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Abstract: The Calogero–Leyvraz Lagrangian framework, associated with the dynamics of a charged
particle moving in a plane under the combined influence of a magnetic field as well as a frictional
force, proposed by Calogero and Leyvraz, has some special features. It is endowed with a Shannon
“entropic” type kinetic energy term. In this paper, we carry out the constructions of the 2D Lotka–
Volterra replicator equations and the N = 2 Relativistic Toda lattice systems using this class of
Lagrangians. We take advantage of the special structure of the kinetic term and deform the kinetic
energy term of the Calogero–Leyvraz Lagrangians using the κ- deformed logarithm as proposed by
Kaniadakis and Tsallis. This method yields the new construction of the κ-deformed Lotka–Volterra
replicator and relativistic Toda lattice equations.
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1. Introduction

Recently, Calogero and Leyvraz [1,2] demonstrated a time-independent Hamiltonian
description of the motion of a charged particle moving in a two dimensional space under
the influence of a magnetic field perpendicular to the plane of motion and a frictional force
proportional to the velocity. This motion may be viewed as a dynamics of cyclotron motion
with friction; this model arises through the coupling of a particle to a large number of
external degrees of freedom. The most interesting feature of this Lagrangian is the kinetic
energy term—entropic type kinetic energy. This makes the Lagrangian a nonstandard one.
We have explored the applications of this class of Lagrangians in our earlier papers [3,4].

It is worth noting that some physical systems cannot be described by the Boltzmann–
Gibbs statistical mechanics, for example, systems such as long-range interactions, long-time
memory and multifractal or hierarchical structures are some of them. To overcome at least
some of these difficulties, Tsallis [5,6] proposed a generalized entropic form based on a
κ-deformed logarithm. Later, an example of self-dual κ-deformed logarithmic functions
is found in the work of Kaniadakis [7–11]. Over the last decade or so, scientists have
observed that many physical and social phenomena often follow the so-called power law
distributions (see for example, [12–15]). We demonstrated that many (generalized) power
law distribution equations can be derived from Calogero–Leyvraz Lagrangian formalism
using κ-deformation theory.

These are the two popular ways to deform logarithmic and exponential terms in
physics. We propose a new Lagrangian where the logarithm term appearing in Calogero–
Leyvraz is replaced by a deformed logarithmic function, and study the dynamics. The alge-
braic structures arising in this κ-deformed framework have been carefully grafted by Scar-
fone in [16]; in fact, the concept of generalized algebras has been employed constructively
to study entropic forms in [16,17]. It is worth noting that the generalized entropies [18]
play an important role in generalized distribution theory in complex systems [19] and they

Entropy 2022, 24, 1673. https://doi.org/10.3390/e24111673 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24111673
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111673?type=check_update&version=1


Entropy 2022, 24, 1673 2 of 16

have been studied extensively from the information geometric point of view in [20,21]. The
aim of this work is to carry out the formulation of the κ-deformed well-known dynami-
cal systems, namely, the Lotka–Volterra replicator equation and N = 2 relativistic Toda
lattice system.

Among ecological models, the Lotka–Volterra equation for predator–prey systems [22–24]
has played a significant role in dynamical systems. It is known that the solutions to this
conservative system in phase space are level curves of the energy function. In the mathe-
matical investigations of ecological models, conservative dynamics are often very useful
from the (geometrical) mechanics point of view. It is known that the replicator equation in
the evolutionary game theory [25] is closely related to the Lotka–Volterra equation. The
replicator equation is the first and most important game dynamics studied in connection
with evolutionary game theory. It was originally developed for symmetric games with
finitely many strategies. Evolutionary game theory [26] studies the behavior of large pop-
ulations of agents who repeatedly engage in strategic interactions. Note that changes in
behavior in these populations are driven either by natural selection via differences in birth
and death rates, or by the application of myopic decision rules by individual agents.

