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Abstract: In orthogonal time frequency space (OTFS) modulation, information-carrying symbols
reside in the delay-Doppler (DD) domain. By operating in the DD domain, an appealing property
for communication arises: time-frequency (TF) dispersive channels encountered in high-mobility
environments become time-invariant. OTFS outperforms orthogonal frequency division multiplexing
(OFDM) in high-mobility scenarios, making it an ideal waveform candidate for 6G. Generally, OTFS is
considered a pre- and postprocessing step for OFDM. However, the so-called Zak transform provides
the fundamental relation between the DD and time domain. In this work, we propose an OTFS
system based on the discrete Zak transform (DZT). To this end, we discuss the DZT and establish
the input–output relation for time-frequency (TF) dispersive channels solely by the properties of the
DZT. The presented formulation simplifies the derivation and analysis of the input–output relation
of the TF dispersive channel in the DD domain. Based on the presented formulation, we show that
operating in the DD incurs no loss in capacity.

Keywords: orthogonal time frequency space modulation; discrete Zak transform; delay-Doppler
channel; time-frequency dispersive channel; 6G

1. Introduction

Motivated by challenges encountered in wireless communication over time-variant
channels, such as Doppler dispersion or equalization, a new modulation technique termed
orthogonal time frequency space (OTFS) was introduced in [1]. The driving idea behind
OTFS is to utilize the delay-Doppler (DD) domain to represent information-carrying sym-
bols. The interaction of the corresponding OTFS waveform with a time-frequency (TF)
dispersive channel results in a two-dimensional convolution of the symbols in the DD
domain ([2], [Section III-A]). OTFS utilizes the time-invariant channel interaction in the
DD domain and outperforms orthogonal frequency division multiplexing (OFDM) in
high-mobility scenarios, as shown in [1–6], making it an ideal waveform candidate for 6G.

Most of the literature on OTFS considers OTFS as a pre- and postprocessing technique
for OFDM systems, as described in [3,5,7]. However, the continuous Zak transform pro-
vides a more fundamental relationship between the DD and time domain, as pointed out
in [2] and studied in [8]. In principle, OTFS describes a time domain signal by its DD
representations in a similar way to OFDM, which defines a signal in the TF domain. The
difference between the DD and TF domains is that the TF domain allows a continuous-time
signal to be described by a discrete number of coefficients in the TF domain [9]. On the
other hand, the continuous Zak transform maps a continuous-time signal to continuous
values in the Zak domain. In [8], a discretization of the Zak representation was achieved
using time and bandwidth limitations on the signal, represented by a point in the DD
domain. However, depending on the domain of the signal under study, different variants
of the Zak transform exists. The discrete-time version is referred to as the discrete-time
Zak transform (DTZT) and the discrete (and finite) version is the discrete Zak transform
(DZT) [10]. The DTZT is discrete in the delay and continuous in the frequency domain,
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while the DZT is discrete in both the delay and Doppler domains. Thus, an alternative
description of OTFS can be provided by the DZT, as we show in this work.

Another motivation for using the DZT can be found by considering OFDM. The
fundamental concept of OFDM, that is, mapping symbols onto a set of orthogonal signals
in the frequency domain, dates back to 1966 [11]. The success of OFDM is based on
its efficient digital implementation to compute the discrete Fourier transform (DFT) [12].
Equivalently, OTFS can be efficiently implemented using the discrete Zak transform (DZT).
The DZT itself is based on the DFT, which allows for efficient implementation as well.
Implementations of OTFS which resemble the DZT have been studied previously, in [13],
for example. However, the proposed systems is based on OFDM that adds a cyclic prefix
(CP) to every OFDM symbol. The CP adds additional signaling overhead and results in a
different channel interaction in the DD domain.

DZT-based OTFS is closely related to radar processing in a pulse Doppler radar. A
pulse radar transmits a pulse train with uniformly spaced and identical pulses. Target
motion introduces a phase shift for each pulse, which is utilized at the receiver to extract
the velocity information of a radar target. To this end, the sampled signal is arranged in a
two-dimensional grid, and a DFT is applied along the so-called slow time to extract the
velocity information of a target; see ([14], [Chapter 17]) or ([15], [Chapter 3]) for details.
This variant of Doppler processing is equivalent to the DZT. Similarly, the radar transmitter
of such a pulse Doppler radar can be described by the inverse DZT, as demonstrated in [16].
The close connection to radar makes OTFS an ideal waveform for joint communication and
sensing, which has been explored by [6], among others.

A fundamental treatment of OTFS based on the DZT is currently absent from the
literature. The aim of this work is to close this gap in the literature by providing a com-
plete treatment of OTFS based solely on the DZT. Therefore, we discuss the DZT and its
properties, then we derive the input–output relationship for TF dispersive channels in
the DD using the DZT and its properties. Our DZT-based approach provides an intuitive
understanding of OTFS and drastically simplifies its analysis. Based on our analysis, we
further show that the capacity in the DD domain is equivalent to the capacity of the time-
variant channel in the time domain (Parts of this work were presented at the 2022 IEEE
International Conference on Communications Workshops (ICC Workshops) [17]).

The remainder of the paper is organized as follows. In Section 2, we provide an
introduction to the DZT covering all properties needed for OTFS. The signal model based
on the DZT is described in Section 3. Based on the presented signal model, we further
establish the input–output relationship of OTFS based on the DZT in Section 4. In Section 5,
we establish the connection between the DD and the TF domain, which allows the imple-
mentation of OTFS by an OFDM system. In Section 6, we demonstrate that operating in the
DD incurs no loss in capacity. Finally, our conclusions are presented in Section 7.

2. Discrete Zak Transform

The continuous Zak transform is a mapping of a continuous-time signal onto a two-
dimensional function. Implicit usage of the Zak transform can be traced back to Gauss [18];
however, it was Zak who formally introduced the transform in [19], and after whom it
was named. An excellent paper from a signal theoretical point of view was provided by
Janssen [20]. Later on, Bölcskei and Hlawatsch [10] provided an overview of the discrete
versions of the transform, namely, the discrete-time Zak transform and the discrete Zak
transform. This section is devoted to the DZT and its properties, which we use to describe
OTFS and to establish the input–output relation of the TF dispersive channel discussed in
Section 3.

