics of the DGP chosen, both the GMM
and GEL can have better robustness to outliers. However, under the null hypothesis, for
both estimators, the Wald and GRS tests have a tendency to over-reject the hypothesis of
efficiency in finite samples.

Using returns from real datasets in our analysis, we see that (i) in general, efficiency
tests using GEL generate lower estimates (higher p-values) and (ii) when the sample size
has finite characteristics, with low N and T, we note that the results are conflicting among
the methodologies. These results may be evidence that estimators from the GEL class
perform differently in small samples. In addition, they show that tests based on the GMM
have a tendency to over-reject the null hypothesis of efficiency.

The results obtained in our work indicate some limitations of the use of GEL in the
construction of efficiency tests, especially in empirical applications. Although the use of
this method leads to improvements in properties in finite samples and greater robustness in
relation to the presence of heavy tails, as discussed in Section 5.1, the GEL-based tests still
show the over-rejection tendency that is also present in the tests based on GEL in the GMM.
Another possible limitation is the possibility of local optima in numerical maximization
procedures. As discussed in Anatolyev and Gospodinov [5], a numerical optimization
with respect to the conditional structural parameters in empirical likelihood models can
be hampered by the presence of local minima, possible singularities, and convergence
problems due to the fact that the Hessian is not guaranteed to be positively defined during
a numerical optimization. Although it is possible to use more robust optimization methods
in relation to these problems, especially in empirical analysis, there is a risk of estimating a
local optimum due to the dependence on the choice of initial values.

An interesting generalization of our work is the construction of portfolio efficiency
tests in the presence of conditional information using other estimators related to the
empirical likelihood approach. As discussed in Anatolyev and Gospodinov [5], empirical
likelihood can be viewed as a member of a general family of minimum contrast estimators,
especially the class of power-divergence-based estimators. By placing restrictions and
some modifications on the general Cressie–Read [40] divergence function, it is possible to
obtain the empirical likelihood, exponential tilting, Euclidean likelihood, GMM estimator
with continuous updating, exponentially tilted empirical likelihood, and a version of the
Hellinger distance estimator as particular cases. Although these classes of estimators are
asymptotically equivalent, their properties in finite samples can be different, especially in
relation to robustness to general forms of misspecification. In this aspect, the exponentially
tilted empirical likelihood and Hellinger distance estimator classes have some theoretical
robustness properties, which can be potentially relevant in the analysis of financial data.

Other possibilities for building and evaluating efficient portfolios involve the use of
data envelopment analysis methods [41–43]. A comparison between the DEA methods and
our analysis would require modifying the DEA methods to use conditional information in
the form of moment conditions or instruments, which is not yet fully developed for this
class of applications.

An important limitation of our work is the limited number of factors considered in
our analysis, as we do not consider the impact of possible high dimensionality on the set of
possible risk factors. The recent financial literature has discussed the possibility of a huge
number of possible risk factors in a phenomenon known as the Zoo factor, as discussed,
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for example, by Harvey and Liu [44] and Feng et al. [45]. The high dimensionality in
the number of possible risk factors would affect our analysis in several dimensions. The
inclusion of a greater number of factors in the estimation of portfolio risk premiums would
lead to a large increase in the number of moment conditions, especially in the context of the
incorporation of conditional information, and the use of GEL estimators in this case would
be advantageous in the sense that this method does not present the problem of bias in finite
samples proportional to the number of moment conditions that impairs the performance of
the GMM estimator. Note that our analysis assumes the usual estimation conditions, where
the sample size is greater than the number of parameters of the conditional mean of the
returns, and thus the context of a number of factors greater than the sample size would
require the combination of the GMM and GEL estimators with some form of shrinkage,
which has not yet been developed, to the best of our knowledge. The results of our empirical
analysis also consider that the specification of the risk factors included in the model is
correct, and thus the empirical results, in particular, the observed rejections, may reflect
both the possible inefficiency of the portfolios in relation to the factors included and the
impact on the power and size of the tests in the presence of omitted factors. A relevant
development would be to adapt the portfolio efficiency tests in the presence of conditional
information for the possible omission of factors in line with the methods developed by
Giglio and Xiu [46] for the pricing of assets with omitted factors.
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Appendix A. Results for Different Types and Sizes of Portfolios

