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Abstract: An uncertainty relation for the Rényi entropies of conjugate quantum observables is used
to obtain a strong Heisenberg limit of the form RMSE ≥ f (α)/(〈N〉+ 1

2 ), bounding the root mean
square error of any estimate of a random optical phase shift in terms of average photon number, where
f (α) is maximised for non-Shannon entropies. Related simple yet strong uncertainty relations linking
phase uncertainty to the photon number distribution, such as ∆Φ ≥ maxn pn, are also obtained. These
results are significantly strengthened via upper and lower bounds on the Rényi mutual information
of quantum communication channels, related to asymmetry and convolution, and applied to the
estimation (with prior information) of unitary shift parameters such as rotation angle and time, and
to obtain strong bounds on measures of coherence. Sharper Rényi entropic uncertainty relations are
also obtained, including time-energy uncertainty relations for Hamiltonians with discrete spectra. In
the latter case almost-periodic Rényi entropies are introduced for nonperiodic systems.

Keywords: uncertainty relations; Rényi entropy; Heisenberg limit; quantum metrology; asymmetry;
coherence; time observables

1. Introduction

Quantum mechanics places fundamental limits on the information which can be
gained in various contexts, ranging from the accuracy to which the phase shift of an optical
probe state can be estimated to the secure key rate that can be obtained from a cryptographic
protocol. Such limits are often formulated via uncertainty relations that restrict, for example,
the degree to which values of two observables can be jointly specified, or the degree to
which both an intended party and an eavesdropper can access quantum information [1].

Entropic uncertainty relations place particularly strong restrictions, and underlie
the main themes of this paper. One has, for example, the number-phase uncertainty
relation [2,3]

H(N|ρ) + H(Φ|ρ) ≥ log 2π + H(ρ), (1)

for the number and canonical phase observables of an optical mode, N and Φ. Here
H(A|ρ) = −∑a p(a|ρ) log p(a|ρ) is the Shannon entropy of an observable A with probabil-
ity distribution p(a|ρ), for a state described by density operator ρ, and H(ρ) = −tr[ρ log ρ]
denotes the von Neumann entropy of the state. The choice of logarithm base is left open
throughout, corresponding to a choice of units, e.g., to bits for base 2 and nats for base e. It
follows that the number and phase uncertainties of any quantum state, as quantified by
their Shannon entropies, cannot both be arbitrarily small.

Entropic uncertainty relations have useful counterparts in quantum metrology. For
example, if a random phase shift Θ of an optical probe state ρ is estimated via some
measurement Θest, then it follows from uncertainty relation (1) that the error in the estimate,
Θest −Θ, is strongly constrained by the tradeoff relation [4]

H(N|ρ) + H(Θest −Θ|ρ) ≥ log 2π + H(ρ). (2)
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This relation applies to arbitrary estimates, rather than to a particular phase observable Φ,
and further implies that the root-mean-square error (RMSE) of the estimate is bounded
by [4–6]

RMSE := 〈(Θest −Θ)2〉1/2 ≥
√

2π/e3

〈N〉+ 1
, (3)

where 〈N〉 = tr[ρN] denotes the average photon number of the probe state. This is a strong
form of the well-known Heisenberg limit in quantum metrology, which states that the
phase error can asymptotically scale no better than 〈N〉−1, where such limits cannot be
obtained via quantum Fisher information methods without additional assumptions [7] (see
also Section 3.1). The above bounds are valid for both linear and nonlinear phase shifts, can
be further strengthened to take into account any prior information about the phase shift Θ,
and in many cases far outperform bounds based on quantum Fisher information [4] (see
also Section 2).

While the above results arise via properties of standard Shannon and von Neumann
entropies, it is known that various elements of quantum information theory can be gener-
alised to the family of Rényi entropies, Hα(A|ρ) and Hα(ρ), and associated Rényi relative
entropies Dα(ρ‖σ) [1]. These quantities are labelled by a real index, α ≥ 0, and reduce to
the standard entropies and relative entropy for α = 1. One has, for example, the Rényi
uncertainty relation [8,9]

Hα(N|ρ) + Hβ(Φ|ρ) ≥ log 2π,
1
α
+

1
β
= 2, (4)

analogous to Equation (1). Several questions then immediately arise. Are such generalisa-
tions to Rényi entropies advantageous? Why are the uncertainties of N and Φ characterised
by two different Rényi entropies, Hα and Hβ, in Equation (4)? Furthermore, why is there
no term depending on the degree of purity of the state, analogous to H(ρ) in Equation (1)?

Several positive answers to the first question above are known, in contexts such as
mutually unbiased bases [8], quantum cryptography [10], and quantum steering [11]. An
aim of this paper is to demonstrate further unambiguous advantages of Rényi entropic
uncertainty relation (4), in the context of quantum metrology. For example, it will be shown
in Section 2 to lead to a generalised Heisenberg limit of the form

RMSE ≥ f (α)
〈N〉+ 1

2
(5)

for random phase shifts, where the function f (α) is maximised for the choice α ≈ 0.7471.
This choice not only improves on the denominator in Equation (3) (corresponding to α = 1),
but also improves on the numerator, by around 4%, with the result being independent of
Rényi entropies and any interpretation thereof. Further entropic bounds on the RMSE are
obtained in Section 2, as well as related simple yet strong uncertainty relations for number
and canonical phase observables, such as

∆Φ ≥ max
n

p(n|ρ). (6)

A second aim of the paper is to further strengthen uncertainty relations and metrology
bounds such as Equations (2)–(6), achieved in Section 3 via finding upper and lower bounds
for the classical Rényi mutual information of quantum communication channels [12–15],
which also shed light on the second and third questions above. The upper bounds are
based on the notion of Rényi asymmetry [16], recently applied to energy-time uncertainty
relations for conditional Rényi entropies by Coles et al. [17]. The lower bounds relate
to the convolution of the prior and error distributions. For example, the number-phase
uncertainty relation

AN
α (ρ) + Hα(Φ|ρ) ≥ log 2π, α ≥ 1

2 , (7)
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is obtained in Section 3, which generalises Equation (1) for Shannon entropies, and strength-
ens Equation (4) for Renyi entropies to take the degree of purity of the state into account.
Here AN

α (ρ) denotes the associated Rényi asymmetry, which may be interpreted as quanti-
fying the intrinsically ‘quantum’ uncertainty of N, and satisfies a duality property for pure
states that underpins the relationship between the indexes α and β in Equation (4).

The results in Section 3 hold for the general case of unitary displacements generated
by an operator with a discrete spectrum (such as N). Applications to strong upper and
lower bounds for several measures of coherence [18,19], the estimation of rotation angles,
and energy-time metrology and uncertainty relations, are briefly discussed in Section 4. In
the latter case, almost-periodic Rényi entropies are introduced for the time uncertainties of
non-periodic systems, analogously to the case of standard entropies [20]. Conclusions are
given in Section 5, and proof technicalities are largely deferred to appendices.

2. Metrology Bounds, Heisenberg Limit and Uncertainty Relations via Rényi Entropies

In this section, an analogue of metrology relation (2) is derived for Rényi entropies,
via uncertainty relation (4). The improved Heisenberg limit (5) follows as a consequence, as
well as several simple uncertainty relations for number and phase, including Equation (6).
Stronger versions of these results will be obtained in Section 3.

2.1. Definition of Rényi Entropies and Rényi Lengths

To proceed, several definitions are necessary. First, the photon number of an optical
mode is described by a Hermitian operator N having eigenstates {|n〉}, n = 0, 1, 2, . . . ,
with associated probability distribution p(n|ρ) = 〈n|ρ|n〉 for a state described by density
operator ρ. A phase shift θ of the field is correspondingly described by ρθ = e−iNθρeiNθ .

Second, the canonically conjugate phase observable Φ is described by the positive-
operator-valued measure (POVM) {|φ〉〈φ|}, with φ ranging over the unit circle and

|φ〉 :=
1√
2π

∞

∑
n=0

e−inφ|n〉, (8)

and associated canonical phase probability density p(φ|ρ) = 〈φ|ρ|φ〉 [21,22]. It is straight-
forward to check that this density is translated under phase shifts, i.e., p(φ|ρθ) = p(φ− θ|ρ).

Third, the classical Rényi entropies of N and Φ are defined by [1]

Hα(N|ρ) :=
1

1− α
log

∞

∑
n=0

p(n|ρ)α, Hα(Φ|ρ) :=
1

1− α
log

∮
dφ p(φ|ρ)α, (9)

for α ∈ [0, ∞). These reduce to the standard Shannon entropies in the limit α → 1
(using, e.g., limα→1[g(α)− g(1)]/[α− 1] = g′(1) for g(α) = log ∑n p(n|ρ)α). They provide
measures of uncertainty that are small for highly peaked distributions and large for spread-
out distributions. In particular, Hα(N) = 0 and Hα(Φ|ρ) = log 2π for any number state
ρ = |n〉〈n|. Direct measures of uncertainty are given by the associated Rényi lengths

Lα(N|ρ) :=

[
∞

∑
n=0

p(n|ρ)α

] 1
1−α

, Lα(Φ|ρ) :=
[∮

dφ p(φ|ρ)α

] 1
1−α

, (10)

which quantify the effective spreads of N and Φ over the nonnegative integers and the unit
circle, respectively, [23]. Note that uncertainty relation (4) can be rewritten in the form

Lα(N|ρ)Lβ(Φ|ρ) ≥ 2π,
1
α
+

1
β
= 2 (11)

for these spreads, akin to the usual Heisenberg uncertainty relation.
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2.2. Entropic Tradeoff Relation for Phase Estimation

If some estimate θest is made of a phase shift θ applied to a probe state, then the
estimation error, θerr = θest − θ, will have a highly-peaked probability density for a good
estimate, and a spread-out probability density for a poor estimate. Hence, the quality of the
estimate can be quantified in terms of the Rényi entropy of p(θerr). The following theorem
imposes a tradeoff between the quality of any estimate of a completely unknown phase
shift and the number entropy of the probe state.

Theorem 1. For any estimate Θest of a uniformly random phase shift Θ applied to a probe state ρ,
the estimation error Θest −Θ satisfies the tradeoff relation

Hα(Θest −Θ|ρ) + Hβ(N|ρ) ≥ log 2π,
1
α
+

1
β
= 2. (12)

Note that the condition on α and β implies α, β ≥ 1
2 . For the case of Shannon en-

tropies, i.e., α = β = 1, this result has been previously obtained via entropic uncertainty
relation (1) [5]. A similar method is used in Appendix A to prove the general result of
the theorem via entropic uncertainty relation (4). It is worth emphasising that, unlike
uncertainty relation (4), Theorem 1 applies to any estimate of the random phase shift,
including the canonical phase measurement Φ as a special case (for this case Equation (4)
is recovered).

Theorem 1 implies that no phase-shift information can be gained via a probe state
|n〉〈n|, as expected since number eigenstates are insensitive to phase shifts. In particular, the
number entropy Hβ(N|ρ) vanishes for any index β and so the error entropy in Equation (12)
must reach its maximum value of log 2π, which is only possible if the error has a uniform
probability density, i.e., p(θerr) = 1/(2π).