2.1. Definition and Relations

In the following discussion, we treat finite-length sequences of length N as one period
of a periodic sequence with period N, which we express as a product N = KL with K, L ∈ N.
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Following the notation in [10], we use Z(L,K)
x ∈ CZ×Z to denote the DZT of a sequence

x ∈ CZ with a period KL. The DZT of x is defined as follows ([10], Equation (30)):

Z(L,K)
x [n, k] ,

1√
K

K−1

∑
l=0

x[n + lL]︸ ︷︷ ︸
x(n,L) [l]

e−j2π k
K l , n, k ∈ Z. (1)

It follows from (1) that the DZT for a given n is the unitary discrete Fourier transform
(DFT) of a subsampled sequence x(n,L) , {x(n,L)[l] = x[n + lL] : l ∈ Z}. The variable
n determines the starting phase of the downsampled sequence, whereas the variable k
is the discrete frequency of its DFT. Thus, the variables n and k represent the time and
frequency, respectively.

The periodic sequence x can be recovered from its DZT through the following sum relation:

x[n] =
1√
K

K−1

∑
k=0

Z(L,K)
x [n, k], (2)

which follows from the definition of the DZT in (1) and the relation

K−1

∑
k=0

e−j2π l
K k = K

∞

∑
m=−∞

δ[l −mK], (3)

where δ[n] denotes the Kronecker delta. We refer to (2) as the inverse discrete Zak trans-
form (IDZT).

Remark 1. Depending on the period N of the sequence under consideration, different choices of
K and L are possible. We indicate the particular choice of L and K in the superscript of the DZT
notation we use (Z(L,K)

x ). If the choice is not important for the context, we drop the superscript
for brevity of notation (Zx). Furthermore, the DZT is in general a complex-valued function. To
illustrate the DZT, we often write the DZT in polar form, i.e.,

Zx[n, k] = |Zx[n, k]|ejϕx [n,k], (4)

where |Zx[n, k]| and ϕx[n, k] represent the magnitude and the phase of Z(L,K)
x [n, k], respectively.

We restrict the phase to the principal values, i.e., to the interval [−π, π).

Example 1 (DZT). Consider the N-periodic sequence g with elements

g[n] =

{
f [n], 0 ≤ n ≤ L− 1,
0, L ≤ n ≤ KL− 1.

(5)

The sequence is zero, except possibly for the first L samples, where it takes the value of an arbitrary
sequence f . The second condition in (5) implies that only one nonzero addend (for l = 0) exists in
the summation (1). Thus, the elements of Zg for 0 ≤ n ≤ L− 1 and 0 ≤ k ≤ K− 1 are

Zg[n, k] =
1√
K

f [n]. (6)

Example for a sequence f and the corresponding magnitude of the DZT Zg are illustrated in
Figure 1a,b, respectively.



Entropy 2022, 24, 1704 4 of 19

5 10 15 20 25
0

0.5

1

n
f[

n]

(a)

0
10

20
0

10
20

0

1√
30

n
k

|Z
g
[n

,k
]|

(b)

Figure 1. (a) Sequence f [n] = e−
1
2 (

n−L/2
σL/2 )

2

for σ = 1/4, 0 ≤ n ≤ L− 1 and L = 30. The sequence
g has a period KL = 900. (b) Magnitude of the discrete Zak transform (DZT) Zg with parameters
K = 30, L = 30 in (6), for 0 ≤ n ≤ L− 1 and 0 ≤ k ≤ K− 1. The phase ϕg[n, k] (not plotted) is zero
for the presented values of n and k; see (6).

We express the period of the sequence x as a product KL with K, L ∈ N. This factor-
ization ensures that the sequence can be decomposed into L subsampled sequences with
period K. In general, the product KL is not uniquely defined, as different choices of K and
L result in the same product. Independent of the period, two choices are always possible
and provide interesting insights. First, the choice K = 1 in (1) leads to

Z(L,1)
x [n, k] = x[n], (7)

i.e., the elements of DZT for a specific n and any k are the elements of the sequence x.
Second, the case L = 1 results in

Z(1,K)
x [n, k] =

1√
K

K−1

∑
l=0

x[n + l]e−j2π k
K l . (8)

For n = 0, we obtain
Z(1,K)

x [0, k] = X[k] (9)

where X ∈ CZ is the unitary DFT of the sequence x, i.e.,

X[k] ,
1√
K

K−1

∑
l=0

x[l]e−j2π k
K l . (10)

It follows from (8) that Z(1,K)
x [n, k] represents the DFT of the circular shifted sequence

x with shift parameter n. Using the circular shift property of the DFT provided in
([21], Equation (3.168))

x[n− n0]⇔ e−j2π k
K n0 X[k], (11)

we can express (8) equivalently as

Z(1,K)
x [n, k] = ej2π k

K nX[k] = ej2π k
K nZ(1,K)

x [0, k]. (12)
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Following the same approach used to obtain the DFT (9), we can obtain the inverse
DFT (IDFT). Therefore, we consider (2) for the case L = 1, which is

x[n] ,
1√
K

K−1

∑
k=0

X[k]ej2π k
K n, (13)

where (13) is obtained by substituting (12) in (2).
While the DZT Zx of a sequence x can be obtained from a sequence x, it can additionally

be obtained from its DFT X in (9) through

Z(L,K)
x [n, k] =

1√
L

L−1

∑
l=0

X[k + lK]ej2π k+lK
KL n. (14)

Proof. See Appendix A.

Equivalently, using (1), we recognize (14) as

Z(L,K)
x [n, k] = ej2π n

KL kZ(K,L)
X [k,−n], (15)

where Z(K,L)
X is the DZT of the DFT sequence X.

The corresponding inverse relation is

X[k] =
1√
L

L−1

∑
n=0

Z(L,K)
x [n, k]e−2π k

KL n. (16)

Proof. See Appendix B.