The Hamiltonian of the two-dimensional motion of electrons in the presence of the
periodic potential and the magnetic field perpendicular to the two-dimensional plane is
described by:

HHo f = eiq + e−iq + eip + e−ip [q, p] = ih̄. (1)

The spectrum of this system yields a butterfly like structure, known as Hofstadter’s butter-
fly [27]. In a completely independent line of research, the string community investigated a
system associated to Hamiltonian,

H = eq + e−q + ep + e−p, (2)

when q and p are restricted to be purely imaginary; this equation reduces to Hofstadter’s
Hamiltonian (1). In general, q and p are complex coordinates, hence the equation determines
a real two-dimensional Riemann surface, or equivalently a complex one-dimensional
curve, whose shape is parameterized by the value of H [28,29]. This appears when mirror
symmetry is applied to a non-compact Calabi–Yau geometry known as the local P1 × P1
geometry. This curve is connected to the Seiberg–Witten curve, encoding the information
on instantons in N = 2 supersymmetric pure SU(2) gauge theory [30–32].

The system known nowadays as the relativistic Toda lattice (RTL) was invented by
S.N.M. Ruijsenaars—the Hamiltonian of the periodic relativistic Toda lattice with just N = 2
particle, after removing the center-of-mass mode. We can illustrate this as follows [28,29].
The Ruijsenaars Hamiltonian [33] of N = 2 quantum Toda lattice is given by:

HRT = eRp1 + eRp2 + R2(eq1−q2+Rp1 + eq2−q1+Rp2). (3)

Let us consider center of mass frame p1 + p2 = 0 and define

p := Rp1, q := q1 − q2 + Rp1,

which yields an one parameter family of (2),

HRToda = ep + e−p + R2(eq + e−q). (4)

Results of the paper The Calogero–Leyvraz Lagrangian has some interesting features; it
is endowed with the Shannon entropic [34] kinetic energy term. The Legendre transform
of this Lagrangian yields a Hamiltonian with the exponential momentum term. We have
seen that the Calogero–Leyvraz Lagrangian/Hamiltonian allows us to formulate several
features related to deformed dynamical systems, balanced loss–gain systems and gener-
alized rate equations [3,4]. In particular, most of the power law distributions and rate
equations can be manufactured from this class of Lagrangian. It has been explored that
the Calogero–Leyvraz theory of cyclotron-friction motion is closely related to the “curl
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force” theory as proposed by Berry and Shukla [35,36], although the latter is a totally
position-dependent nonconservative force with a nonvanishing curl, whereas the former is
totally velocity dependent.

In this paper, we present a different formulation of the celebrated Lotka–Volterra
equation [22,24] using the Calogero–Leyvraz Lagrangian. We also give a new derivation of
the replicator equation using the Calogero–Leyvraz type Lagrangian. The final example
is related to the N = 2 relativistic Toda lattice system. We formulate the latter equation
using a different type of entropic Lagrangian; this entropic kinetic energy is described
via a cross-entropy term, which yields a new formulation of the N = 2 relativistic Toda
lattice system.

Since the kinetic energy term of the Calogero–Leyvraz Lagrangian involves a log-
arithmic term, we deform this logarithmic term using the Kaniadakis method [17] and
obtain κ-deformed Lotka–Volterra, replicator and N = 2 relativistic Toda Lattice equations.
In fact, the entire reason to shift the usual formalism to Calogero–Leyvraz formalism is
to formulate κ-deformed integrable models. We also formulate these deformed equations
using the Tsallis logarithm.

In the introductory section, we review a κ -deformed Liénard equation which satisfies
the Chiellini integrability condition. This condition allows us to integrate the Liénard type
equation using the Abel equation of the first kind. In general, the Liénard equation does
not give a Lagrangian formulation, but with the imposition of the Chiellini condition, it
yields a Lagrangian formulation.