Conversely, Theorem 1 connects informative estimates with probe states that have a
high number entropy. For example, if a canonical phase measurement is used to estimate a
random phase shift of the pure probe state |ψ〉 = (nmax + 1)−1/2(|0〉+ |1〉+ . . . |nmax〉), the
error distribution may be calculated, using Equation (A2) of Appendix A for Θest ≡ Φ, as

p(θerr) = 〈θerr|ρ|θerr〉 = |〈θerr|ψ〉|2 =
1

2π(nmax + 1)

∣∣∣∣∣nmax

∑
n=0

einθerr

∣∣∣∣∣
2

, (13)

and the Shannon entropy of the error then follows via Equation (69) of Reference [24] as

H(Θest −Θ|ρ) = log 2π + log(nmax + 1) + 2[1− 1−1 − 2−1 − · · · − (nmax + 1)−1] log e

≤ log 2π − log(nmax + 1) + 2(1− γ) log e, (14)

where γ ≈ 0.5772 is Euler’s constant. Hence such a probe state leads to an arbitrarily low
uncertainty for the error as nmax increases. Moreover, Theorem 1 implies that this estimate
is near-optimal, under the constraint of at most nmax photons, in the sense that the error
entropy is within 2(1− γ) log e ≈ 1.2 bits of the minimum possible, log 2π− log(nmax + 1),
allowed by Equation (12) under this constraint.

This last result strongly contrasts with Fisher information methods, which suggest that
the best possible single-mode probe state, under the constraint of at most nmax photons, is
the simple superposition state 2−1/2(|0〉+ |nmax〉) [25]. However, it follows from Theorem 1
that this probe state cannot be optimal for the estimation of a random phase shift. In
particular, noting that Hβ(N|ρ) = log 2 for this case, Equations (10) and (12) give

log Lα(Θest −Θ|ρ) = Hα(Θest −Θ|ρ) ≥ log π (15)
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for any value of nmax, in stark contrast to Equation (14). Indeed, choosing α = 2 gives

∮
dθerr

[
p(θerr)−

1
2π

]2
= L2(Θest −Θ|ρ)−1 − 1

π
+

1
4π2 ≤

1
4π2 , (16)

implying that p(θerr) cannot be too different from a uniform distribution. Hence the
simple superposition state has a poor performance in comparison to the probe state in
Equation (14), for the case of uniformly random estimates. A more direct comparison
with Fisher information bounds is made in in the following subsection, and the difference
explained in Section 3.1.

2.3. Lower Bounds for RMSE, a Strong Heisenberg Limit, and Number-Phase
Uncertainty Relations

Equation (10) and Theorem 1 imply that the Rényi length of the error for any estimate
of a random phase shift has the lower bound Lα(Θest −Θ|ρ) ≥ 2π/Lβ(N|ρ). However, a
more familiar length measure for characterising the performance of an estimation scheme
is the root-mean-square error (RMSE) of the estimate, given by RMSE = 〈(Θest −Θ)2〉1/2.
Note that, in contrast to the case of entropies and Rényi lengths, a well-known ambiguity
arises: θ2

err = (θest − θ)2 is not a periodic function, and hence evaluation of the RMSE
depends on the choice of a phase reference interval for the error θerr. Fortunately this is
easily resolved: a perfect estimate corresponds to a zero error, and hence the reference
interval centred on zero, i.e., θerr ∈ [−π, π), will be used.

The following theorem gives three strong lower bounds for the RMSE, where the third
has the form of a generalised Heisenberg limit as discussed in Section 1. A corollary to this
theorem, further below, gives corresponding preparation uncertainty relations for number
and phase.

Theorem 2. For any estimate Θest of a uniformly random phase shift Θ applied to a probe state ρ,
the root-mean-square error RMSE=〈(Θest −Θ)2〉1/2 has the lower bounds

RMSE ≥ π√
3 L1/2(N|ρ)

, RMSE ≥ max
n

p(n|ρ), RMSE ≥ fmax

〈N〉+ 1
2

, (17)

where L1/2(N|ρ) =
[

∑n
√

p(n|ρ)
]2 is a Rényi length as defined in Equation (10), and

fmax ≈ 0.5823 denotes the maximum value of the function

f (α) :=


2α−1( π

3α−1
) 1

2
(

3α−1
2

) 1
1−α (1−α)

1
2 Γ( 1

1−α )

Γ( 1
1−α−

1
2 )

, 1
2 ≤ α ≤ 1,

2α−1( π
3α−1

) 1
2
(

3α−1
2

) 1
1−α (α−1)

1
2 Γ( α

α−1+
1
2 )

Γ( α
α−1 )

, α ≥ 1,
(18)

which is achieved for the choice α ≈ 0.7471.

In Equation (18), Γ(x) denotes the Gamma function and the value of f (1) is defined
by taking the limit α → 1 in either expression and using limx→0(1− 3x/2)1/x = e−3/2

and limx→∞ x1/2Γ(x)/Γ(x + 1
2 ) = 1, to obtain f (1) =

√
2π/e3 ≈ 0.5593. The scaling

function f (α) is plotted in Figure 1. The proof of the theorem relies on Theorem 1 and
upper bounds on Rényi entropies under various constraints, and is given in Appendix B.
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Figure 1. The scaling function f (α) for the Heisenberg limit in Theorem 2. Particular values of interest
are f (1/2) = 1/2, f (1) =

√
2π/e3 ≈ 0.5593, and the maximum value fmax ≈ f (0.7471) ≈ 0.5823.

The lower bounds in Theorem 2 are relatively strong, and indeed the first inequal-
ity in Equation (17) is tight, being saturated for number states. In particular, the er-
ror distribution is always uniform for this case, as noted below Theorem 1, yielding
RMSE = 1

2π

∫ π
−π dφerr (φerr)2 = π/

√
3, as per the first lower bound.

Moreover, the third bound in Equation (17) of Theorem 2 is stronger than the Heisen-
berg limit in Equation (3), both in the numerator and the denominator. In particular, the
scaling factor f (1) ≈ 0.5593 in Equation (3) is outperformed by ≈4% when compared to
fmax ≈ 0.5823 in Equation (17). Note that while the derivation of this bound relies on
properties of Rényi entropies (see Appendix B), no Rényi entropies appear in the bound
itself. The bound thus demonstrates an unambiguous advantage of using Rényi entropies
in quantum metrology that is completely independent of their interpretation.

Theorem 2 can also be directly compared to the Fisher information bound

RMSEθ := 〈(Θest − θ)2〉1/2
ρθ

=

[∫ ∞

−∞
dθest (θest − θ)2 p(θest|ρθ)

]1/2
≥ 1

2∆N
, (19)

for the root mean square error of any locally unbiased estimate Θest of a given phase-shift
θ of probe state ρ [25]. Here phase shifts are ‘unwrapped’ from the unit circle to the real
line, ∆N is the root mean square deviation of the number operator for the probe state,
and local unbiasedness is the requirement that 〈Θest〉ρχ =

∫ ∞
−∞ dθest θest p(θest|ρχ) = χ

for all phase shifts χ in some neighbourhood of θ. Note the bound implies that RMSEθ

becomes infinite for number states. Under the constraint of a maximum photon number
nmax, the probe state minimising the Fisher bound is the simple superposition 2−1/2(|0〉+
|nmax〉), considered in Section 2, yielding RMSEθ ≥ 1/nmax, which approaches zero as
nmax increases [25]. In contrast, for any estimate of a uniformly random phase shift, the
first two bounds in Equation (17) of Theorem 2 give the much stronger lower bounds
RMSE > π/(2

√
3) ≈ 0.9069 and RMSE ≥ 1

2 for this probe state, irrespective of the value
of nmax. Thus, the optimal single-mode probe state for the Fisher information bound is
not optimal for estimating uniformly random phase shifts. The underlying reason for this
difference is related to the degree of prior information available about the phase shift [4,26],
as discussed further in Section 3.1.

Finally, it is of interest to note that each of the bounds in Theorem 2 can be used to
obtain a corresponding preparation uncertainty relation for the canonical phase and photon
number observables. In particular, defining the standard deviation ∆χΦ of the canonical
phase observable Φ with respect to reference angle χ via [24]
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(∆χΦ)2 :=
∫ χ+π

χ−π
dφ (φ− χ)2 p(φ|ρ), (20)

one has the following corollary of Theorem 2, also proved in Appendix B.

Corollary 1. The canonical phase and photon number of an optical mode satisfy the family of
uncertainty relations

Lβ(N|ρ)∆χΦ ≥ α
α

α−1 f (α),
1
α
+

1
β
= 2, (21)

for Rényi length and standard deviation. In particular, the choices α→ ∞, α = 0.5, and the value
of α maximising fα yield the corresponding mumber-phase uncertainty relations

L1/2(N|ρ)∆χΦ ≥ π√
3

, ∆χΦ ≥ max
n

p(n|ρ), (〈N〉+ 1
2 )∆χΦ ≥ fmax ≈ 0.5823. (22)

The above uncertainty relations are easy to evaluate for many states, and are relatively
strong. In particular, the first inequality in Equation (22) is saturated for number states,
and hence has the best possible lower bound. Further, the lower bound fmax in the third
inequality is near-optimal, as it cannot be improved to more than π/(2

√
3), corresponding

to the value of the left hand side for the number state |0〉. This suggests the conjecture

(〈N〉+ 1
2 )∆χΦ ≥ π

2
√

3
≈ 0.9069. (23)

Note this conjecture is consistent with the fact that the right hand side can be no larger
than 2(−zA/3)3/2 ≈ 1.3761 in the asymptotic limit 〈N〉 → ∞, where zA denotes the first
(negative) zero of the Airy function [27]. Evidence for a related conjecture, (〈N〉+ 1)∆χΦ ≥
2(−zA/3)3/2, is given in References [5,28].

3. Stronger Metrology Bounds and Uncertainty Relations via Sandwiched Rényi
Relative Entropies and Asymmetry

The results of the previous section relied on the known uncertainty relation (4) for
Renyi entropies. To obtain stronger results which can, for example, take prior information
and nonpurity into account, two approaches are possible. The first is to follow essentially
the same strategy as in Section 2, but starting with stronger uncertainty relations, similar to
the approach in Reference [29] for standard entropies. The second approach, followed in
this paper, is more fundamental, being based on information properties of quantum com-
munication channels that not only yield stronger metrology tradeoff relations, but also lead
to stronger uncertainty relations for Rényi entropies than Equation (4). Further, the results
are applicable not only to number and phase but to all unitary displacements generated by
discrete-valued operators, including rotations generated by angular momentum and time
evolution generated by a Hamiltonian with a discrete specturm.

3.1. Setting the Scene: The Case of Standard Entropies

It is helpful to first briefly review how uncertainty relations and metrology bounds
for standard Shannon and von Neumann entropies, such as Equations (1)–(3), follow from
upper and lower bounds for quantum information [4,6]. This both motivates and provides
a base of comparison for the general case.

For a quantum communication channel in which signal state ρx is transmitted with
prior probability density p(x), corresponding to the ensemble E ≡ {ρx; p(x)}, the informa-
tion that can be gained per signal via measurements of observable A at the receiver is given
by the Shannon mutual information

I(A : X) = H(A)− H(A|X) = H(A|ρE )−
∫

dx p(x)H(A|ρx), ρE =
∫

dx p(x)ρx, (24)
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where H(A|X) is the conditional entropy H(AX)− H(X), and integration is replaced here
and below by summation for discrete signal ensembles [30]. A useful upper bound for this
information gain is the Holevo quantity χ(E), with [30,31]

I(A : X) ≤ χ(E) := H(ρE )−
∫

dx p(x)H(ρx). (25)

Consider now the case of signal states generated by a group of unitary transformations
Ux = e−ixG, for some Hermitian generator G with a discrete spectral decomposition
G = ∑k gkPk, where Pk is the projector onto the eigenspace of eigenvalue gk, so that
ρx = UxρU†

x for some ‘probe’ state ρ. The Holevo quantity then has the upper bound [4,6]

χ(E) = H(ρE )− H(ρ) ≤ AG(ρ) := H(ρG)− H(ρ), ρG := ∑
n

PkρPk = ∑
k

PkρEPk, (26)

where the inequality follows because the decoherence map ρ → ρG is unital and hence
entropy-increasing. The upper bound, AG(ρ), is called the asymmetry of ρ with respect to
G [32], and more generally extends to a resource measure for groups of unitary displace-
ments of a given state [32–34]. Note that inequality (26) unifies and generalises energy-time
uncertainty relations (8), (12) and (E11) of Reference [17], which correspond to discrete
prior distributions and uniform continuous prior distributions (see also Section 5).