Figure 2 summarizes the relations between the sequence x, the DZT Zx, and the DFT
X. Note that the DFT X can be obtained in two ways: either directly via (10) or indirectly
using (1) and (16). The later approach resembles the Cooley–Tukey algorithm, which is a
fast Fourier transform algorithm [10].

x X

Zx

(1)
(2)

(16)
(14)

(13)

(10)

Figure 2. Different signal representations of a sequence x and its corresponding DZT Zx and DFT X
transforms.

2.2. Properties of the DZT

The DFT X of a sequence x with length K is periodic with period K, i.e., X[k] = X[k + mK]
with m ∈ Z; see (10). The DZT possess similar properties, as the DZT is the DFT of the
downsampled sequence x(n,L); see (1). Consequently, the DZT is periodic in the frequency
variable k, i.e.,

Z(L,K)
x [n, k + mK] = Z(L,K)

x [n, k], m ∈ Z. (17)

Using the circular shift property of the DFT in (11), we then have

Z(L,K)
x [n + mL, k] = ej2π k

K mZ(L,K)
x [n, k], m ∈ Z, (18)
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i.e., the DZT is periodic in n with a period L up to a complex factor ej2π(k/K)m. The DZT is
therefore said to be quasi-periodic with quasi-period L. Due to the periodicity properties in
(17) and (18), the DZT is fully determined by the DZT for 0 ≤ n ≤ L− 1 and 0 ≤ k ≤ K− 1,
which is referred to as the fundamental rectangle [10].

The quasi-periodicity in (18) can be utilized to express the IDZT in (2) as follows:

x[n + lL] =
1√
K

K−1

∑
k=0

Z(L,K)
x [n, k]ej2π k

K l . (19)

Here, we express the index of the sequence as sum of the form n + lL with 0 ≤ n ≤ L− 1
and l ∈ Z. Because the fundamental rectangle fully determines the DZT Zx, we restrict
ourselves to this fundamental rectangle when plotting the DZT. In fact, this is what is done
in Figure 1b.

Example 2 (IDZT). Consider the DZT defined by a single nonzero coefficient on the fundamental
rectangle of size 4× 6 and provided by

Z(4,6)
x [n, k] = δ[n]δ[k]. (20)

The fundamental rectangle and the DZT in (20) are illustrated in Figure 3a (left). One period of the
sequence x obtained through (19) is

x[n] =
1√
6

K−1

∑
l=0

δ[n− 6l], (21)

i.e., a train of real Kronecker deltas starting at n = 0 with spacing L = 6, as shown in Figure 3a
(right). Now, consider the DZT

Z(4,6)
y [n, k] = δ[n− 3]δ[k− 5], (22)

which is shown in Figure 3b. One period of the corresponding sequence y is

y[n] =
1√
6

K−1

∑
l=0

δ[n− 3− 6l]ej2π 5
6 l (23)

and is shown in Figure 3b. When compared to x, the sequence y is delayed by three samples and
modulated with a discrete frequency k = 5.

In fact, a single coefficient at Zx[n, k] maps onto a sequence

vn,k[n′] =
1√
K

K−1

∑
l=0

δ[n′ − n + lL]ej2π k
K l . (24)

The set of sequence {vn,k : 0 ≤ n ≤ L − 1, 0 ≤ k ≤ K − 1} forms an orthonormal basis and
Zx[n, k] are the expansion coefficients of a sequence x with respect to this orthonormal basis. We
use this fact in Section 3, where we define a sequence by its corresponding DZT in the same way as
OFDM defines the symbols in the DFT domain.
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n

Re(y[n])
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Figure 3. Two examples of DZTs (left) defined by a single nonzero coefficient on the fundamental
rectangle (indicated by a dot) and the corresponding sequences (right) for (a) the DZT in (20) and (b)
the DZT in (22).

Using the quasi-periodicity, we can further find that the elementwise product of a DZT
Zx with the complex conjugate DZT Z∗y is periodic in n and k. Motivated by this periodicity,
we apply a two-dimensional DFT, which turns out to be [10,22]

L−1

∑
n=0

K−1

∑
k=0

Zx[n, k]Z∗y [n, k]ej2π(m
K k− l

L n) = 〈x, ym,l〉, (25)

where ym,l , y[n−mL]ej2π(l/L)n. Here, 〈·, ·〉 is the inner product, defined as

〈x, y〉 =
N−1

∑
n=0

x[n]y∗[n]. (26)

Note that the Fourier kernel ej2π(m
K k− l

L n) in (25) has opposed signs for the two individual
dimensions. Therefore, the two-dimensional discrete Fourier transform in (25) is usually
referred to as the inverse symplectic finite Fourier transform (ISFFT).

Proof. See Appendix C.

The inverse relation is provided by

Zx[n, k]Z∗y [n, k] =
1

KL

K−1

∑
m=0

L−1

∑
l=0
〈x, ym,l〉e−j2π( k

K m− n
L l), (27)

which follows from applying the corresponding two-dimensional inverse transform on both
sides of (25). The transform of the right-hand side of (27) is referred to as the symplectic
finite Fourier transform (SFFT). The relations (25) and (27) provide a useful tool when
considering the OTFS overlay for OFDM in Section 5.

2.3. Signal Transform Properties

Here, we list three signal transform properties that we use later when studying OTFS.
A comprehensive overview of signal transform properties can be found in ([10], Table VII).
Let x, y, and z be sequences with the same periods and let Zx, Zy, and Zz be their respective
DZTs. Then, the following properties hold:
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1. Shift: Let y be the shifted version of x, i.e., y[n] = x[n−m]; then,

Zy[n, k] = Zx[n−m, k]. (28)

A shift in the sequence causes a shift in the corresponding DZT. The proof follows
from the definition of the DZT (1). For shifts of multiples of L, i.e., m = lL with l ∈ Z,
we further have

Zy[n, k] = e−j2π k
K mZx[n, k], (29)

which follows from the quasi-periodicity of the DZT in (18).
2. Modulation: Let z = x · y be the elementwise product of x and y, i.e., z[n] = x[n]y[n].