This paper is organized as follows. In Section 2, we review the Calogero–Leyvraz
Lagrangians and Hamiltonians and their applications. In particular, we also describe
the κ-deformed Liénard type equation using Kaniadakis and Tsallis type deformation of
the kinetic energy term and demonstrate that this Liénard equation admits the Chiellini
integrability condition [37]. This integrability condition plays an important role in the
formulation of Lagragian and solutions of the integrable class of the Liénard equation. A
nonexhaustive list of applications includes, among others, those in [38–40]. After giving
a gentle introduction to the Calogero–Leyvraz method, we apply this scheme for the
construction of the Lotka–Volterra, replicator and N = 2 relativistic Toda lattice systems in
Section 3. Our Section 4 is dedicated to the construction of κ-deformed equations. We give
a formulation of the deformed Lotka–Volterra, replicator and N = 2 relativistic Toda lattice
equations using the Kaniadakis and Tsallis methods.

2. Review of Calogero–Leyvraz’s Lagrangian and Hamiltonian Formulation of the
Dynamics of Cyclotron with Friction System

The Hamiltonian of the free particle moving against friction is given by:

H(p, z) = ep + cz, (5)

according to the Newtonian equation of motion z̈ = −ż. The corresponding Lagrangian
description of this system is given by:

L = ż ln ż− cz. (6)

A minor modification of the Hamiltonian H(p, z) = ep + λp
c + cz yields the dynamics

of a particle moving against friction in a constant force field λ.
Legendre transformation of Calogero–Leyvraz Lagrangian: Let us recall the Calogero–

Leyvraz method first; the Lagrangian is given as L = −γq + v ln v, where v = q̇. The
equation of motion q̈ + γq̇ = 0 yields a constant of motion

C = v + γq, where v = q̇. (7)



Entropy 2022, 24, 1673 4 of 16

The corresponding momentum

p =
∂L
∂v

= (ln v + 1) ⇒ v = ep−1.

Substituting this in the Legendre transformation,

FL(L) = vp− L = v(1 + ln v)− L = v + γq; (8)

thus we obtain the Calogero–Leyvraz Hamiltonian,

HCL = ep + γq, (9)

where we have scaled the momentum to ignore the constant term. Hence we establish
the connection between the Calogero–Leyvraz Lagrangian and Hamiltonian via Legen-
dre transformation. This construction can be extended to Lagrangian involving a time-
dependent coefficient.

2.1. Calogero–Leyvraz Hamiltonian and Planar Systems

Calogero and Leyvraz straight-forwardly generalized this motion by complexification
to describe motions taking place in a plane. Physically, this is connected to the motion
against friction of a charged particle in the presence of a perpendicular constant magnetic
field, or a constant electric field lying in that plane, or both these forces. If we set c = γ + iω
and go to the complex plane, the following pair of Poisson commuting Hamiltonians
are obtained:

HR = epx cos py + γx−ωy, HI = −epx sin py + ωx + γy.

At first we consider a minor change; coefficients are considered to be time dependent.
The two-dimensional Calogero–Leyvraz model is given by the following Hamiltonian:

H = epx cos py + γ(t)x−ω(t)y, (10)

where γ(t), ω(t) are parameters, (x, y) are coordinates and (px, py) are corresponding
momenta. Here we note that the potential energy is a linear function of coordinates while
the kinetic energy Ψ = epx cos py. The Hamiltonian (10) yields the following equations
of motion:

ẍ = −γ(t)ẋ + ω(t)ẏ, ÿ = −γ(t)ẏ−ω(t)ẋ. (11)

Calogero and Leyvraz reformulated (11) in a 3-dimensional context by introducing the
3-vector r = (x, y, 0) in the xy-Cartesian plane and the unit vector ẑ = (0, 0, 1) orthogonal
to that plane; this yields:

r̈ = −γ(t)ṙ + ω(t)ṙ× ẑ. (12)

We obtain the sister (or mirror) equations of (11) if we consider a different K.E., viz.,
Φ(px, py) = epx sin py, with the same potential energy γx−ωy, this is given by:

ẍ = −γ(t)ẋ + ω(t)ẏ, ÿ = γ(t)ẏ−ω(t)ẋ. (13)

It is easy to check both (11) and (13).
The linear equation can be generalized to a nonlinear equation from the Calogero–