For any estimate A = Xest of the shift parameter X, one also has a simple lower bound
for the Shannon mutual information from rate-distortion theory [4,6]:

I(Xest : X) = H(X)− H(X|Xest) = H(X)− H(X− Xest|Xest) ≥ H(X)− H(X− Xest). (27)

Combining this with the Holevo bound (25) and the asymmetry bound (26), and noting
that H(Z) = H(−Z) in general, then gives the strong metrological tradeoff relation [4]

H(Xest − X|ρ) + H(ρG) ≥ H(X) + H(ρ). (28)

This will be generalised to Renyi entropies further below.
For example, if ρ is the state of an optical mode then phase shifts are generated by

G = N, which is nondegenerate. Hence H(ρN) = H(N|ρ), and the above relation becomes

H(Θest −Θ|ρ) + H(N|ρ) ≥ H(Θ) + H(ρ). (29)

Note that this implies and hence is stronger than both Equation (2) and Theorem 1 (for
α = β = 1), which correspond to the special case of a uniformly random phase shift, with
p(θ) = 1

2π and H(Θ) = log 2π. Further, entropic number-phase uncertainty relation (1) is
recovered by choosing Θest = Φ and p(θ) = 1

2π in Equation (29), and hence may be viewed
as a consequence of the Holevo bound for quantum communication channels [35].

Equation (29) also strengthens the Heisenberg limit in Equation (3) to take into account
the degree of purity of the probe state and any prior information about the phase shift, via

RMSE ≥ (2πe)−1/2 eH(ρ)−H(N|ρ)eH(Θ) ≥ (2πe3)−1/2 eH(ρ)eH(Θ)

〈N〉+ 1
2

(30)

(using units of nats for the entropies). The first lower bound follows via the well-known
bound H ≤ log RMSE + 1

2 log 2πe for Shannon entropy, and the second from inequal-
ity (A17) in Appendix B (for α = β = 1). In particular, the lower bounds increase for
less pure probe states (via increasing H(ρ)), and decrease for more prior information (via
decreasing H(Θ)).

Finally, note that it is the latter property that underlies the different scaling behaviour
of the Fisher bound (15), discussed in Section 2. In particular, the first inequality in
Equation (30) implies that the only way to obtain a scaling of RMSE ∼ 1/nmax, for the
probe state 2−1/2(|0〉+ |nmax〉), is if the entropy of the prior probability density p(θ) scales
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as H(Θ) ∼ − log nmax, i.e., if the phase shift is already known to within an accuracy of
L(Θ) ∼ 1/nmax before any estimate is made. This is consistent with the Fisher bound, since
the latter only applies to the error of an (unbiased) estimate of a known phase shift θ. If the
phase shift is not known, then RMSEθ must be generalised to take the prior distribution
into account, e.g., via the RMSE, for which the typically stronger bounds in Equation (30)
apply (to both biased and unbiased estimates).

To emphasise this point of distinction, note that applying a phase shift θ to the probe
state 2−1/2(|0〉+ |nmax〉) gives the phase-shifted state 2−1/2(|0〉+ e−inmaxθ |nmax〉), implying
that no measurement on this state (nor on multiple copies thereof) can discriminate between
the phase shifts θ, θ + 2π/nmax, . . . , θ + 2π(nmax − 1)/nmax. Thus, θ cannot be accurately
estimated to within an error of 1/nmax via this probe state, as per the Fisher bound, unless
it is already known to lie within an interval of length 2π/nmax. Finally, it is also worth
noting that Fisher information bounds cannot be used to obtain Heisenberg limits in terms
of average photon number, as per Equation (30), unless further assumptions are made (in
addition to local unbiasedness). For example, the probe state

√
3

2 ∑m 2−m|2m〉 has ∆N = ∞
and 〈N〉 = 3/2 [7], giving a trivial Fisher bound of 0 in Equation (15) but a nontrivial
bound in Equation (30). Further discussion, including the case of multiple probe states,
may be found in References [4,26,35].

3.2. Sandwiched Rényi Relative Entropy and Mutual Information

The use of information bounds for quantum communication channels to obtain strong
metrological bounds (28) and (29) points the way to strengthening the results in Section 2. To
proceed, however, suitable generalisations of mutual information and the Holevo quantity,
i.e., of I(A : X) and χ(E), are required. These are provided via sandwiched Rényi relative
entropies, as discussed below.

The starting point is rewrite I(A : X) and χ(E) in terms of relative entropies:

I(A : X) = D(pAX‖pA pX) ≤ D(ρEX‖ρE ⊗ ρX) = χ(E). (31)

Here pAX(a, x) = p(x)p(a|ρx) denotes the joint distribution for outcome A = a and signal
state ρx, with marginals pA(a) = p(a|ρE ) and pX(x) = p(x); ρEX denotes the joint density
operator

∫
dx ρx ⊗ |x〉〈x|, with reduced density operators ρE and ρX =

∫
dx p(x)|x〉〈x| for

some orthogonal basis set {|x〉} on an auxiliary Hilbert space; and

D(p‖q) :=
∫

dz p(z)[log p(z)(log p(z)− log q(z)] ≥ 0, D(ρ‖σ) := tr[ρ(log ρ− log σ] ≥ 0, (32)

are the respective Shannon and von Neumann relative entropies for two probability dis-
tributions p, q and two density operators ρ, σ (defined to be infinite if the support of p
does not lie in the support of q and similarly for ρ and σ). The inequality in Equation (31),
corresponding to the Holevo bound (25), is a direct consequence of the data processing
inequality [30,31].

Now, the relative entropies appearing in Equation (31) have the alternate form

D(pAX‖pA pX) = inf
qA

D(pAX‖qA pX), D(ρEX‖ρE ⊗ ρX) = inf
σE

D(ρEX‖σE ⊗ ρX) (33)

(using, e.g., D(ρEX‖σE ⊗ ρX) = D(ρEX‖ρE ⊗ ρX) + D(ρE‖σE )). Hence, if suitable defini-
tions of classical and quantum Rényi relative entropies Dα(p‖q) and Dα(ρ‖σ) are available
and satisfy a data processing inequality, then one can define a classical Rényi mutual
information Iα(A : X) [12,13] and associated Holevo quantity χα(E) [14,15,36] (also called
the quantum Rényi mutual information), satisfying a Rényi Holevo bound, via

Iα(A : X) := inf
qA

Dα(pAX‖qA pX) ≤ inf
σE

Dα(ρEX‖σE ⊗ ρX) =: χα(E). (34)
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Further, suitable definitions of Dα(p‖q) and Dα(ρ‖σ) do indeed exist, given by the classical
Rényi relative entropy [37,38]

Dα(p‖q) :=
1

α− 1
log

∫
dz p(z)αq(z)1−α ≥ 0 (35)

and the quantum sandwiched Rényi relative entropy [14,39]

Dα(ρ‖σ) :=
1

α− 1
log tr[(σ

1−α
2α ρσ

1−α
2α )α] ≥ 0. (36)

These reduce to standard relative entropies in the limit α → 1, vanish for p = q and for
ρ = σ, and satisfy the data processing inequality

Dα(ν(ρ)‖ν(σ)) ≤ Dα(ρ‖σ), α ≥ 1
2 (37)

for all completely positive trace preserving maps ν [40]. Further properties and operational
interpretations of sandwiched relative entropies are given in References [14,15,39–42].

Finally, note that while the rewriting of χ(E) in Equation (31) and the definition of
χα(E) in Equation (34) are perfectly valid for the case of a discrete set of signal states
(with integration replaced by summation), there is an important point of rigour to be
considered for the case of a continuous set of signal states. In particular, kets {|x〉} forming
an orthogonal basis set for this case are not normalisable, with 〈x|x′〉 = δ(x − x′), so
that ρX and ρEX are not well-defined density operators. This point may be addressed
by working with discrete signal ensembles, with p(x) and ρx replaced by pj and ρj, via
pjρj =

∫
Xj

dx p(x)ρx for some countable (possibly finite) partition {Xj} of the range of x.

The existence of a suitable orthonormal basis {|xj〉} is then assured; the integrals defining
ρX and ρEX can be replaced by summations over the index j; and χα(E) in Equation (34)
rigorously defined as the limit (or supremum) of a suitable sequence of such partitions.
(In particular, any such discrete partition EP ≡ {pj; ρj} of E , with associated orthonor-
mal basis {|xj〉}, can be subpartitioned as EP′ ≡ {pjk; ρjk} and basis {|xj〉 ⊗ |k〉}, with
pjρj = ∑k pjkρjk. Data processing inequality (37) then gives χα(EP) ≤ χα(EP′), and so
χα(E) may be defined as the supremum over all such partitions, analogously to Shannon’s
general definition of mutual information in Appendix 7 of Reference [43]. A possible
alternative approach for continuous ensembles would be to work more generally with
C∗-algebras, where commuting algebras of this type have states formally corresponding to
the kets |x〉, and relative entropies are well-defined and satisfy a data-processing inequal-
ity [44].) An approach of this type is used, for example, in Reference [17]. Hence, in what
follows, the notation in the definition of χα(E) in Equation (34) will be informally used for
both discrete and continuous ensembles, under the implicit assumption that the limiting
approach is applied for the continuous case.

3.3. Rényi Asymmetry and Upper Bounds for Mutual Information

To generalise the asymmetry bound in Equation (26), one may follow the general
approach of Gao et al. [16] to define the Rényi asymmetry of state ρ, with respect to any
Hermitian operator G with a discrete spectrum, by [17],

AG
α (ρ) := inf

σ:[σ,G]=0
Dα(ρ‖σ), α ≥ 1

2 . (38)

This reduces to AG(ρ) in Equation (26) for α = 1, via the identity D(ρ‖σ) = H(ρG) −
H(ρ) + D(ρG‖σ) for [σ, G] = 0. For later purposes, it is worth noting that, since any state
commuting with G must also commute with h(G) for any function h,

Ah(G)
α (ρ) = inf

σ:[σ,h(G)]=0
Dα(ρ‖σ) ≤ inf

σ:[σ,G]=0
Dα(ρ‖σ) = AG

α (ρ). (39)
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If relative entropies are regarded as quasi-distances, then the Rényi asymmetry may
be interpreted as the distance from ρ to the closest state that is invariant under the unitary
transformation Ux for all x, i.e., that commutes with G. In particular, it vanishes if ρ
itself is invariant i.e., if [ρ, G] = 0, implying that the asymmetry may also be interpreted
as the inherent ‘quantum’ uncertainty of G [45] (see also Section 5). Further, when G is
nondegenerate, the asymmetry is a measure of coherence, relative to the eigenbasis of
G [18]. This measure corresponds to the relative entropy of coherence for α = 1 [19], and it
is of interest to note that

AG
1/2(ρ) = − log[1− Cg(ρ)], AG

∞(ρ) = log[1 + CR(ρ)], (40)

for nondegenerate G, where Cg(ρ) and CR(ρ) are the geometric coherence [19] and robust-
ness of coherence [18,19], respectively. However, the utility of asymmetry for the purposes
of this paper arises from the following upper bounds on the Rényi Holevo quantity.