Then,

Zz[n, k] =
1√
K

K−1

∑
l=0

Zx[n, l]Zy[n, k− l], (30)

i.e., the DZT of the element-wise multiplication is a scaled convolution with respect to
the variable k.

Proof. See Appendix D.

3. Circular Convolution: Consider z = x~ y, i.e., the circular convolution of x and y. Then,
the DZT Zz is

Zz[n, k] =
√

K
L−1

∑
m=0

Zx[m, k]Zy[n−m, k], (31)

i.e., the DZT of a circular convolution is the scaled convolution with respect to the
variable n up to a constant.

Proof. See Appendix E.

The shift property in (28) together with the quasi-periodicity in (18) has another im-
portant implication. In OTFS, as we show in Section 3, the received signal includes a
superposition of delayed sequences that, in general, are not multiples of L. We discuss this
further in Example 3.

Example 3 (Shifted DZT). Consider a DZT Zh with elements

Zh[n, k] = Zg[n− 10, k], (32)

which is a shifted version of the DZT Zg in Figure 1b of Example 1. To evaluate the DZT Zh
within the fundamental rectangle, we first make the observation that any index n can be expressed
as n = i + mL with m = bn/Lc, where bn/Lc denotes the greatest integer less than or equal
to n/L. In this example, the indices n = 0 to 9 of Zh correspond to the indices n = −10 to −1
of Zg. Expressing the latter indices in terms of i and m, we know m = −1 and i from 20 to 29.
Thus, by the quasi-periodicity property in (18), we have that Zh[n, k] = e−j2πk/KZg[n + 20, k] for
0 ≤ n ≤ 9. On the other hand, the indices of 10 ≤ n ≤ 29 of Zh[n, k] correspond to the indices
0 ≤ n ≤ 19 of Zg[n, k]. Therefore, m = 0 and Zh is the shifted DZT Zg within the fundamental
rectangle. Thus,

Zh[n, k] =

{
e−j2π k

K Zg[n + 20, k], 0 ≤ n ≤ 9,
Zg[n− 10, k], 10 ≤ n ≤ 29,

(33)

or more generally, Zh[n, k] = ej2π(k/K)b(n−10)/LcZg[(n− 10)L, k]. The DZT Zh is depicted in
Figure 4, which illustrates different phase behaviors as well.
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Figure 4. The DZT Zh[n, k] = Zg[n− 10, k] in Example 3, with Zg[n, k] being the DZT of Figure 1. The
shift of the DZT with respect to n causes a circular shift of the magnitude |Zg[n, k]| of the DZT (top).
The phase ϕh[n, k] experiences an additional linear phase for indices smaller than 10 (bottom).

3. System Model

In this section, we use the IDZT/DZT to map the symbols in the DD domain directly
to a time domain sequence and vice versa. We consider a pulse-amplitude modulation
(PAM) system to map the discrete symbols onto continuous pulses, as schematically shown
in Figure 5. This approach allows for the digital implementation of OTFS similar to the
PAM implementation of OFDM presented in ([23] Chapter 6.4.2).

Zx

ID
Z

T
(1

9)

P
/

S

x[N − 1]

x[N −O]

x[1]
x[0]

...

...

...

p(t) h(τ, ν)
s(t)

+

w̃(t)

p∗(−t)
r(t) y(t)

(n + O)T

S/
Py[n]

D
Z

T
(K

,L
)

(1
)

y[N − 1]

...

y[1]y[1]
y[0]

Zy

DD input-output relation (46)

Figure 5. OTFS system model considered in this work. The IDZT maps a sequence consisting of
the symbols defined in the DD domain to a discrete sequence. A CP is added by copying the last
O samples. The resulting sequence x is converted to a serial stream by a parallel-to-serial converter
(P/S) before being mapped onto a pulse p(t) and sent over a noisy TF-dispersive channel h(τ, ν). At
the receiver, a sampled matched filter is applied before the serial stream is converted to a parallel
stream by a serial-to-parallel (S/P) converter. Lastly, the sequence y is mapped to the DD domain
using the DZT. The DD input–output relationship is provided by (46) and Theorem 1.

3.1. Transmitter

Similar to OFDM, which defines symbols in the frequency domain, OTFS defines
K× L symbols on the fundamental rectangle in the Zak domain. The symbols in the Zak
domain are mapped to a sequence in the time domain using the IDZT in (19). Prior to
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modulation, a CP of length O is added by copying the last O samples and inserting them
at the beginning of the sequence (see Figure 5). As we show later, the CP turns the linear
convolution of the channel into a circular convolution, allowing us to use the circular
convolution property (47) of the DZT. The elements of the sequence x are then mapped
onto time-shifted pulses p(t) using PAM. The transmitted signal is provided as follows:

s(t) =
N+O−1

∑
n=0

x[n−O]p(t− nT), (34)

where T is the modulation interval and p(t) is a square-root Nyquist pulse. Note that (34)
is equivalent (up to the CP) to (21) of [8]. However, by considering the DZT and PAM, no
discretization of the continuous Zak transform is required. Moreover, considering the class
of Nyquist pulses in the modulation allows for more freedom in controlling the interference
in the delay domain.

Remark 2. In Section 2.1, we discussed the implications of the choice of the parameters K and L
for the DZT. Similarly, the choice of K and L influences the OTFS system under study. For the case
K = 1, the symbols of Zx are arranged on a line along the delay axis. The IDZT does not alter the
sequence and can be skipped; see (7). Thus, the system is a single carrier system. On the other hand,
for L = 1, the symbols Z(L,K)

x [n, k] are arranged along the Doppler axis. The IDZT is simply the
IDFT (see (13)), and (34) becomes an OFDM signal as in ([23] Chapter 6.4.2).