Leyvraz Hamiltonian using generalized potential energy. Suppose we consider

H = epx cos py + γ(t)φ(x, y)−ω(t)ψ(x, y), (14)

where φ and ψ are some functions of x and y. This yields

ẍ = −γ(t)φx(x, y)ẋ + ω(t)ψy(x, y)ẏ, ÿ = −γ(t)φx(x, y)ẏ−ω(t)ψy(x, y)ẋ. (15)
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The complex kinetic energy is given by:

Kc = Ψ + iΦ = epx cos py + iepx sin py = epx+ipy = eP, P = px + ipy. (16)

If we consider the (complex) potential energy Uc = Γ(t)z, then the equation of motion
resulting from the Hamiltonian H = eP + Γz is

z̈ = Γ(t)ż. (17)

Suppose Re(P) = p and Re(z) = a(t)x, then the Hamiltonian becomes HR = ep + q
and this yields ẍ = −a(t)ẋ. Note that a nonlinear potential energy with the same K.E.
yields nonlinear equations, for example, H1 = ep + a(t) ln x and H2 = ep + a(t)xn yield
the following equations of motion: viz

xẍ + a(t)ẋ = 0, ẍ + na(t)xn−1 ẋ = 0. (18)

respectively.
Equation (17) admits, for constant Γ, a Lagrangian:

L(z, ż) = −z + Γ−1ż log ż, (19)

with (17) following from the associated Euler–Lagrange equation.

2.2. Illustration: Generalized Liénard Equation and the Calogero–Leyvraz Lagrangian

We have seen that the Calogero and Leyvraz construction yields interesting sets of
dynamical equations. In this section, we formulate a nonlinear ODE belonging to the
Liénard class of equations.

The Liénard type ordinary second order nonlinear differential equation is given by:

q̈ + f (q)q̇ + g(q) = 0. (20)

f and g are two continuously differentiable functions on R. Since the Liénard equation
itself is also an autonomous differential equation, the substitution, y = dq

dt or q =
∫

y(t)dt,
leads the Liénard equation to become a first order differential,

y
dy
dq

+ f (q)y + g(q) = 0, (21)

which belongs to the Abel equation of the second kind. This can also be expressed in terms
of the Abel equation of the first kind, which we use later.

Let us define the following generalization of the Calogero–Leyvraz Lagrangian:

L = (q̇ + f (q)) ln(q̇ + f (q))− f (q). (22)

The Euler–Lagrange equation yields:

q̈ + f ′ q̇ + f ′ ln(q̇ + f (q)) = 0. (23)

For small values of (q̇ + f (q)), the above equation reduces to the well-known nonstan-
dard Lagrangian,

q̈ + 2 f ′ q̇ + f f ′(q) = 0. (24)

For different choices of f we get different types of equations. Let f (q) = λqn, then n = 1;
this becomes a damped oscillator equation, n = 2; this maps to a second Riccati or modified
Emden–Fowler equation. The corresponding Lagrangian is given by:

LR = ln(q̇ + f (q)). (25)
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2.3. Deformations of Calogero–Leyvraz Lagrangians and κ-Deformed Oscillator Equations

The most attractive feature of the Calogero–Leyvraz Lagrangian is the involvement
of a logarithmic term. We grab this opportunity and deform the (entropic) kinetic energy
term. We use primarily Kaniadakis and Tsallis logarithms. At first we deform (22) using
the Tsallis logarithm.

Let us introduce the Tsallis logarithm. We assume q > 0 for practical purposes.
The Tsallis q-logarithm and q-exponential functions are defined by:

lnq(x) =
x1−q − 1

1− q
, expq(x) =

(
1 + (1− q)x

) 1
1−q , (26)

where q 6= 1 and 1 + (1− q)x 6= 0. For q→ 1(
1 +

x
N
)N ≈ ex, N

(
x

1
N − 1

)
≈ ln x.