Theorem 3. For any Hermitian operator G having a discrete spectral decomposition G = ∑k gkPk,
the Rényi asymmetry AG

α (ρ) of an ensemble of signal states E ≡ {ρx = e−ixGρeixG; p(x)} has the
upper and lower bounds

χα(E) ≤ AG
α (ρ) ≤ Hβ(G|ρ),

1
α
+

1
β
= 2, (41)

where χα(E) is the Rényi Holevo quantity in Equation (34) and Hβ(G|ρ) is the classical Rényi
entropy of the probability distribution p(gk|ρ) = tr[ρPk]. The upper bound is saturated when ρ
is pure.

Theorem 3 clearly generalises the information bounds in Equation (26) for standard
entropies, which correspond to the special case α = 1. The lower bound χα(E) ≤ AG

α (ρ)
also generalises energy-time uncertainty relation (10) of Reference [17], from the special
case of a uniform prior distribution to arbitrary prior distributions (see also Section 5).
Similarly to Reference [17], the lower bound is a simple consequence of the fact that the
transformation mapping ρx ⊗ |x〉〈x| to ρ⊗ |x〉〈x| is a reversible isometry. In particular, data
processing inequality (37) implies that Dα(ρEX‖σE ⊗ ρX) = Dα(UρEXU†‖UσE ⊗ ρXU†) for
the unitary transformation U =

∫
dx U†

x ⊗ |x〉〈x|. This transformation maps ρEX → ρ⊗ ρX ,
and σE ⊗ ρX → σE ⊗ ρX when [σE , G] = 0, and hence

χα(E) ≤ inf
σE :[σE ,G]=0

Dα(ρEX‖σE ⊗ ρX) = inf
σE :[σE ,G]=0

Dα(ρ⊗ ρX‖σE ⊗ ρX) = AG
α (ρ), (42)

as desired, where the inequality follows immediately from the definition of χα(E) in
Equation (34). The remainder of Theorem 3 is proved in Appendix C.

The upper bound for asymmetry in Equation (41) has the benefit of being simpler to
calculate than the asymmetry itself, and will be seen to underlie the constraint on α and β
in Rényi uncertainty relation (4). It is a consequence of the duality property

AG
α (|ψ〉〈ψ|) = Hβ(|ψ〉〈ψ|G),

1
α
+

1
β
= 2, (43)

for the asymmetry of pure states, also proved in Appendix C, which in turn is formally
connected to a deeper (and much harder to prove) duality relation for conditional Rényi
entropies [39,41].

Finally, it is of interest to note there is an alternative representation of asymmetry
that relates it more directly to the Holevo quantity χα. In particular, defining the con-
tinuous ensemble Er ≡ {ρx; pr(x)} by pr(x) := 1/(2r) for |x| < r and vanishing oth-
erwise, it follows that limr→∞ ρEr = ρG (see Appendix C). Hence, using Equation (25),
limr→∞ χ(Er) = S(ρG) − S(ρ) = AG(ρ). Thus, the standard asymmetry is equal to the
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Holevo quantity in the limiting case of a maximally uniform ensemble of signal states [4].
This property generalises to all Rényi asymmetries, i.e.,

χ∞
α := lim

r→∞
χα(Er) = AG

α (ρ), (44)

as shown in Appendix C. In the case that Ux is periodic with period xp, the limiting ensem-
ble can be replaced by the uniform ensemble over [0, xp), as noted in References [32–34]
for α = 1.

3.4. A Convolution Lower Bound for Mutual Information

Unlike the Holevo quantity χα(E), the classical Rényi mutual information Iα(A : X) in
Equation (34) can be calculated explicitly [12,13]. In particular, Equations (34) and (35) give

Iα(A : X) = inf
qA

1
α− 1

log
∫

da qA(a)1−αrα(a), rα(a) :=
∫

dx p(x)p(a|x)α, (45)

with integration replaced by summation over discrete ranges of A and X, and
p(a|x) = tr[ρx Ma] for a measurement of observable A described by the POVM {Ma}.
A straightforward variation with respect to qA under the constraint

∫
da q(a) = 1 then

yields [12,13]

Iα(A : X) = H 1
α
( p̃A) +

1
1− α

log
∫

da rα(a), p̃A(a) := rα(a)
/ ∫

da rα(a). (46)

It may be checked that this expression reduces to I(A : X) in Equation (24) in the limit
α→ 1, as expected.

However, while this expression allows the mutual information to be explicitly calcu-
lated for arbitrary observables A, the statistical characterisation of the error Xest − X of
some estimate Xest of X requires an expression involving the error probability density

perr(y) =
∫

dx pXestX(x + y, x), (47)

where pXestX(xest, x) = p(x)tr[ρx Mxest ] is the joint probability density of Xest and X (akin
to Equation (A2) of Appendix A). For Shannon mutual information this requirement is
achieved via the lower bound in Equation (27), which is partially generalised here via the
following theorem and corollary.

Theorem 4. The classical Rényi mutual information, for an estimate Xest of X made on the
ensemble E ≡ {ρx; p(x)}, has the lower bound

Iα(Xest : X) ≥ inf
q

Dα(perr‖q ∗ p−), α ≥ 1
2 , (48)

where perr(y) is the probability density of the error Xest − X; ( f ∗ g)(y) =
∫

dx f (x)g(y− x)
denotes the convolution of functions f and g; and p−(x) := p(−x).

Theorem 4 is proved in Appendix D, and the lower bound in Equation (48) will be
referred to as the convolution lower bound. This bound has the desirable property of
depending only on the prior probability density p(x) and the error probability density perr,
similarly to Equation (27) for Shannon mutual information.

Corollary 2. If the prior probability density p(x) is uniform on an interval I of length `I , and
vanishes outside this interval, then

Iα(Xest : X) ≥ log `I − Hα(Xest − X|ρ), α ≥ 1
2 . (49)
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Note for α = 1 that this result is equivalent to Equation (27) in the case that p(x)
is uniform on some interval I. Corollary 2 is proved in Appendix D, and relies on the
following Lemma, which is of some interest in its own right.

Lemma 1. If Z is a random variable on the real line, and Z̃ = Z mod I for some interval I, then

Hα(Z̃) ≤ Hα(Z), α ≥ 0. (50)

This lemma corresponds to the intuition that concentrating a probability density
onto an interval will reduce the spread of distribution, and is proved in the last part of
Appendix D. Note that if Z is periodic, with period equal to `I , then Lemma 1 holds trivially
with equality (noting that entropies are translation invariant).

3.5. Putting It All Together: Strengthened Metrology Bounds and Uncertainty Relations

Combining the Rényi Holevo bound, Iα(Xest : X) ≤ χα(E) in Equation (34), with the
upper bounds for χα(E) in Theorem 3 and the lower bound for Iα(Xest : X) in Corollary 2
yields the inequality chain

log `I − Hα(Xest − X|ρ) ≤ Iα(Xest : X) ≤ χα(E) ≤ AG
α (ρ) ≤ Hβ(G|ρ),

1
α
+

1
β
= 2, (51)

connecting the entropy of the estimation error to the asymmetry and entropy of the genera-
tor G, for the case of a prior distribution of the shift parameter that is uniform over some
interval I. This chain immediately implies the following general result.

Theorem 5. For any estimate Xest of a unitary displacement X applied to a probe state ρ, where
the displacement is generated by a Hermitian operator G with a discrete spectrum and has a uniform
prior distribution over an interval I of length `I , the entropy of the estimation error Xest − X
satisfies the tradeoff relation

Hα(Xest − X|ρ) + AG
α (ρ) ≥ log `I , α ≥ 1

2 . (52)

Further, for any nonlinear displacement generated by h(G), the tradeoff relation

Hα(Xest − X|ρ) + Hβ(G|ρ) ≥ log `I ,
1
α
+

1
β
= 2, (53)

holds for any function h.

Equation (52) of the theorem generalises the metrology bounds and uncertainty rela-
tions in Section 2 to estimates of general unitary displacements, and strengthens them to
take into account prior information and any nonpurity of the state. Equation (53), following
via asymmetry property (39), shows that a nonlinear generator gives no advantage, in the
sense that the Rényi entropy of the estimation error is lower-bounded by log `I − Hβ(G|ρ)
for all generators h(G), similarly to the case of Shannon entropy [4].

The content of Theorem 5 has the advantage of being independent of, and hence not
requiring, any interpretation of the Rényi mutual information Iα and the Holevo quantity
χα. The following four corollaries provide simple applications of the theorem to RMSE and
to phase shifts, with further applications discussed in Section 4.

Corollary 3. For any estimate Xest of a unitary displacement X applied to a probe state ρ, where the
displacement is generated by a Hermitian operator G with discrete spectral decomposition ∑k gkPk,
and X has a uniform prior distribution over an interval I of length `I , the root-mean-square error of
the estimate, RMSE=〈(Xest − X)2〉1/2, has the lower bounds
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RMSE ≥ α
α

α−1 f (α)`I
2π

e−AG
α (ρ), α ≥ 1

2 , (54)

(using units of nats for AG
α (ρ)), where f (α) is the function defined in Equation (18). For the

particular choices α = ∞, α = 1
2 and α→ 1, one further has

RMSE ≥ `I

2
√

3 L1/2(G|ρ)
, RMSE ≥ `I

2π
max

k
p(gk|ρ) RMSE ≥ `I√

2πe
eH(ρ)−H(ρG). (55)

where Lα(G|ρ) is a Rényi length as per Equation (10).

The lower bound in Equation (54) of Corollary 3 is sensitive to the purity of the
probe state via AG

α (ρ), and to the prior information via `I , and follows by noting that
the derivation of Equation (A11) in Appendix B goes through for the choice σ2 = RMSE,
and applying Theorem 5. The first two inequalities in Equation (55) then follow via the
upper bound for asymmetry in Equation (51), and generalise the corresponding bounds in
Theorem 2 to include prior information about the estimate. The third inequality follows via
the expression for asymmetry in Equation (26) for α = 1, and generalises Equation (30) for
phase and photon number to arbitrary discrete generators. Note that all lower bounds in
Corollary 3 scale in proportion to the length of the interval, `I , to which the displacement X
is restricted. Thus, better estimates are possible when more prior information is available.

Corollary 4. The root-mean-square error for any estimate of a phase shift Θ with a uniform prior
distribution on an interval I with length `I , via a measurement on probe state ρ, satisfies the strong
Heisenberg limit

RMSE ≥ `I
2π

fmax

〈N〉+ 1
2

, (56)

where fmax ≈ 0.5823 is the maximum value of the function f (α) in Equation (18).

Corollary 4 is a direct consequence of Equation (54) in Corollary 3 for G = N, using
AG

α (ρ) ≤ Hβ(G|ρ) from Equation (51) and applying upper bound (A17) from Appendix B.
It generalises the strong Heisenberg limit in Equations (3) and Theorem 2 to include prior
information about the phase shift.

Corollary 5. The number and canonical phase observables N and Φ satisfy the family of uncertainty
relations previewed in Equation (7), i.e.,

AN
α (ρ) + Hα(Φ|ρ) ≥ log 2π, α ≥ 1

2 . (57)

Corollary 5 follows from Theorem 5 for G = N, `I = 2π, and the particular choice of
estimate Θest = Φ, via H(Θest−Θ|ρ) = H(Φ|ρ) on the unit circle. For α = 1 it is equivalent
to uncertainty relation (1) for Shannon entropies when ρ is a single mode state (noting that
AG

1 (ρ) = H(G|ρ)− H(ρ) for nondegenerate G as per Equation (26)), and more generally
strengthens uncertainty relation (4) for Rényi entropies to take the degree of purity of the
state into account.