3.2. Channel Model

We now consider TF dispersive channels and model the received signal as follows ([24]
Chapter 1.3.1):

r(t) =
∫ ∞

−∞

∫ ∞

−∞
h(τ, ν)s(t− τ)ej2πνtdτdν + w̃(t) (35)

where h(τ, ν) is the so-called DD spreading function. The complex noise w̃(t) is assumed to
be white and Gaussian with power spectral density N0. We model the channel by P discrete
scattering objects. Each scattering object is associated with a path delay τp, a Doppler shift
νp, and a complex attenuation factor αp. Thus, the spreading function h(τ, ν) becomes

h(τ, ν) =
P−1

∑
p=0

αpδ(τ − τp)δ(ν− νp). (36)

Substituting (36) in (35) yields

r(t) =
P−1

∑
p=0

αps(t− τp)ej2πνpt + w̃(t), (37)

i.e., the received signal is a superposition of scaled, delayed, and Doppler-shifted replicas
of the transmitted signal. The Doppler shift is provided by νp = vp fc/c, where vp, fc, and c
are the relative velocity of the pth scattering object, the carrier frequency, and the speed
of light, respectively. The length of the CP in (34) is chosen such that OT is larger than or
equal to the maximum delay.

Remark 3. In the channel model in (36), it is assumed that the individual delays are independent
of the absolute time. Strictly speaking, this is not the case, as the movement of a reflector affects the
delay. However, (36) holds as long as the signal length NT is chosen such that the delay does not
change significantly.
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Substituting (34) in (37), the received signal is

r(t) =
P−1

∑
p=0

αp

N+O−1

∑
n=0

x[n−O]p(t− nT − τp)ej2πνpt + w̃(t). (38)

3.3. Receiver

At the receiver, a matched filter with impulse response p∗(−t) is applied. The output
of the matched filter y(t) is

y(t) =
P−1

∑
p=0

αp

N+O−1

∑
n=0

x[n−O]
∫ ∞

−∞
p(τ − nT − τp)ej2πνpτ p∗(τ − t)dτ + w(t), (39)

where w(t) is the filtered noise. Assuming that the pulse bandwidth is much larger than the
maximum Doppler shift, we can approximate the integral in (39) as ej2πνp(nT+τp)h(t− nT − τp),
where h(t) is the corresponding Nyquist pulse. The output of the matched filter is then

y(t) ≈
P−1

∑
p=0

αp

N+O−1

∑
n=0

x[n−O]ej2πνp(nT+τp)h(t− nT − τp) + w(t). (40)

The matched filter output is sampled every T seconds and with an offset of OT to
discard the CP. The sampled signal y[m] = y((m + O)T) is

y[n] =
P−1

∑
p=0

αp

N−1

∑
m=−O

x[m]ej2π
kp
KL mhτp [n−m] + w[n], (41)

where hτp [n] = h(nT − τp) is the sampled Nyquist pulse and w[m] are independent and
identically distributed (i.i.d.) complex zero-mean Gaussian random variables with variance
N0. To shorten the notation, we combine the constant phase terms ej2πνpτp with the channel
gain αp in (41). Furthermore, we express νp as a multiple of the Doppler resolution, which
we define as

∆ν , 1/(KLT), (42)

i.e., νp = ∆νkp.
We can bound the interval for which h(t) is significantly different from zero (for

sufficient large L) to ±LT/2. Thus, we can express hτp [n] as

hτp [n] =

{
h(nT − τp), for− LT

2 ≤ nT − τp < LT
2 ,

0, else.
(43)

The CP allows the linear convolution in (41) to be approximated by a circular convolu-
tion; the sample y[n] is then provided by

y[n] =
P−1

∑
p=0

αpyp[n] + w[n], (44)

where

yp[n] =
KL−1

∑
m=0

x[m]ej2π
kp
N mhτp [n−m]. (45)

Here, hτp is periodicized over a period KL, i.e., hτp [n] = hτp [n + KL]. In a last step, the
receiver computes the DZT of the sequence y[m] before subsequent processing takes place.
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4. Delay Doppler Input–Output Relationship

To express the input–output relationship in the DD domain for the system presented
in Figure 5, we first note that the DZT is a linear transform; as such, we can write the DZT
of (44) as

Zy[n, k] =
P−1

∑
p=0

αpZyp [n, k] + Zw[n, k], (46)

where Zyp is the DZT of sequence yp described in (45) and Zw[n, k] is the DZT of the noise.
The elements of Zw[n, k] are i.i.d. zero-mean Gaussian random variables with variance N0.
This follows from the fact that the DZT is a unitary transform ([10], Section VI).

For the signal model of a single reflector in (45), we provide the following result for the
input–output relationship in the DD domain for the OTFS system described in Section 3.

Theorem 1. Considering the fundamental rectangle Zx ∈ CL×K of complex symbols in the DD
domain, the input–output relation for OTFS transmission over a time-frequency selective channel
for a single reflector is

Zyp [n, k] =
L−1

∑
m=0

(
K−1

∑
l=0

Zx[m, l]Zνp [m, k− l]

)
Zτp [n−m, k], (47)

where Zτp and Zνp are the delay and Doppler spreading functions, respectively. The delay spreading
function Zτp is the DZT of the shifted and sampled impulse hτp [n] in (43), and the Doppler spreading
functions is provided as follows:

Zνp [n, k] =
1√
K

ej2π
kp
KL ne−jπ K−1

K (k−kp)
sin
(
π(k− kp)

)
sin
(

π
K (k− kp)

) . (48)

Proof. See Appendix F.

To illustrate the spreading of a single symbol in the DD domain, we consider the
following example. Let L = K = 30 and

Zx[n, k] =

{
1 for n = k = L/2,
0 else.

(49)

The fundamental rectangle with the only nonzero element is presented in Figure 6a. Further-
more, assume that τ = 0.5T and ν = 0.5∆ν. Note that this example causes the maximum
spread of a single symbol in the DD domain. We can visualize the spreading of the symbol
defined in (49) in two steps. Therefore, we define Zŷ as the DZT resulting from the inner
convolution in (47), presented in Figure 6b, with respect to the Doppler index k. The result-
ing spread of the nonzero symbol is visualized in Figure 6c. Finally, the symbol that has
been spread in the Doppler domain is spread in the delay domain by the delay spreading
function Zτ , which is illustrated in Figure 6d. Note that due to the limited support of hτ

(see (43)), the magnitude of Zτ is independent of the index k. The resulting spread of the
nonzero symbol in the DD domain is shown in Figure 6e.