As discussed in this paper, here, we used different types and sizes of portfolios to
evaluate how efficiency tests using either GEL or the GMM can lead to different inference
conclusions. Again, we made use of (i) fixed-weight portfolios (no conditional information)
and (ii) managed portfolios under the unconditional mean variance efficiency with respect to the
information approach. We considered the CAPM and the Fama–French three-factor models
and different sample sizes.

Appendix A.1. Data—Portfolios with 25 and 49 Assets

In order to examine the estimators’ behaviors for different types of portfolios and
higher numbers of assets, we selected two other portfolios. To avoid using a single portfolio
composition methodology, the first one was based on size and book-to-market, whereas
the second one was composed of categories derived from industry classifications according
to the business segment. The data for these portfolios were extracted from the Kenneth
R. French website. The chosen portfolios were (i) 25 assets selected with equal weights
by size and book-to-market (25 Portfolios Formed on Size and Book-to-Market (5 × 5)) and
(ii) 49 industry portfolios.

Figure A1 presents the main descriptive statistics of the 25 portfolios based on size
and book-to-market. Figure A2 shows the descriptive statistics of the 49 industry portfolios.
Notice that both the mean and standard deviations are similar to the previous portfolio,
whereas the maximum and minimum returns are magnified. Most of the first-order auto-
correlations are lower than 20% and there is only one asset with a negative value. The R2

maintains low values, with adjusted coefficients of determination no higher than 5%.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure A1. Descriptive statistics of the monthly returns for the portfolio with 25 assets for 720 months (60 years)
from jan-1955 to dec-2014. The top panel shows the sample mean statistics (represented by “X”) and the max
(represented by blue triangles) and the min (represented by upside-down red triangles), and the distance between
the two horizontal lines represents the range of ±σ for the 720-month period. The bottom panel shows the
first-order autocorrelation ρ1 (bar) and R2 (square points), which is the adjusted coefficient of determination as a
percentage of the regression of the returns on the 5 instruments. In both panels, the x-axis represents the 25 assets
and the y-axis is expressed as a percentage.
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Figure A2. Descriptive statistics of the monthly returns for the portfolio with 49 assets for 720 months (60 years)
from jan-1955 to dec-2014. The top panel shows the sample mean statistics (represented by “X”) and the max
(represented by blue triangles) and the min (represented by upside-down red triangles), and the distance between
the two horizontal lines represents the range of ±σ for the 720-month period. The bottom panel shows the
first-order autocorrelation ρ1 (bar) and R2 (square points), which is the adjusted coefficient of determination as a
percentage of the regression of the returns on the 5 instruments. In both panels, the x-axis represents the 49 assets
and the y-axis is expressed as a percentage.
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Appendix A.2. The 25 Portfolios Based on Size and Book-to-Market

Appendix A.2.1. No Conditional Information

Table A1 presents the results of the estimations by the GMM and GEL for the portfolio
with 25 assets for an increasing sequence of months. Comparing the GMM and GEL for
the CAPM, both estimators provide compelling evidence to reject the market portfolio
efficiency hypothesis. The p-values for both approaches are practically zero for every T,
except for 120 months using GEL. If we compare these results with other studies regard-
ing the efficiency of a market index, it can be seen that many of them come to similar
conclusions [1,47]. Even though the portfolios and the exact time intervals used in these
works have a strong resemblance, one should be cautious since they are not exactly the
same. However, notice that GEL consistently generated lower test statistics than the GMM
(Wald and GRS).

For the Fama–French model, the conclusion to reject the null hypothesis did not
change. Here, we had a single case (120 months and GMM) where we were not able to
invert the covariance matrix of the alphas. Again, in general, GEL generated lower statistics
for both tests (except for 240 months and Fama–French model). This difference seemed to
become more relevant as the sample period increased, i.e., we had evidence of an increasing
difference relationship when the sample expanded.