Corollary 6. The number and canonical phase observables N and Φ satisfy the family of uncertainty
relations

AN
α (ρ)∆χΦ ≥ α

α
α−1 f (α), α ≥ 1

2 , (58)

where the function f (α) and the standard deviation ∆χΦ are defined in Equations (18) and (20).

Corollary 6 follows via an analogous argument to the proof of Corollary 1 given in
Appendix B, but using the uncertainty relation of Corollary 5 in place of Equation (4). It
strengthens Equation (21) of Corollary 1 when the state is non-pure.
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4. Applications to Coherence Measures, Rotations, and Energy-Time Tradeoffs

The results of the previous section have utility well beyond the number-phase exam-
ples given therein, as indicated here via several further applications.

4.1. Coherence Bounds

Recall, as per the discussion in Section 3.3, that for nondegenerate G the Rényi asym-
metry AG

α (ρ) is a measure of coherence, relative to the eigenbasis of G [18]. Coherence
measures are typically difficult to calculate explicitly, other than for pure states and general
qubit states [18,19]. However, the results of Section 2 lead to simple and strong upper
and lower bounds for Rényi-related measures of coherence, as per the following theorem
and corollary.

Theorem 6. The Rényi entropy of coherence for state ρ, Cα(ρ) := AM
α (ρ), relative to a given

orthonormal basis {|m〉} indexed by a countable set of integers, has the upper and lower bounds

log 2π − Hα(Φζ |ρ) ≤ Cα(ρ) ≤ Hβ(M|ρ), 1
α
+

1
β
= 2, (59)

where M = ∑m m|m〉〈m|, ζ ≡ {ζm} is an arbitrary set of reference phases, and Φζ denotes the
continuous phase observable corresponding to the POVM {|φ〉〈φ|} defined by

|φ〉 :=
1√
2π

∑
m

eiζm e−imφ|m〉. (60)

The upper bound is saturated for pure states.

Corollary 7. The relative entropy of coherence, geometric coherence and robustness of coherence,
with respect to basis {|m〉}, satisfy the respective bounds

log 2π − H(Φζ |ρ) ≤ Crel ent(ρ) = H(M|ρ)− H(ρ), (61)

1−
L1/2(Φζ |ρ)

2π
≤ Cg(ρ) ≤ 1−max

m
〈m|ρ|m〉, (62)

2π sup
φ∈[0,2π)

p(φ|ρ)− 1 ≤ CR(ρ) ≤
(

∑
n
〈m|ρ|m〉1/2

)2
− 1 (63)

for state ρ, where Lα denotes the Rényi length in Equation (10). The upper bounds are saturated for
pure states.

The lower bounds in Theorem 6 and Corollary 7 hold for both finite and infinite Hilbert
spaces, and follow in direct analogy to Corollary 5, noting that M is invariant under |m〉 →
eiζm |m〉 and using Equations (8), (26) and (40). Note also that Hα(Φζ |ρ) may be replaced by
infζ Hα(Φζ |ρ), and that a weaker lower bound, Cα(ρ) ≥ log α

α
α−1 f (α)− log ∆χΦζ , follows

via Corollary 6. The upper bounds follow directly from Theorem 3, using Equations (26)
and (40) and recalling that Hβ(ρG) = Hβ(G|ρ) for nondegenerate G. It follows that a low
phase uncertainty implies high coherence, which in turn requires a large uncertainy in G.

The bounds are relatively strong. The lower bounds are tight for all mixtures of
number states, i.e., with zero coherence (noting that p(φ|ρ) = (2π)−1 for such states).
Further, the upper bounds are saturated for all pure states, and are the strongest possible
upper bounds that depend only on the distribution pm = 〈m|ρ|m〉, being saturated for
the pure state ∑m

√
pm|m〉 in particular. Thus, for example, for an optical mode and the

choice M = N, the coherent phase states |v〉 = (1− |v|2)1/2 ∑n vn|n〉 (with |v| < 1) not
only have excellent phase resolution properties in general [24], but also have the highest
possible coherence for given average photon number. Moreover, for α = 1 the bounds are
equivalent to uncertainty relation (1) for Shannon entropies, and more generally imply, and
hence are stronger than, the uncertainty relation
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Hα(M|ρ) + Hβ(Φζ |ρ) ≥ log 2π,
1
α
+

1
β
= 2 (64)

for Rényi entropies, generalising Equation (4) to all dimensions.
The upper bound for geometric coherence in Equation (62) recovers the upper bound

in Theorem 1 of Reference [46]. Further, the lower bound is typically stronger than the
corresponding bound in Reference [46], as it depends on both the diagonal and off-diagonal
elements of ρ. For example, for the maximally coherent qubit state |ψ〉 = 1√

2
(|0〉+ |1〉) one

obtains Cg(ρ) ≥ 1− 8/π2 ≈ 0.189 from Equation (62) (with ζn ≡ 0), whereas Theorem 1
of Reference [46] gives a trivial lower bound of zero. Note that Cg(ρ) =

1
2 for this state,

recalling that upper bound (62) is saturated for pure states.
For the coherence of robustness, the upper bound CR(ρ) ≤ ∑m,m′ |〈m|ρ|m′〉| − 1

in Reference [47] is stronger than the upper bound in Equation (63) for nonpure states
(since the latter follows from the former via the Schwarz inequality). However, as noted
above, Equation (63) gives the strongest possible upper bound that depends only on the
distribution of M. Further, the lower bound in Equation (63) is typically stronger than the
corresponding bound in Reference [47]. For example, for the maximally coherent qubit
state |ψ〉 in the above paragraph, both the lower bound in Equation (63) and the lower
bound in Theorem 5 of Reference [47] are saturated, with a value of unity. However, for
the coherent phase state |v〉mentioned above, the lower bound in Equation (63) is again
saturated, with a value 2|v|/(1− |v|) following from Equation (37a) of Reference [24],
whereas Theorem 5 of Reference [47] gives a trivial lower bound of zero. It would be of
interest to compare these two lower bounds further, and to investigate the lower bound in
Theorem 6 more generally.

4.2. Rotations

Two important applications of quantum metrology are the estimation of phase shifts,
generated by the photon number operator, and the estimation of rotation angles, generated
by angular momentum. In the latter case, for example, the strength of a magnetic field may
be estimated via the rotation of an ensemble of atomic spins [48].

The formal differences between phase and rotation estimation are small. For example,
rotations of GHZ states of M spin qubits, 1√

2
(⊗M| ↑〉+⊗M| ↓〉), are formally equivalent

to phase shifts of single-mode states 1√
2
(|0〉+ |M〉) discussed following Theorems 1 and 2,

and to phase shifts of two-mode NOON states 1√
2
(|M, 0〉+ |0, M〉) [48].

In fact the only significant formal difference between phase estimation and rotation
estimation is that the eigenvalues of the photon number operator N are nonnegative
integers, whereas the eigenvalues of an angular momentum component Jz range over all
positive and negative integers. Thus, for example, the optical phase kets in Equation (8) for
the canonical phase observable Φ are replaced by the rotation kets

|φz〉 :=
1√
2π

∞

∑
j=−∞

e−ijφz |j〉 (65)

for the rotation angle observable Φz conjugate to Jz, where {|j〉} denote the eigenstates of
Jz. Note that Φz corresponds to a Hermitian operator, with 〈φz|φ′z〉 = δ(φz − φ′z).

Given that the general result in Theorem 5 holds for general discrete generators G,
and noting that Jz and N only differ in their range of eigenvalues, it follows that all results
for phase shifts not directly dependent on properties of the range of N yield corresponding
results for rotations, via the replacement of N by Jz and Φ by Φz. Thus, for example, Rényi
uncertainty relation (4) holds for angular momentum and angle [8,9], as does Theorem 1
and the metrology tradeoff relation

Hα(Θz,est −Θz|ρ) + AJz
α (ρ) ≥ log `I , α ≥ 1

2 (66)
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corresponding to Theorem 5. It follows that the estimation error, as characterised by its
Rényi entropy, can only be small if the corresponding asymmetry of the state is large. In par-
ticular, a GHZ state of M spin qubits has a relatively low asymmmetry, with AJz

α (ρ) = log 2
via duality property (43) for pure states, and hence has a relatively poor angular resolu-
tion [4].

Further, since the relation between RMSE and entropy in Equation (A11) of Appendix B
holds independently of the generator, all results for the RMSE of phase shifts and the
standard deviation ∆χΦ of optical phase that do not depend on the eigenvalues of N
yield corresponding results for rotations. Thus, for example, the first two inequalities in
Theorem 2 and the lower bounds in Corollaries 3 and 6 hold for angular momentum and
angle, as does, e.g., the uncertainty relation

∆χΦz ≥ max
j

p(j|ρ), (67)

corresponding to the second equality in Equation (22) of Corollary 1. This imples, for
example, that a GHZ state of M spin qubits has a relatively large standard deviation, with
∆χΦz ≥ 1

2 .
Indeed, the only cases in which earlier results for number and phase do not imme-

diately translate into results for angular momentum and angle are those involving the
average photon number, such as the third uncertainty relation in Corollary 1 and the strong
Heisenberg limits in Equations (3) and (5), Theorem 2 and Corollary 4. This is because such
results rely on the upper bound for Rényi length in Equation (A17) in Appendix B, which
assumes positive eigenvalues and so must be modified for the case of angular momentum.
A suitable modification is given by

Lβ(Jz|ρ) ≤ α
α

α−1

(
2〈|Jz|〉+ 1

2 〈0|ρ|0〉
)
≤ α

α
α−1

(
2〈|Jz|〉+ 1

2

)
,

1
α
+

1
β
= 2, (68)

as shown in the last part of Appendix B. This leads immediately to the following result for
angle estimation, corresponding to Corollary 4.

Corollary 8. The root-mean-square error for any estimate of a rotation Θ with a uniform prior
distribution on an interval I with length `I , via a measurement on probe state ρ, satisfies the strong
Heisenberg limits

RMSE ≥ `I
2π

fmax

2〈|Jz|〉+ 1
2 〈0|ρ|0〉

≥ `I
2π

fmax

2〈|Jz|〉+ 1
2

, (69)

where fmax ≈ 0.5823 is the maximum value of the function f (α) in Equation (18).

The lower bounds in Corollary 8 improve on the Heisenberg limit given in endnote [29]
of Reference [5], in both the numerators and denominators, in addition to including prior
information about the rotation via the factor `I/(2π).