For the particular case of τp = npT with np = 0, 1, . . . , O− 1 and νp = kp/(KLT) with
kp ∈ Z, Zyp simplifies to

Zyp [n, k] = ej2π
kp
KL (n−np)Zx[n− np, k− kp], (50)

i.e., the received symbols Zyp are in the DD domain displaced symbols Zx.



Entropy 2022, 24, 1704 13 of 19

0
10

20 −10

0
10

0

1
(a)

n
k

|Z
x[

n,
k]
|

0
10

20 −10

0
10

0

√
30

(b)

n
k

|Z
ν
[n

,k
]|

0
10

20 −10

0
10

0

1
(c)

n
k

|Z
ŷ[
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Figure 6. Example of the spread of a symbol (a) in the DD domain due to fractional delay and
Doppler shift. The spread can be first evaluated in the Doppler domain (c) using the Doppler
spreading function in (b). The spread symbol in the Doppler domain is further spread in the delay by
the the delay spread function in (d). The overall spread in the DD domain is shown in (e).

Theorem 1 shows that the channel interaction with the symbols in the DD domain
is time-invariant, neglecting the additional phase terms due to the quasi-periodicity and
modulation. The invariance is helpful in the detection of the symbols. Consider a TDL-C
channel with a delay spread of 300 ns, a carrier frequency of 4 GHz, and a maximum
velocity of 120 kmph. Furthermore, assume an OTFS system with K = 7 and L = 600
and 1/T = 9 MHz. The channel response Zh[n, k] = ∑K−1

l=0 Zνp [n, k− l]Zτp [n, k] in the DD
domain is illustrated in Figure 7a. The magnitude of this channel stays approximately
constant throughout the entire transmission of an OTFS frame. Figure 7b illustrates the
equivalent OFDM channel. The variation of the channel along the subcarrier index k as
well along the time index n can be seen. To keep track of the channel, additional pilots need
to be used, and these cannot be used for communication.

In addition to constant channel interaction, OTFS offers the advantage of a concise and
sparse channel description compared to OFDM. In an OFDM system, the channel coefficient
for each subcarrier must be estimated for subsequent symbol detection. In contrast, for
symbol detection in an OTFS system, knowledge of the interference introduced by each
reflector is sufficient. The sparsity can be seen in Figure 7; the support of |Zh[n, k]| is limited
to a small area, while the channel transfer function changes with each subcarrier and time
index, that is, l and m, respectively.
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Figure 7. Two different representations of the time-variant channel: (a) DD representation and (b) TF
representation. The DD domain representation is only nonzero for a small part of the domain, and
stays constant throughout the transmission. On the other hand, the TF domain representation of the
channel in the TF domain changes with respect to the time, and therefore needs to be tracked.

Remark 4. The discrete two-dimensional convolution in (46) can be equivalently expressed in
the form

y = Hx + w, (51)

where y, x, and w are the vectorized DTZs Zy, Zx, and Zw, respectively. The vectors are all of
length KL. The matrix H ∈ CKL×KL describes the intersymbol interference in the DD domain.
Because Zτp and Zνp have small support in the DD domain, the corresponding matrix H is sparse.
The matrix-vector formulation of the input–output relationship is the basis for many works on
OTFS; for example, see [5,6].

5. OTFS Overlay for OFDM

Currently, orthogonal frequency division multiplexing (OFDM) is the dominant modu-
lation scheme in wireless communication. For example, it is used in 5G and in several 802.11
standards. This section shows that DFT-based ODFM can be used for OTFS modulation
and demodulation. In this context, OTFS is considered a pre- and postprocessing step for
the OFDM system.

To derive the pre- and postprocessing step, we first derive an alternative way to
compute the DZT. For this purpose, we consider (27). If we choose the sequence y such that
its DZT Zy[n, k] = 1, then we can obtain the DZT Zx through the right-hand side of (27).
The N periodic sequence y with DZT Zy[n, k] = 1 is

y[n] =

{√
K, 0 ≤ n ≤ L− 1,

0, elsewhere.
(52)

With this particular choice of y, we recognize the inner product on the right-hand side
of (27) as

〈x, ym,l〉 =
√

K
L−1

∑
n=0

x[n + mL]ej2π l
L n, (53)

which is the scaled L-point DFT of the samples x[n] for mL ≤ n ≤ (m+ 1)L− 1. If we define

am,l , 〈x, ym,l〉, (54)

for 0 ≤ m ≤ K− 1 and 0 ≤ l ≤ L− 1, then the DZT of x is obtained through

Zx[n, k] =
1

KL

K−1

∑
m=0

L−1

∑
l=0

am,le
−j2π( k

K m− n
L l), (55)
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i.e., by the SFFT of the coefficients am,l . Note that the set am,l represents the Gabor expansion
coefficients for the choice of a rectangular analysis window (see [25], Section 4), and thus a
mixed TF representation of the sequence x.

The coefficients am,l , on the other hand, are obtained from Z(L,K)
x [n, k] using (25):

am,l =
L−1

∑
n=0

K−1

∑
k=0

Zx[n, k]ej2π( k
K m− n

L l). (56)

The samples of the sequence x for mL ≤ n ≤ (m + 1)L− 1 are obtained as follows:

x[n + mL] =
1√
KL

L−1

∑
l=0

am,lej2π l
L n, (57)

which is the L-point IDFT of the coefficients am,l for a fixed m. Thus, the DZT (IDZT) can
be implemented by consecutive execution of the DFT (IDFT) and the SFFT (ISFFT).

The above-described two-step approach for the calculation of the DZT and IDZT can be
used to implement OTFS using OFDM hardware, which is typically based on the IDFT/DFT
(see ([26], Section 19.3), ([23], Section 6.4.2), ([27] Section 12.4.3), or ([28], Section 4.6)) by
extending the transmitter and receiver by the ISFFT and SFFT, respectively. The coefficients
am,l then represent the coefficient in the TF domain. The index m refers to the mth OFDM
symbol in the time domain, and l is the corresponding subcarrier index. Note that for the
DZT, the parameter L the grid size in the delay domain. For DFT-SFFT implementation, on
the other hand, L defines DFT size, which defines the number of points in the frequency
domain. Thus, an L× K grid in the DD domain translates to a K× L grid in the TF domain.