Table A1. Tests of portfolio efficiency using 25 portfolios based on size and book-to-market for
selected periods of time.

Months Wald Test GRS Test Wald Test GRS Test

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value

CAPM FF

GMM 120 98.5 0.000 3.1 0.000 NA NA NA NA
240 93.0 0.000 3.3 0.000 114.9 0.000 4.1 0.000
360 168.7 0.000 6.3 0.000 257.5 0.000 9.5 0.000
480 123.4 0.000 4.7 0.000 335.7 0.000 12.6 0.000
600 133.4 0.000 5.1 0.000 465.2 0.000 17.7 0.000
720 125.5 0.000 4.8 0.000 459.7 0.000 17.7 0.000
840 122.5 0.000 4.8 0.000 413.2 0.000 16.0 0.000
960 131.9 0.000 5.1 0.000 398.2 0.000 15.5 0.000
1020 129.2 0.000 5.0 0.000 403.8 0.000 15.7 0.000

GEL 120 53.6 0.001 1.7 0.039 92.1 0.000 2.8 0.000
240 85.4 0.000 3.0 0.000 138.9 0.000 4.9 0.000
360 135.0 0.000 5.0 0.000 253.8 0.000 9.4 0.000
480 90.6 0.000 3.4 0.000 329.0 0.000 12.4 0.000
600 85.1 0.000 3.3 0.000 362.4 0.000 13.8 0.000
720 83.2 0.000 3.2 0.000 374.1 0.000 14.4 0.000
840 80.6 0.000 3.1 0.000 300.4 0.000 11.6 0.000
960 90.3 0.000 3.5 0.000 300.5 0.000 11.7 0.000
1020 84.1 0.000 3.3 0.000 310.5 0.000 12.1 0.000

Tests of portfolio efficiency using 25 portfolios based on size and book-to-market (5 × 5) for 9 selected periods
of time: T = 120 (10 years), T = 240 (20 years), T = 360 (30 years), T = 480 (40 years), T = 600 (50 years), T = 720
(60 years), T = 840 (70 years), T = 960 (80 years), and T = 1020 (85 years). The tests are conducted based on both
estimations’ methodologies, with the GMM results on the top and the GEL results on the bottom. Tests of efficiency
under the CAPM are on the left, whereas tests under the Fama–French three-factor model (represented as “FF”)
are on the right. This table presents the statistics and p-values of the Wald and GRS tests for each case. “NA”
represents situations in which singularity problems occurred, impeding the inversion of the covariance matrix.
For T = 120 and the Fama–French three-factor model, even though we obtained estimates for the coefficients
using the GMM, we were not able to invert the covariance matrix and perform the tests.

Appendix A.2.2. Managed Portfolios

Table A2 presents the results of the efficiency tests using the multiplicative approach
with five instruments. A quick inspection shows that in many cases, it was not possible
to compute the tests Inverting the covariance matrix can become an impediment to the
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estimation of the tests given the fact that singular matrices can arise. However, there
were cases in which we could not estimate the parameters of the model. This situation
is represented by “NA” in the table. All “NA” occurred due to the impossibility of the
methods to estimate the parameters of the model. Having 25 assets and 5 instruments
can cause the optimal long-run covariance matrix to be singular. Singularity problems
are a common issue, especially for portfolios with high numbers of assets and under the
multiplicative approach with instruments. Ferson and Siegel [1] also had to deal with this
issue (see e.g., [48] for advanced treatment).

Note that only for T = 480, 600, and 720 was it possible to perform the tests using
the GMM. Both tests generated considerably higher estimates (especially Wald) than the
fixed-weight approach, leading to very strong evidence for rejecting the null hypothesis.
Using GEL, we were not able to estimate the coefficients for any T.

Table A2. Tests of portfolio efficiency using 25 portfolios based on size and book-to-market for
managed portfolios for selected periods of time.