4.3. Energy and Time

The results of Section 3 also apply straightforwardly to the time evolution of quantum
systems with discrete energy levels. For example, any estimate Test of a time translation
T generated by a Hamiltonian with discrete spectral decomposition E = ∑k EkPk, for
uniform prior probability density p(t) = 1/`I over an interval of length `I , satisfies the
tradeoff relation

H(Test − T|ρ) + AE
α (ρ) ≥ log `I , α ≥ 1

2 , (70)

as an immediate consequence of Theorem 5. Further, the RMSE of the estimate satisfies the
lower bounds in Corollary 3 for G = E.
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If the system is periodic, with period τ = 2π/ω, the energy eigenvalues are of the form

Ek = ε + h̄ωnk, (71)

where ε denotes the groundstate energy and the nk are nonnegative integers. Hence a
time translation of the system by an amount t is formally identical to a phase shift of an
optical mode by φ = ωt (for a state of the mode with support restricted to the number
states {|nk〉}), and all previous results for number and phase carry over immediately to
analogous results for the energy and time of periodic systems via the replacement of φ by
ωt and N by (E− ε)/(h̄ω). For example, Corollary 4 implies the strong Heisenberg limit

RMSE = 〈(Test − T)2〉1/2 ≥ h̄`I
τ

fmax

〈E− ε〉+ 1
2 h̄ω

(72)

for the RMSE for any estimate of the time shift of a periodic system, if the prior probability
density p(t) is uniform over an interval of length `I , which strengthens the result in
Reference [29] for this case. Similarly, Corollaries 5 and 6 imply the strong energy-time
uncertainty relations

AE
α (ρ) + Hα(Tτ |ρ) ≥ log τ, AE

α (ρ)∆t0Tτ ≥
α

α
α−1 f (α)

2π
τ, α ≥ 1

2 (73)

for the energy and canonical time observables of a periodic system with period τ, where Tτ

denotes the canonical time observable corresponding to Φ/ω [20,22], and
∆t0Tτ = 〈(Tτ − t0)

2〉1/2 is the standard deviation about any reference time t0. Note that
the first of these relations, combined with the asymmetry bound in Theorem 3, implies and
hence is stronger than the known Rényi entropic uncertainty relation

Hα(E|ρ) + Hβ(Tτ |ρ) ≥ log τ,
1
α
+

1
β
= 2 (74)

for the energy and time observables of periodic systems [49], analogous to Equation (4) for
number and phase.

While some quantum systems, such as harmonic oscillators and qubits, are indeed
periodic, most systems with discrete Hamiltonians do not have energy eigenvalues of the
form in Equation (71) and so are nonperiodic. This is not an issue for the basic energy-time
metrology tradeoff relation (70), which is universal for discrete Hamiltonians and so applies
equally well to both periodic and nonperiodic systems, as do the bounds for the RMSE of
time estimates in Corollary 4 (choosing G = E). However, the question of whether there are
time-energy uncertainty relations for nonperiodic systems, that generalise Equations (73)
and (74) for periodic systems, is less straightforward.

This question has been addressed for the case of Shannon entropies, via the definition
of a canonical time observable T that is applicable to both periodic and nonperiodic
systems. This observable has almost-periodic probability density pap(t) associated with
it, and a corresponding almost-periodic Shannon entropy Hap(T |ρ), which satisfies the
energy-time-energy entropic uncertainty relation [20,35]

H(E|ρ) + Hap(T |ρ) ≥ 0. (75)

This relation reduces to Equation (74) for the case of periodic systems, and is strengthened
and extended below to general Rényi entropies.

To proceed, it is convenient to first deal with any energy degeneracies, by taking the
degree of degeneracy to be the same for each energy eigenvalue (by formally extending
the Hilbert space if necessary), so that the energy eigenstates can be formally written
as |Ek〉 ⊗ |d〉 with the range of the degeneracy index d independent of Ek. Defining 1D:
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= ∑d |d〉〈d|, the canonical time observable conjugate to E = ∑k |Ek〉〈Ek| ⊗ 1D is then
defined via the almost-periodic POVM T ≡ {Mt} given by

Mt := ∑
k,k′

e−i(Ek−Ek′ )t/h̄|Ek〉〈Ek′ | ⊗ 1D ≥ 0, t ∈ (−∞, ∞), (76)

and associated almost-periodic probability density

pap(t|ρ) := tr[ρMt], t ∈ (−∞, ∞). (77)

for state ρ [20]. Note the formal similarity to the canonical phase observable in Section 2.1.
For periodic systems, the associated periodic time observable Tτ above has the related
POVM {τ−1Tt : t ∈ [0, τ)}, with associated periodic probability density [20]

pτ(t|ρ) = τ−1 pap(t|ρ), t ∈ [0, τ). (78)

Now, it is easy to check that pap(t|ρ) is not normalised with respect to the Lebesgue
measure, and indeed that

∫ ∞
−∞ dt pap(t|ρ) diverges. Hence an alternative measure is re-

quired. This is provided by the Besicovitch measure µap[·], defined on the algebra of
almost-periodic functions, i.e., functions of the form f (t) = ∑j f je

iωjt with ∑j | f j|2 < ∞,
by [50]

µap[ f ] := lim sup
s→∞

1
s

∫ s

0
dt f (t) (79)

For f (t) = pap(t|ρ) in Equation (77) this yields

µap[pap] = ∑
k,d
〈Ek, d|ρ|Ek, d〉 = 1, (80)

and hence the almost-periodic density is normalised, as desired. The average of the almost-
periodic function f (t) with respect to pap(t|ρ) can then be defined as [20]

〈 f 〉 := µap[pap f ] = ∑
j,k,k′ :Ek−Ek′=h̄ωj

f j 〈Ek′ |trD[ρ]|Ek〉, (81)

and the almost-periodic Rényi entropy of the canonical time observable by

Hap
α (T |ρ) :=

1
1− α

log µap[(pap)
α] =

1
1− α

log lim sup
s→∞

1
s

∫ s

0
dt pap(t|ρ)α, (82)

generalising the case of almost-periodic Shannon entropy [20,35]. For the case of a periodic
system with period τ, it follows from Equation (78) that

Hap
α (T |ρ) = Hα(Tτ |ρ)− log τ, (83)

where Hα denotes the Rényi entropy of the periodic probability density pτ(t|ρ).
Finally, any almost-periodic function f (t) can be approximated by a periodic function

to any desired accuracy, via a sequence of periodic functions fm(t) with respective periods
τm, such that τm → ∞ and fm(t) converges uniformly to f (t) in the limit m→ ∞ [50]. In par-
ticular, pap(t|ρ) has such a sequence of periodic approximations, each corresponding to the
canonical time distribution of a periodic system with energy observable
E(m) = ∑k E(m)

k |Ek〉〈Ek| ⊗ 1D and period τm, with E(m)
k → Ek as m → ∞ [51]. Further,

each such periodic system must satisfy uncertainty relation (73). Hence, using Equation (83)
and taking the limit m→ ∞, one obtains the following general result.

Corollary 9. The energy and almost-periodic canonical time observables E and T satisfy the family
of uncertainty relations
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AE
α (ρ) + Hap

α (T |ρ) ≥ 0, α ≥ 1
2 , (84)

for any quantum system with a discrete energy spectrum, where Hap
α (T |ρ) is the almost-periodic

Rényi entropy in Equation (82).

Corollary 9 generalises Corollary 5 and uncertainty relations (73) and (74), for periodic
systems, to any system with a discrete energy spectrum. Moreover, using Equation (26)
for the case α = 1 [35], and Theorem 3 more generally, the corollary further leads to the
respective energy-time uncertainty relations

H(ρE) + Hap(T |ρ) ≥ H(ρ), Hα(E|ρ) + Hap
β (T |ρ) ≥ 0,

1
α
+

1
β
= 2, (85)

for the Shannon and Rényi entropies of general systems. It may be noted, however, that the
function f (t) = t2 is not almost-periodic, implying that there is no analogue of ∆t0T for
nonperiodic systems and hence no corresponding generalisation of the second uncertainty
relation in Equation (73).

Finally, it should be noted that a suggestion in Reference [20], to interpret Iap(ρ) :=
−Hap(T |ρ) as the maximum information that can be gained about a random time shift in
the limit of a uniform prior distribution on the real line, via a measurement of T , is incorrect.
This quantity is in fact a lower bound for the information gain in this scenario. In particular,
note from Corollary 2 that Iα(Tτ : T) ≥ log τ − Hα(Tτ − T|ρ) = log τ − Hα(Tτ |ρ) for
uniformly random time displacements of a periodic system with period τ. Hence, choosing
the same sequence of periodic systems as above and using Equation (83), the lower bound

Iα(T : T) ≥ −Hap
α (T |ρ) = Iap

α (ρ) (86)

follows for information gain in the limit of a uniform prior distribution on the real line,
valid for both periodic and nonperiodic systems. This lower bound can be quite strong for
systems with many pairs of resonant energy levels (i.e., with Ej − Ej′ = Ek − Ek′ 6= 0), but
is no greater than log 2 in the case of no shared resonances and α = 1 [20].

5. Discussion

The main results of the paper, embodied in Theorems 1–6 and Corollaries 1–9, are seen
to have wide applicability, including lower bounds for the error of any estimate of unitary
displacement parameters, such as phase shifts, rotations and time; Heisenberg limits for the
scaling of RMSE with average photon number and angular momentum; upper and lower
bounds for measures of coherence; and uncertainty relations for canonically conjugate
observables. As demonstrated by various examples, the results are typically stronger than
existing results in the literature.

Whereas the results in Section 2 are based on known uncertainty relation (4) for
Rényi entropies, the results in Sections 3.5 and 4 rely on the upper and lower bounds in
Theorems 3 and 4 for the Rényi mutual information of quantum communication channels,
which provide a path to far stronger metrology bounds and uncertainty relations. All of
these results have the advantage of being independent of, and hence not requiring any
interpretation of, the Rényi mutual information itself. Indeed a number of the inequalities
in Theorem 2 and Corollaries 1, 4 and 8 do not refer even to Rényi entropies.

There is an interesting subtlety worth noting in regard to entangled states. In particular,
if a unitary displacement acts only on one component of an entangled probe state, then there
are two distinct scenarios: (i) an estimate is made via a measurement on that component,
or (ii) via a measurement on the whole state. The first scenario, by limiting the class of
measurements, will in general have an increased estimation error, that is not taken into
account in Theorem 5 and its corollaries. Fortunately this is straightforward to remedy,
by replacing the state ρ in those results by its accessible component, i.e., by the partial
trace trR[ρ] over any unmeasured components. Stronger lower bounds for estimation error
are thereby obtained in the first scenario, noting that AG

α (trR[ρ]) ≤ AG
α (ρ) via the data
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processing inequality, which yield correspondingly improved uncertainty relations for
observables that act on a component of an entangled state.

The Rényi asymmetry, already known to be a useful resource in various
contexts [17,18,32–34] is seen to also be a valuable resource in quantum metrology. In
particular, the various lower bounds for the estimation error of unitary displacements,
whether measured via its entropy or the RMSE, decrease as the asymmetry increases,
making probe states with high asymmetry desirable. Moreover, the strong uncertainty
relations derived in the paper, e.g., Corollaries 5, 6 and 9, imply that AG

α (ρ) can further be
regarded as a measure of the intinsically ‘quantum’ uncertainty of G for state ρ, given that
it only vanishes for eigenstates of G and for any classical mixtures thereof. Together with
Theorem 3, this suggests that the ‘total uncertainty’ of G for state ρ, as characterised by
U total

α (G|ρ) := Hα(G|ρ), can be decomposed into quantum and classical contributions via

U total
α (G|ρ) = Uquantum

α (G|ρ) + U classical
α (G|ρ), α ≥ 1

2 , (87)

where Uquantum
α (G|ρ) := AG

β (ρ), U
classical
α (G|ρ) := Hα(G|ρ)− AG

β (ρ), and 1/α + 1/β = 2.
It follows that the quantum contribution vanishes if and only if the state is classical with
respect to G, i.e., [G, ρ] = 0. Conversely, the classical contribution vanishes if and only if
the state is pure, i.e., has no classical mixing. For α = 1 this decomposition matches the
one introduced in Reference [45] for Shannon entropy. An analogous decomposition of
variance into quantum and classical contributions has been given by Luo [52].