Remark 5. In CP-OFDM, a CP is added for each OFDM symbol by copying the last O samples
of an OFDM symbol and inserting them in front of the corresponding OFDM symbol with length
L. This symbol-wise CP is not required in the OFDM implementation of OTFS. Instead, a single
CP is added by copying the last O samples of the entire sequence and inserting them in front of
the sequence.

6. DD Channel Capacity

The input–output relationship in (41) is equivalently expressed as

y[n] = ∑
m∈L

h[n, m]x[n−m] + w[n], (58)

where h[n, m] is the time-variant multi-tap channel response at time instance n and L is the
support of h[n, m] in m. This channel response is deterministic and periodic (considering
kp ∈ Q) with some finite period M, i.e., h[n, m] = h[n + bM, m] for any n ∈ {1, 2, . . . , M}
and b ∈ Z. Upon using the channel N times, the input output relationship can be written
in the following vector form:

YN = HNXN + WN , (59)

where XN is the input block, YN is the corresponding output block, WN is the block of
noise samples (all column vectors), and HN is the channel (convolution) matrix constructed
from the time-varying channel response h[n, m].

The above channel can be shown to be information-stable (see Section 3.9 in [29]); hence,
its capacity is provided by the following multi-letter limiting expression [30]:

C = lim
N→∞

sup
fXN

1
N

I(XN ; YN), (60)
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where fXN is the multi-letter input distribution for block length N. For each block length N,
the corresponding mutual information term in (60) is maximized by a Gaussian input [31];
hence, the capacity is provided by

C = lim
N→∞

max
QN :tr(QN)≤NP

1
N

log det
(

1
σ2 HNQNHH

N + IN

)
. (61)

Let HN = UNΣNVH
N be the SVD of HN . Then, the optimal input covariance matrix is

provided by QN = VNDNVH
N , where DN is a diagonal matrix obtained using water-

filling [31]. The capacity-achieving strategy is characterized by a sequence {QN}N∈N.
In case we do not wish to use the channel response matrix in the construction of input

sequences, we may add the restriction that the multi-letter input distribution must be
isotropic. In this case, we simply have QN = PIN , and the capacity is provided by

Ciso = lim
N→∞

1
N

log det
(

P
σ2 HNHH

N + IN

)
. (62)

It is evident that Ciso is achieved by any input of the form XN = BNSN , where BN is a
set of orthonormal basis (i.e., BH

NBN = BNBH
N = IN) and SN is a vector of zero-mean i.i.d.

Gaussian symbols with covariance E
[
SNSH

N

]
= PIN . As shown in Section 2, the set of

sequence {vn,k : 0 ≤ n ≤ L− 1, 0 ≤ k ≤ K − 1} forms an orthonormal basis. Thus, the
capacity of the DD channel is provided by (62).

7. Conclusions

In this work, we have presented an OTFS based on the discrete Zak transform. The
discrete Zak transform-based description allows for an efficient digital implementation of
OTFS. Furthermore, we derived the input–output relation for the symbols in the delay-
Doppler domain solely based on discrete Zak transform properties, which provides a con-
cise description of OTFS compared to the pre- and postprocessing approaches for OFDM.

Our presented discrete Zak transform approach can be used to study and evaluate
OTFS from a different perspectives, potentially leading to OTFS performance improve-
ments. For example, considering Nyquist pulses p(t) with larger roll-off factors allows the
interference in the delay domain to be controlled. Additionally, applying windows to the
subsampled sequences of the DZT reduces the interference in the Doppler domain.
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Appendix A. Proof of Relation (14)

Substituting x[n] in (1) by (13), we obtain

Z(L,K)
x [n, k] =

1
K
√

L

K−1

∑
l=0

KL−1

∑
k′=0

X[k′]ej2π
(

k′
KL (n+lL)− k

KL l
)

. (A1)

Note that in the derivation of (13), the case for L = 1 was considered; thus, the sequence
x has a period K. Here, on the other hand, we consider the sequence x to be KL-periodic.



Entropy 2022, 24, 1704 17 of 19

Therefore, (13) is adopted accordingly by substituting K by KL. Next, we rearrange terms
and obtain

Z(L,K)
x [n, k] =

1
K
√

L

KL−1

∑
k′=0

X[k′]ej2π k′
KL n

K−1

∑
l=0

e−j2π k′−k
K l , (A2)

where we finally replace the last sum by relation (3) which, due to the sifting property of
the Kronecker delta, leads to

Z(L,K)
x [n, k] =

1√
L

L−1

∑
l=0

X[k + lK]ej2π k+lK
KL n. (A3)

Appendix B. Proof of Relation (16)

In a first step, we rewrite the summation in (10) as a double summation, i.e.,

X[k] =
1√
KL

K−1

∑
l=0

L−1

∑
n=0

x[n + lL]e−j k
KL (n+lL). (A4)

Next, we use relation (19) to express x[n + lL] through its IDZT, which leads to

X[k] =
1

K
√

L

K−1

∑
l=0

L−1

∑
n=0

K−1

∑
k′=0

Z[n, k′]e−j k−k′
K le−j k

KL n, (A5)

and in a final step we use relation (3) with respect to the summation over l, which results in

X[k] =
1√
L

L−1

∑
n=0

Zx[n, k]e−j2π k
KL n. (A6)

Appendix C. Proof of Relation (25)

To prove the relation (25), we substitute the DZT Zx and Z∗y by their definition in (1).
After rearranging terms, we obtain

1
K

L−1

∑
n=0

L−1

∑
l′=0

L−1

∑
l′′=0

x[n + l′L]y∗[n + l′′L]e−j2π l
L n

K−1

∑
k=0

e−j2π k
K (l′−l′′−m). (A7)

We can us relation (3) to substitute the last summation. From the sifting property of the
Kronecker delta (3), we have

L−1

∑
n=0

L−1

∑
l′=0

x[n + l′L]y∗[n + (l′ −m)L]e−j2π l
L n. (A8)

Because the complex exponential sequence is periodic, with a period L, we can rewrite the
double summation as a single summation, providing us with

KL−1

∑
n=0

x[n]y∗[n−mL]e−j2π l
L n (A9)

which can be recognized as the inner product between x and ym,l .