Months Wald Test GRS Test Wald Test GRS Test

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value

CAPM FF

GMM 120 NA NA NA NA NA NA NA NA
240 NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA
480 802.7 0.000 30.4 0.000 849.3 0.000 32.0 0.000
600 480.7 0.000 18.4 0.000 967.6 0.000 36.9 0.000
720 320.5 0.000 12.4 0.000 851.1 0.000 32.7 0.000

GEL 120 NA NA NA NA NA NA NA NA
240 NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA
480 NA NA NA NA NA NA NA NA
600 NA NA NA NA NA NA NA NA
720 NA NA NA NA NA NA NA NA

Tests of portfolio efficiency using 25 portfolios based on size and book-to-market (5 × 5) for 6 selected periods of
time: T = 120 (10 years), T = 240 (20 years), T = 360 (30 years), T = 480 (40 years), T = 600 (50 years), and T = 720
(60 years). The tests are evaluated using conditioning information when instruments are incorporated into the
pricing equation. The lagged variables consisting of the conditioning information are the (i) 3-month Treasury-bill
yield, (ii) industrial production growth, (iii) yield spreads of low-grade over high-grade corporate bonds, (iv)
yield spreads of long-term over short-term Treasury bills (10 year/1 year), and (v) U.S. inflation (CPI). The tests
are conducted based on both estimations’ methodologies, with the GMM results on the top and the GEL results on
the bottom. Tests of efficiency under the CAPM are on the left, whereas tests under the Fama–French three-factor
model (represented as “FF”) are on the right. This table presents the statistics and p-values of the Wald and GRS
tests for each case. “NA” denotes not applicable for situations in which singularity problems occurred, impeding
the inversion of the covariance matrix.

Appendix A.3. The 49 Industry Portfolios

No Conditional Information

Table A3 shows the results of the estimations by the GMM and GEL for the portfolio
formed using 49 industrial categories. With this number of assets, singularity issues
are more common. Thus, for many sample sizes, we could not perform the tests. Not
surprisingly, we were not able to perform the tests of efficiency by either estimation method
when using the multiplicative approach (managed portfolios).

Examining the results for the periods in which we obtained results, we can see that
tests using GEL and the GMM generated high p-values (CAPM) and provided no evidence
for rejecting the efficiency hypothesis of the market proxy. Note that for these cases, the
p-values decreased as the sample size increased. For the Fama–French model, although
GEL did not provide any test statistics, the GMM results were similar to the CAPM but
with higher p-values. The p-values of the Wald test were 0.98 and 0.69 for 360 and 480
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months, respectively, whereas the GRS test p-values were 0.99 and 0.84 for the same periods.
On the other hand, for the CAPM, the tests of efficiency using GEL had small p-values for
T = 600, whereas the GMM had singularity issues for the same intervals.

These results show that the Wald test, which is based on a large sample distribution,
tended to reject the null hypothesis more often than tests that relied on finite sample
distributions (such as the GRS). This characteristic is in line with the analysis of the size
and power of the efficiency tests by Campbell et al. [49].

Table A3. Tests of portfolio efficiency using 49 industry portfolios for selected periods of time.

Months Wald Test GRS Test Wald Test GRS Test

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value

CAPM FF

GMM 120 NA NA NA NA NA NA NA NA
240 41.9 0.753 0.7 0.946 NA NA NA NA
360 50.6 0.411 0.9 0.685 31.3 0.977 0.5 0.994
480 60.7 0.123 1.1 0.292 43.7 0.689 0.8 0.838
600 NA NA NA NA NA NA NA NA
720 NA NA NA NA NA NA NA NA
840 NA NA NA NA NA NA NA NA
960 NA NA NA NA NA NA NA NA
1020 NA NA NA NA NA NA NA NA