It was mentioned in Section 3 that the universal asymmetry bound χα(E) ≤ AG
α (ρ)

in Equations (26) and (41) unifies and generalises the recent energy-time estimation re-
lations given by Coles et al. [17]. To see this in more detail, note that the main result in
Reference [17] for uniform discrete ensembles, in the form given by Equations (3) and (10)
thereof, translates in the notation of this paper to

− inf
σE

Dα(ρEX‖σE ⊗ 1X) + AG
α (ρ) ≥ log d, (88)

where E is an ensemble corresponding to d displaced states ρxk having uniform prior prob-
abilities p(xk) = 1/d, and 1X is the unit operator on a corresponding reference system for
these displacements (with orthonormal basis {|xk〉} as in Section 3.2). It is straightforward
to check that Dα(ρEX‖σE ⊗ 1X) = Dα(ρEX‖σE ⊗ d−11X)− log d = Dα(ρEX‖σE ⊗ ρX)− log d
for such ensembles, implying via Equation (34) that the above result is equivalent to
χα(E) ≤ AG

α (ρ), as claimed. A similar equivalence holds between the asymmetry bound
and Equation (12) of Reference [17] for uniform continuous ensembles. Hence, while the
estimation relations in Reference [17] are interpreted via a game, with scores determined by
Rényi conditional entropies for estimates of G and of the displacements it generates, they
may also be interpreted as special cases of the asymmetry bound. Alternatively, they may
be interpreted via Equation (44) as instances of a general inequality between the quantum
Rényi mutual information of a given ensemble and that of the ensemble corresponding to
the limit of a maximally uniform prior distribution.

Finally, several topics for future work are suggested by the results. These include using
Theorem 4 to obtain explicit lower bounds for the mutual information of ensembles with
arbitrary prior probabilities, including discrete prior probability distributions (thus general-
ising the results in Sections 3.5 and 4); extending the analysis to displacements induced by
generators with continuous spectra, such as translations generated by momentum, and to
multiparameter displacements (some preliminary results for the case of Shannon entropy
are given in Reference [35]); obtaining Heisenberg-type limits for RMSE in terms of the
variance of N rather than of 〈N〉 (via corresponding upper bounds on Rényi entropies
analogous to Equation (A17) of Appendix B); and further investigating the lower bounds
for coherence in Theorem 6 and Corollary 7.
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Appendix A

Proof of Theorem 1. First, applying a uniformly random phase shift θ to a probe state ρ
gives the phase-shifted state ρθ = e−iNθρeiNθ , with associated prior probability density
p(θ) = 1/(2π). Further, any estimate θest made of θ must be described by some POVM
Θest ≡ {Mθest}, with Mθest ≥ 0 and

∮
dθest Mθest = 1̂. Hence the joint probability density of

θ and θest is given by

p(θ, θest|ρ) = p(θ)p(θest|ρθ) =
1

2π
tr[ρθ Mθest ], (A1)

and the error of the estimate, Θest −Θ, has the corresponding marginal probability density

p(θerr) =
∮

dθest p(θest − θerr, θest|ρ) =
1

2π

∮
dθest tr[ρθest−θerr Mθest ] = tr[ρM̃θerr ], (A2)

where
M̃θerr := e−iNθerr M̃0eiNθerr , M̃0 :=

1
2π

∮
dθest eiNθest Mθest e

−iNθest , (A3)

and the cyclic property of the trace has been used. Note the useful property 〈n|M̃0|n〉 = 1.
Now, M̃0 ≥ 0 follows from Mθest ≥ 0, implying it can be written in the form

M̃0 = ∑m̃ |m̃〉〈m̃| for some set of kets {|m̃〉}. Defining the completely-positive trace-
preserving map µ(ρ) = ∑m̃ Am̃ρA†

m̃ with Am̃ = ∑∞
n=0〈m̃|n〉 |n〉〈n| [20,24], it is then straight-

forward to calculate the canonical phase distribution of Φ for state µ(ρ) as

p(φ|µ(ρ)) = p(θest − θ = φ|ρ), (A4)

i.e., it is identical to the distribution of the error Θest −Θ. One further finds

p(n|µ(ρ)) = 〈n|µ(ρ)|n〉 = 〈n|ρ|n〉 = p(n|ρ), (A5)

i.e., the number distributions of µ(ρ) and ρ are identical. Finally, it may be checked that
µ(1̂) = 1̂, i.e., µ is a unital map, implying that the von Neumann entropy increases under
µ [30], i.e.,

H(µ(ρ)) ≥ H(ρ). (A6)

Hence, uncertainty relation (1) for standard entropies immediately implies that

H(Θest −Θ|ρ) + H(N|ρ) = H(Φ|µ(ρ)) + H(N|µ(ρ)) ≥ log 2π + H(µ(ρ)) ≥ log 2π + H(ρ) (A7)

as per Equation (2), while the Rényi uncertainty relation (4) similarly yields

Hα(Θest −Θ|ρ) + Hβ(N|ρ) ≥ log 2π,
1
α
+

1
β
= 2, (A8)

as per Equation (12) of Theorem 1.

Appendix B

Proof of Theorem 2. The proof proceeds by establishing upper bounds on Rényi entropies
under various constraints. First, consider the variation of the quantity

∫
dx p(x)α with re-

spect to probability density p(x) for α ≥ 1/2 and α 6= 1, under the constraints
∫

dx x2 p(x) = σ2
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and
∫

dx p(x) = 1, where integration is over the real line. Applying the method of Lagrange
multipliers then gives an extremal probability distribution of the form

p(x) =
1
λ

p1(x/λ), p1(x) = K(1± x2)
−1

1−α . (A9)

where the + sign is chosen for 1/2 ≤ α < 1 and the − sign for α > 1 [53], and in the
latter case one takes p1(x) = 0 for |x| > 1. These choices correspond to a maximum and
minimum of

∫
dx p(x)α, respectively, and hence to a maximum of the associated Rényi

entropy. The values of λ and K are determined by the constraints as [53]

λ = σ

(
3α− 1
|1− α|

)1/2
, K =


Γ( 1

1−α )√
π Γ( 1

1−α−
1
2 )

, 1/2 ≤ α < 1

Γ( α
α−1+

1
2 )√

π Γ( α
α−1 )

, α > 1
. (A10)

Since phase error is restricted to a subset of the real line, it follows that its Rényi entropy
can be no greater than the maximum for p(x) with σ = RMSE. Hence,

Hα(Θest −Θ|ρ) ≤ Hα[p] = log λ + Hα[p1] = log λ +
1

1− α
log

∫
dx p1(x)α

= log RMSE + log

[(
3α− 1
|1− α|

)1/2( 2α

3α− 1

) 1
1−α

]
− log K, (A11)

where the last line follows by direct calculation. It may be checked that this inequality
also holds in the limit α → 1, for which it becomes equivalent to the standard bound
H ≤ log RMSE + 1

2 log 2πe for Shannon entropy. Inverting the above result, and using
Hα(Θest − Θ|ρ) ≥ log 2π − Hβ(N|ρ) from Equation (12) of Theorem 1, then gives the
lower bound

RMSE ≥ α
α

α−1 f (α)
Lβ(N|ρ) ,

1
α
+

1
β
= 2, (A12)

where f (α) is defined in Equation (18).
To obtain the first lower bound in Theorem 2, consider the limit α→ ∞ in Equation (A12)

above. The constraint on α and β gives β = 1
2 , and one finds

lim
α→∞

α
α

α−1 f (α) = 2
√

π
Γ( 3

2 )

Γ(1)
lim

α→∞
α

1
α−1

(
α− 1

3α− 1

)1/2
=

π√
3

(A13)

(corresponding to the maximum value of α
α

α−1 f (α)), yielding the required first bound.
Similarly, substitution of α = 1

2 into Equation (A12) gives unity for the numerator and
L∞(N|ρ) = (maxn p(n|ρ))−1 for the denominator, yielding the second lower bound in
Theorem 2.

The third and final bound requires an upper bound for the Rényi length Lβ(N|ρ) as
a function of 〈N〉. This is obtained by considering the variation of the quantity Lβ(X) =

[
∫

dx p(x)β]1/(1−β) for β ≥ 1
2 and β 6= 1, under the constraints

∫
dx xp(x) = x̄ and∫

dx p(x) = 1, where integration is now over x ≥ 0. Applying the method of Lagrange
multipliers as before, the probability distribution maximising Lβ(X) is found to have
the form

p̃(x) =
1
λ̃

p̃1(x/λ̃), p̃1(x) = K̃(1± x)
−1

1−β , (A14)

analogous to Equation (A9). The + sign is chosen for 1/2 ≤ β < 1 and the − sign for β > 1,
where in the latter case one takes p1(x) = 0 for x > 1. The values of λ̃ and K̃ follow from
the constraints and 1/α + 1/β = 2 as
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λ̃ = x̄
2β− 1
|1− β| =

x̄
|1− α| , K̃ =

β

|1− β| =
α

|1− α| , (A15)

yielding the upper bound

Lβ(X) ≤ λ̃Lβ[ p̃1] = λ̃K̃−1(1± x̄/λ̃)
1

1−β = α
α

α−1 x̄ (A16)

for the Rényi length of any random variable X on [0, ∞). Choosing the particular ran-
dom variable having probability density p(x) = p(n|ρ) for 0 ≤ n ≤ x < n + 1 gives
x̄ = ∑n p(n|ρ)

∫ n+1
n dx x = ∑n(n + 1

2 )p(n|ρ) = 〈N〉+ 1
2 , and Lβ(X) = Lβ(N|ρ), and hence

the above upper bound reduces to

Lβ(N|ρ) ≤ α
α

α−1 (〈N〉+ 1
2 ). (A17)

This also holds in the limit α → 1, for which it gives the strong upper bound H(N|ρ) ≤
log(〈N〉+ 1

2 )e, which is close to the maximum entropy log(〈N〉+ 1) + 〈N〉 log(1 + 1/〈N〉)
(to within second order in 1/〈N〉), corresponding to a thermal state. Finally, substitution of
Equation (A17) into Equation (A12) yields the third bound in Theorem 2, as required.

Proof of Corollary 1. The proof of Equation (A11) above goes through with σ and RMSE
replaced by ∆χΦ, the maximising density p(x) in Equation (A9) by p(x− χ), and Hα(Θest−
Θ|ρ) by H(Φ|ρ). Using uncertainty relation (4) then leads to Equation (21) of Corollary 1,
in analogy to Equation (A12). The first two bounds in Equation (22) of the corollary
correspond to the cases α → ∞ and α = 1

2 , while the third bound follows via the upper
bound in Equation (A17) above.

Proof of Equation (68). As noted in the main text, Equation (68) for angular momentum is
obtained via a suitable modification of the derivation of upper bound (A17) above. This
achieved by expanding the domain of integration in the derivation to the full real number
line, and replacing the constraint

∫
dx xp(x) = x̄ by

∫
dx |x|p(x) = x̄. This leads to a

maximising probability density of the same form as in Equation (A14), but extended to
the negative numbers and with x replaced by x̄. This increases the corresponding Rényi
entropy by log 2 and hence upper bound (A16) increases by a factor of 2, to

Lβ(X) ≤ 2α
α

α−1 x̄. (A18)

Finally, choosing the random variable having probability density p(x) = p(j|ρ) for j− 1
2 ≤

x < j + 1
2 , where pj = 〈j|ρ|j〉 is the distribution of Jz, gives

x̄ = ∑
j

pj

∫ j+ 1
2

j− 1
2

dx |x| = 1
4

p0 + ∑
j 6=0

pj|j| =
1
4

p0 + 〈|Jz|〉, (A19)

and substitution into Equation (A18) gives Equation (68) as desired.