Appendix D. Proof of the Modulation Property

To prove the modulation property, we can use the definition of the sequence z = x · y
and the definition of the DZT in (1), which is

Zz[n, k] =
1√
K

K−1

∑
l=0

x[n + lL]y[n + lL]e−j2π k
K l . (A10)



Entropy 2022, 24, 1704 18 of 19

Now, expressing x[n + lL] using (19), we have

Zz[n, k] =
1
K

K−1

∑
m=0

Zx[n, m]
K−1

∑
l=0

y[n + lL]e−j2π
(k−m)

K l . (A11)

Finally, using the DZT definition (1), we obtain

Zz[n, k] =
1√
K

K−1

∑
m=0

Zx[n, m]Zy[n, k−m]. (A12)

Appendix E. Proof of the Convolution Property

To prove relation (31), we first express the circular convolution as a multiplication in
the DFT domain, i.e.,

Z[k] =
√

KLX[k]Y[k], (A13)

where the factor
√

KL is due to the unitary definition of the DFT. Using (14), we have

Zz[n, k] =
√

K
L−1

∑
l=0

X[k + lK]Y[k + lK]ej2π k+lK
KL n. (A14)

Now, using (16) to express the elements of the DFT through their DZT, we obtain

Zz[n, k] =
√

K
L

L−1

∑
n′=0

L−1

∑
n′′=0

Zx[n′, k]Zy[n′′, k]
L−1

∑
l=0

e−j2π k+lK
KL (n′+n′′−n). (A15)

Substituting the last sum by (3) and applying the sifting property of the Kronecker delta,
we finally have

Zz[n, k] =
√

K
L−1

∑
n′=0

Zx[n′, k]Zy[n− n′, k]. (A16)

Appendix F. Proof of Theorem 1

To prove Theorem 1, we start by expressing the sequence y in (45) as

y =
(

x · uνp

)
~ hτp , (A17)

where uνp [n] = ej2π(kp/N)n. Using the modulation property (30) and the convolution
property (31), we can express the DZT of y as

Zy[n, k] =
L−1

∑
m=0

(
K−1

∑
l=0

Zx[m, l]Zν[m, k− l]

)
Zτ [n−m, k]. (A18)

Here, Zν is the DZT of sequence uν, which is

Zν[n, k] =
1√
K

K−1

∑
l=0

ej2π
kp
KL (n+lL)e−j2π k

K l

=
1√
K

ej2π
kp
KL n

K−1

∑
l=0

e−j2π
k−kp

K l

=
1√
K

ej2π
kp
KL n 1− e−j2π(k−kp)

1− e−j2π
k−kp

K

=
1√
K

ej2π
kp
KL ne−jπ K−1

K (k−kp)
sin
(
2π(k− kp)

)
sin
(

2π
k−kp

K

) . (A19)
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21. Vetterli, M.; Kovačević, J.; Goyal, V.K. Foundations of Signal Processing, 1st ed.; Cambridge University Press: Cambridge, UK, 2014.
22. An, M.; Brodzik, A.; Gertner, I.; Tolimieri, R. Weyl-Heisenberg Systems and the Finite Zak Transform. In Signal and Image

Representation in Combined Spaces; Coifman, Y.Z.R., Ed.; Wavelet Analysis and Its Applications; Academic Press: San Diego, CA,
USA, 1998; Volume 7, pp. 3–21.

23. Barry, J.; Lee, E.; Messerschmitt, D. Digital Communication, 3rd ed.; Springer Science+Business Media: New York, NY, USA, 2004.
24. Hlawatsch, F.; Matz, G. (Eds.) Wireless Communications Over Rapidly Time-Varying Channels, 1st ed.; Academic Press: Oxford,

UK, 2011.
25. Wexler, J.; Raz, S. Discrete Gabor expansions. Signal Process. 1990, 21, 207–220. [CrossRef]
26. Molisch, A. Wireless Communications, 2nd ed.; Wiley: Chichester, UK, 2011.
27. Goldsmith, A. Wireless Communications, 1st ed.; Cambridge University Press: New York, NY, USA, 2005.
28. Stüber, G.L. Principles of Mobile Communications, 4th ed.; Springer: Cham, Switzerland, 2017.
29. Han, T.S. Information-Spectrum Methods in Information Theory, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003.
30. Dobrushin, R. General formulation of Shannon’s main theorem in information theory. Am. Math. Sot. Trans. 1963, 33, 323–438.
31. Telatar, E. Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecomm. 1999, 10, 585–595. [CrossRef]

http://doi.org/10.1109/TWC.2018.2860011
http://dx.doi.org/10.1109/TWC.2020.2998583
http://dx.doi.org/10.1109/TVT.2021.3069913
http://dx.doi.org/10.1109/MSP.2013.2269702
http://dx.doi.org/10.1109/78.564174
http://dx.doi.org/10.1002/j.1538-7305.1966.tb02435.x
http://dx.doi.org/10.1109/TCOM.1971.1090705
http://dx.doi.org/10.1109/LWC.2017.2776942
http://dx.doi.org/10.1090/S0002-9939-1984-0749901-6
http://dx.doi.org/10.1103/PhysRevLett.19.1385
http://dx.doi.org/10.1016/0165-1684(90)90087-F
http://dx.doi.org/10.1002/ett.4460100604

	Introduction
	Discrete Zak Transform
	Definition and Relations
	Properties of the DZT
	Signal Transform Properties

	System Model
	Transmitter
	Channel Model
	Receiver

	Delay Doppler Input–Output Relationship
	OTFS Overlay for OFDM
	DD Channel Capacity
	Conclusions
	Appendix A. Proof of Relation (14)
	Appendix B. Proof of Relation (16)
	Appendix C. Proof of Relation (25)
	Appendix D. Proof of the Modulation Property
	Appendix E. Proof of the Convolution Property
	Appendix F. Proof of Theorem 1
	References