GEL 120 108.7 0.000 1.3 0.160 NA NA NA NA
240 48.0 0.514 0.8 0.852 NA NA NA NA
360 44.1 0.672 0.8 0.860 NA NA NA NA
480 52.4 0.344 1.0 0.557 NA NA NA NA
600 81.9 0.002 1.5 0.014 NA NA NA NA
720 142.8 0.000 2.7 0.000 NA NA NA NA
840 206.4 0.000 4.0 0.000 NA NA NA NA
960 212.8 0.000 4.1 0.000 NA NA NA NA
1020 231.9 0.000 4.5 0.000 NA NA NA NA

Tests of portfolio efficiency using 49 industry portfolios for 9 selected periods of time: T = 120 (10 years), T = 240
(20 years), T = 360 (30 years), T = 480 (40 years), T = 600 (50 years), T = 720 (60 years), T = 840 (70 years), T = 960
(80 years), and T = 1020 (85 years). The tests are conducted based on both estimations’ methodologies, with the
GMM results on the top and the GEL results on the bottom. Tests of efficiency under the CAPM are on the left,
whereas tests under the Fama–French three-factor model (represented as “FF”) are on the right. This table presents
the statistics and p-values of the Wald and GRS tests for each case. “NA” denotes not applicable for situations in
which singularity problems occurred, impeding the inversion of the covariance matrix.

Appendix A.4. Additional Results—Portfolio with N = 6

The portfolio evaluated in the paper consists of the six portfolios selected with equal
weights by size and book-to-market (6 Portfolios Formed on Size and Book-to-Market (2 × 3)).
Figure A3 summarizes the estimated coefficients of α and βMkt with the use of instruments
for the CAPM and the Fama–French model. As for every T and model there are six esti-
mated alphas and betas (Mkt), we present the estimated coefficients for each methodology
(GMM and GEL) using box plots. Notice that the box plot distributions are not identical.
The GMM and GEL generated different coefficient estimates, not only different covariance
matrices, from these estimates. For the CAPM, which is located in the top two panels, notice
that for shorter periods, differences are evident between both methodologies. Regarding
the α̂, the biggest differences are for T = 90, 120, 240, and 360. For β̂Mkt, this is clear for
sample sizes smaller than 240 months. For the Fama–French model (not shown), differences
between the estimates by the GMM and GEL were more subtle. However, for the α̂ for very
short samples such as 60 months, differences in the estimates were not negligible.

From asset pricing theory, we know that the returns of any asset should be higher if
the asset has higher betas. Figure A4 plots the estimated betas (β̂Mkt) against the sample
means of the monthly excess returns (Ê(Ri)) of each of the six assets for the CAPM . The
model states that the average returns should be proportional to the betas. Each panel shows
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one of the time periods evaluated. The GMM estimates are located on the left, whereas the
GEL estimates are on the right.

The distances between the points and the straight lines represent the pricing errors,
i.e., the estimated alphas. We see a clear difference in the point estimations depending on
whether the GMM or GEL was used, with divergence for a short T being more evident.
Note that in the panels with a T less than 180 months, although the estimates using the
GMM are more dispersed, those with GEL are more grouped and closer with a slope line
equal to Ê(RMkt).
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Figure A3. Box plots for comparison of estimations by the GMM and GEL using 6 portfolios based on size and
book-to-market for managed portfolios for selected periods of time. In all 4 panels, the x-axis represents the time
intervals, starting from 120 months before December 2014 to 720 months (60 years) prior to this date. The y-axis
is the estimated coefficient values by the GMM and GEL. The estimations of the GMM are represented by gray
box plots, whereas the GEL estimations are represented by white box plots. For T = 60 (CAPM) and T = 90
(Fama–French), we were not able to estimate the coefficients using the GMM.
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Figure A4. Comparison of the GMM and GEL estimated betas (CAPM) for managed portfolios against the sample
means of monthly excess returns for the portfolio with 6 assets. In all panels, the estimated betas (β̂Mkt) are in
the x-axis and the sample mean of the monthly excess returns for each of the n = 6 assets in the portfolio are in
the y-axis. Estimations using the GMM are on the left, whereas those using GEL are on the right. Each panel
represents one of the time intervals, starting from 120 months before December 2014 to 720 months (60 years)
prior to this date.
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