Proposition 1. Let lnκ(q̇ + f (q)) be the Tsallis κ-deformed logarithm. The Euler–Lagrange equa-
tion of the Lagrangian

L = (q̇ + f (q)) lnκ(q̇ + f (q))− µ f (q), −1 < κ < 1, (27)

yields

(κ + 1)
(
(q̈ + f ′ q̇)− 1

κ
f ′(q)(q̇ + f (q))

)
− 1

κ
Λ f ′(q)(q̇ + f (q))1−κ = 0, (28)

where Λ = µ κ
κ+1 − 1.

Proof. By direct computation we obtain:

d
dt
(∂L

∂q̇
)
= (κ + 1)2(q̈ + f ′ q̇

)
(q̇ + f (q)

)κ ,

∂L
∂q

= f ′(q)
(
(1 + κ)(q̇ + f (q))κ1 + lnκ(q̇ + f (q)

)
+ µ f ′(q)

=
κ + 1

κ
f ′(q)

(
(1 + κ)

(
q̇ + f (q)

)κ − 1 + µ
κ

κ + 1

)
.

Here, we have tacitly used the formula of lnκ x.

Corollary 1. Suppose µ = κ + 1
κ . The Euler–Lagrange equation of the Lagrangian

L = (q̇ + f (q)) lnκ(q̇ + f (q))− κ + 1
κ

f (q), −1 < κ < 1, (29)

yields the

q̈ +
κ − 1

κ
f ′(q)q̇− 1

κ
f ′ f = 0. (30)

Let us demonstrate this with a couple of examples. Suppose we take κ = 1
2 , then (28)

reduces to
3
2
(
q̈− f ′(q)q̇− 2 f ′ f (q))− 2Λ f ′(q)

√
(q̇ + f (q)) = 0. (31)

If we take f (q) = a
q

2, then Equation (30) yields the second-order Riccati ( also known as the
modified Emden ) equation,

q̈ + a
κ − 1

κ
qq̇− 1

κ
a2q3 = 0. (32)
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2.4. Kaniadakis κ-Deformed Lagrangian, Liénard Equation and Chiellini Integrability Condition

We wish to repeat this calculation using the Kaniadikis κ-deformed logarithm. We
obtain the following result. Let lnκ q = 1

2κ (q
κ − q−κ) be the Kaniadikis logarithm.

Proposition 2. The Euler–Lagrange equation for the Lagrangian L = (q̇+ f (q)) lnκ(q̇+ f (q))−
µ f (q), yields

(
q̈ + f ′ q̇− κ

κ + 1
f ′(q)

)
− κ − 1

κ + 1
(
q̈ + f ′ q̇

− κ

κ − 1
f ′(q)

)
(q̇ + f (q))−2κ +

2κµ

κ + 1
f ′(q)(q̇ + f (q))−κ+1 = 0.

(33)

Suppose we take κ = 1
2 and f (q) = 3

2 q2, then (33) reduces to

q̈ + 3qq̇− q +
(
q̈ + 3qq̇ + 3q)(q̇ +

3
2

q2)−1 + 2q

√
q̇ +

3
2

q2 = 0. (34)

Consider the κ-deformed Lagrangian without the potential µ term.

Corollary 2. The Euler–Lagrange equation corresponding to the Lagrangian Lκ yields a one
parameter family of second-order equations,

(1 + κ)(q̈ + f ′(q)q̇) + (1− κ)(q̈ + f ′(q)q̇)(q̇ + f (q))−2κ

− f ′(q)
κ

(q̇ + f (q))
(
(1 + κ)− (1− κ)(q̇ + f (q))−2κ

)
= 0.

(35)

This equation is a fractional damped system except for κ = ± n
2 , where n ∈ Z.

The Liénard type ordinary second order nonlinear differential equation can be mapped
to the first kind first order Abel differential equation,

dy
dq

= f (q)y3 + g(q)y2. (36)

This Abel equation allows us to find some exact general solutions of the Liénard type
equations by using the integrability conditions of the Abel equation.

Lemma 1. A first kind Abel type differential equation of the form (36) can be exactly integrated if
the functions q(x) and p(x) satisfy the condition:

d
dq

( g(q)
f (q)

)
= µ f (q), µ = constant, µ 6= 0. (37)

Claim 1. Equation (35) reduces to the Liénard equation for κ = −1,

q̈ +
1
2

f ′(q)q̇− 1
2

f ′(q) f (q) = 0, (38)

which satisfies the Chiellini condition.