Appendix C

Proof of Theorem 3. The lower bound in Equation (41) of Theorem 3 was proved in the
main text. The upper bound is obtained by considering a purification |ψ〉〈ψ| of state ρ on
the joint Hilbert space of the probe and a reference ancilla R. If 1R denotes the unit operator
for the ancilla, then

A1R⊗G
α (|ψ〉〈ψ|) = inf

σRE :[σRE ,1⊗G]=0
Dα(|ψ〉〈ψ|‖σRE ) ≥ inf

σE :[σE ,G]=0
Dα(ρ‖σE ) = AG

α (ρ), (A20)
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where the inequality follows by applying data processing inequality (37) to operation of
tracing over the ancilla. Further, duality property (43), proved further below, implies that
the left hand side is given by

A1R⊗G
α (|ψ〉〈ψ|) = Hβ(|ψ〉〈ψ|1R⊗G)

= Hβ

(
∑
k
(1R ⊗ Pk)|ψ〉〈ψ|(1R ⊗ Pk)

)

=
1

1− β
tr

(∑
k

|ψk〉〈ψk|
〈ψk|ψk〉

〈ψk|ψk〉
)β


=
1

1− β ∑
k
〈ψk|ψk〉β, (A21)

where |ψk〉 := (1R ⊗ Pk)|ψ〉, and the last line follows noting that the |ψk〉〈ψk|/〈ψk|ψk〉
terms are mutually orthogonal rank-1 projectors. Finally, if |ψ〉 = ∑λ

√
wλ|uλ〉R ⊗ |vλ〉 is

the Schmidt decomposition of |ψ〉, so that ρ = ∑λ wλ|vλ〉〈vλ|, it follows that 〈ψk|ψk〉 =
∑λ wλ〈vλ|Pk|vλ〉 = tr[ρPk] = p(G = gk|ρ), and substituting in Equations (A20), (A21) gives

AG
α (ρ) ≤ A1R⊗G

α (|ψ〉〈ψ|) = 1
1− β ∑

k
p(G = gk|ρ)β = H(G|ρ), (A22)

thus yielding the upper bound in Theorem 3. Finally, if ρ is pure, then duality property (43)
immediately implies this bound is saturated.

Proof of duality property (43). The Rényi asymmetry of a pure state |ψ〉 follows from
definitions (36) and (38) as

AG
α (|ψ〉〈ψ|) = inf

σ:[σ,G]=0
Dα(|ψ〉〈ψ|‖σ)

= inf
σ:[σ,G]=0

1
α− 1

log tr

[(
σ

1−α
2α |ψ〉〈ψ|σ 1−α

2α

〈ψ|σ 1−α
α |ψ〉

〈ψ|σ
1−α

α |ψ〉
)α]

= inf
σ:[σ,G]=0

1
α− 1

log〈ψ|σ
1−α

α |ψ〉α

= inf
σ:[σ,G]=0

α

α− 1
log tr

[
|ψ〉〈ψ|∑

k
Pkσ

1−α
α Pk

]
= inf

σ:[σ,G]=0

α

α− 1
log tr[|ψ〉〈ψ|G σ

1−α
α ], (A23)

where the third line follows because the fractional expression in the round brackets of the
second line is a rank-1 projector, the fourth line from [σ, G] = 0, and the last line from the
cyclic property of the trace and the definition of ρG in Equation (26). To determine the
infimum over all σ, note that variation of tr[ρσ

1−α
α ] with respect to arbitrary σ, under the

constraint tr[σ] = 1, yields σ = σ̃ := ρ
α

2α−1 /tr[ρ
α

2α−1 ], and the corresponding extremal value
(tr[ρ

α
2α−1 ])

2α−1
α . Hence, noting that [σ̃, G] = 0 for [ρ, G] = 0, and that β = α/(2α− 1) for

1/α + 1/β = 2, it follows for the choice ρ = |ψ〉〈ψ|G that

AG
α (|ψ〉〈ψ|) =

α

α− 1
log(tr[ρ

α
2α−1 ])

2α−1
α =

2α− 1
α− 1

log(tr[ρ
α

2α−1 ])
2α−1

α = Hβ(|ψ〉〈ψ|G), (A24)

as per Equation (43).

Proof of Equation (44) relating asymmetry to maximally uniform ensembles. Let ρr
EX

and ρr
X denote the states in Equation (31) for the prior distribution pr(x) := 1/(2r) for

r < |x| and vanishing otherwise. Further, let Er ≡ {UxρU†
x ; pr(x)} denote the correspond-
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ing continuous ensemble, and U =
∫

dx U†
x ⊗ |x〉〈x| be the controlled unitary transforma-

tion used in Section 3.3. Fixing ε > 0 and letting σr be a state which achieves the infimum
in Equation (34) to within less than ε, it follows that

χα(Er) + ε > Dα(ρ
r
EX‖σr ⊗ ρr

X)

= Dα(Uρr
EXU†‖Uσr ⊗ ρr

XU†)

= Dα(ρ⊗ ρr
X‖
∫

dx pr(x)U†
x σrUx ⊗ |x〉〈x|)

≥ Dα(ρ‖σ̃r), (A25)

where σ̃r :=
∫

dr pr(x)U†
x σrUx and the last line follows by applying data processing inequal-

ity (37) to the partial trace operation. Hence, recalling the definition χ∞
α := limr→∞ χα(Er)

in Equation (44),
χ∞

α + ε > D(ρ‖σ̃∞). (A26)

However, using ∑k Pk = 1, one has

σ̃∞ = lim
r→∞ ∑

k,k′

1
2r

∫ r

−r
dx eixGPkσrPk′ e

−ixG = ∑
k,k′

lim
r→∞

1
2r

∫ r

−r
dx eix(gk−gk′ )PkσrPk′ = ∑

k
Pkσ∞Pk, (A27)

and thus [σ̃∞, G] = 0. It then follows from Equation (A26) that

χ∞
α + ε > inf

σ:[σ,G]=0
D(ρ‖σ) = AG(ρ). (A28)

Combined with χ∞
α = limr→∞ χ(Er) ≤ limr→∞ AG(ρ) = AG(ρ) from Theorem 3, this yields

AG(ρ)− ε < χ∞
α ≤ AG(ρ) (A29)

for all ε > 0. Hence AG(ρ) = χ∞
α as per Equation (44).

Appendix D

Proof of Theorem 4. Defining the translation isometry T : p(a, x) → p(x + a, x), analo-
gous to the unitary transformation U in Equation (A25), and the marginalisation operation
M : p(a, x) →

∫
dx p(a, x), analogous to the partial trace operation, it follows from

Equation (34) and data processing inequality (37) for A = Xest that

Iα(Xest : X) = inf
qA

Dα(pAX‖qA pX)

= inf
qA

Dα(T pAX‖T qA pX)

≥ inf
qA

Dα(MT pAX‖MT qA pX)

= inf
q

Dα(perr‖q ∗ p−) (A30)

as per Theorem 4, where the last line follows using (MT pAX)(y) = perr(y) via Equation (47)
and

(MT qpX)(y) =
∫

dx q(y + x)p(x) =
∫

dx q(y− x)p−(x) = (q ∗ p−)(y). (A31)

Proof of Corollary 2. Define the intervals Ij := [(j − 1
2 )|I|, (j + 1

2 )|I|) for integer j, and
the concentration operation C : p(y) → p(y mod I0), that shifts the distribution of y
onto interval I0. The probability density perr of Xerr = Xest − X p̃err is then related to the
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probability density p̃err of X̃err := Xerr mod I0 via p̃err = Cperr. More generally, for a
general density r one has by construction that

(Cr)(y) = ∑
j

r(y + n`I), y ∈ I0. (A32)

Now, data processing inequality (37) and Equation (A30) above give

Iα(Xest : X) ≥ inf
q

Dα(Cperr‖Cq ∗ p−) = inf
q

Dα( p̃err‖Cq ∗ p−), (A33)

where choosing r = q ∗ p− in Equation (A32) and p(x) = 1/`I on some interval I gives

(Cq ∗ p−)(y) = ∑
j
(q ∗ p−)(y + n`I)

=
1
`I

∑
j

∫
I

dx q(y + x + n`I)

=
1
`I

∑
j

∫
I+n`I

dx q(y + x)

=
1
`I

∫ ∞

−∞
dx q(y + x)

=
1
`I

(A34)

(with the second line following via Equation (A31)). Hence Equation (A33) simplifies to

Iα(Xest : X) ≥ Dα( p̃err‖`−1
I ) = log `I − Hα( p̃err) = log `I − Hα(X̃err) ≥ log `I − Hα(Xerr) (A35)

as per Corollary 2, with the final inequality following from Lemma 1 (proved below).

Proof of Lemma 1. Entropy is invariant under translations and hence, for the purposes of
proving Lemma 1, it is sufficient to consider Z̃ = Z mod I0 = [− 1

2 `I , 1
2 `I) for the interval

I0 in the proof of Corollary 2 above. If q denotes the probability density of Z, then the
corresponding probability density of Z̃ is then q̃ = Cq, as per Equation (A32).

It is convenient to represent q by a mixture of non-overlapping probability densities,
supported on the corresponding non-overlapping intervals Ij = I0 + n`I . In particular, one
has the identity

q(z) = ∑
j

wjqj(z), wj :=
∫

Ij

dz q(z), qj(z) :=
{

q(z)/wj, z ∈ Ij,
0, otherwise,

(A36)

and it follows that q̃ = ∑j wj q̃j, where q̃j = Cqj is supported on I0 and qj(z) = q̃j(z + n`I).
For the case of Shannon entropies, i.e., α = 1, it follows that

H(Z) = −∑
j

∫
Ij

dz wjqj(z) log wjqj(z) = −∑
j

∫
I0

dz wj q̃j(z) log wj q̃j(z) = H(J) + H(Z̃|J), (A37)

where J is the discrete random variable with distribution {wj}. Hence

H(Z)− H(Z̃) = H(J) + H(Z̃|J)− H(Z̃) = H(J|Z̃) ≥ 0, (A38)

yielding Lemma 1 for the case α = 1.
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Further, for α 6= 1 the Rényi entropies of Z and Z̃ have the forms

Hα(Z) =
1

1− α
log ∑

j

∫
Ij

dz [wjqj(z)]α =
1

1− α
log

∫
I0

dz ∑
j
[wj q̃j(z)]α, (A39)

Hα(Z̃) =
1

1− α
log

∫
I0

dz
[
∑

j
wj q̃j(z)

]α. (A40)

Defining pj(z) := wj q̃j(z)/ ∑j wj q̃j(z), it follows that ∑j pj(z) = 1, pj(z) ≤ 1 and 1
pj(z)
≥ 1.

Thus, letting ∑′j denote summation over nonzero values of pj(z),

∑j[wj q̃j(z)]α

[∑j wj q̃j(z)]α
= ∑

j

′pj(z)α =

{
∑′j pj(z) 1

pj(z)1−α ≥ ∑′j pj(z) = 1, α ≤ 1,

∑′j pj(z)pj(z)α−1 ≤ ∑′j pj(z) = 1, α ≥ 1.
(A41)

Hence ∑j[wj q̃j(z)]α is greater than or equal to (less than or equal to) [∑j wj q̃j(z)]α if α < 1
(α > 1), and it immediately follows from the above forms for Hα(Z) and Hα(Z) that

Hα(Z) ≥ Hα(Z̃) (A42)

for the case α 6= 1, yielding Lemma 1 as desired.
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