One can also readily verify that for κ = −1/2, Equation (35) satisfies the generalized
Liénard equation,

F(q, q̇)q̈ + 2 f ′(q)q̇− f ′ f (3 f + 2) = 0, (39)

where F(q, q̇) = (1 + q̇ + 3 f (q)).
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3. Entropic Lagrangian and Integrable Class of Systems

In this section, at first we give a new derivation of Lotka–Volterra and replicator
equations using Calogero–Leyvraz Lagrangians endowed with the “Shannon entropic” [34]
type kinetic energy terms. Then, using the cross entropy type kinetic energy term, we
derive the N = 2 relativistic Toda lattice equation.

3.1. Calogero–Leyvraz Lagrangian and Lotka–Volterra Equation

We start with the derivation of the Lotka–Volterra equation. Consider the following
logarithmic Lagrangian endowed with an entropic kinetic term:

L = (1− q̇) ln (1− q̇)− aq− ae−q. (40)

The Euler–Lagrange equation yields:

q̈
1− q̇

+ 1− e−q = 0. (41)

Let us write this equation as a system of first-order equations. Define:

1− q̇ = z, e−q = y. (42)

Then (41) equation can recasted as:

ẏ = (zy− y), ż = a(z− zy). (43)

This is a standard form of the celebrated 2D Lotka–Volterra equation in non-dimensionalized
form [23].

In the standard formalism of the Lotka–Volterra equation (43), the Hamiltonian is
given by:

H = z− ln z + ay− a ln y. (44)

The nonstandard Hamiltonian form,(
ẏ
ż

)
=

(
0 yz
−yz 0

)( ∂H
∂y

∂H
∂z ,

)

yields Equation (43). The two Hamiltonians can be connected easily through exponen-
tial mapping.

3.2. Replicator Equation

In 1978, Taylor and Jonker [41] introduced a system of differential equations which
were designated later on as the replicator equation. This equation plays an important
role in evolutionary game theory. The replicator equation models the frequency evolution
of certain strategic behaviors within a biological population. Hofbauer [25] unveiled an
equivalence relation between the Lotka–Volterra equation and the replicator equation.

Consider the first population where individuals interact with each other according to
a set of n + 1 pure strategies E0, · · · , En with relative frequencies x0, · · · , xn, and the second
population plays different m + 1 pure strategies F0, · · · , Fm with frequencies y0, · · · , ym.
After a contest Ei versus Fj, the payoff for the first player is aij whereas for the second
player it is bji. Let A = (aij) be the matrix consisting of these aij and so also B, then for such
games the evolutionary dynamics is given by:

ẋi = xi
(
(Ay)i − xȦy

)
, i = 0, · · · , n (45)

ẏj = yj
(
(Bx)j − yḂx

)
, j = 0, · · · , m. (46)
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Adding or multiplying a (positive) constant to each column of A or B does not alter
the dynamics.

In the case of n = m = 1, the above equations simplify to:

ẋ = x(1− x)
(
a− (a + b)y

)
, ẏ = y(1− y)

(
− c + (c + d)x

)
. (47)

We will use the Calogero–Leyvraz type Lagrangian to derive the planar replicator type equation.

Calogero–Leyvraz Lagrangian and Replicator Equation

We define the Lagrangian of the coupled system as:

L = q̇i ln q̇i + (1− q̇i) ln (1− q̇i) + λq̇1q2 − µq̇2q1 + aq1 − cq2, i = 1, 2. (48)

It is straight forward to see that the Lagrangian (48) yields:

q̈1 = q̇1(1− q̇1)
(
a− (λ + µ)q̇2

)
, q̈2 = q̇2(1− q̇2)

(
− c + (λ + µ)q̇1

)
. (49)

Let us define:
q̇1 = x, q̇2 = y. (50)

We obtain the replicator equation from (49):

ẋ = x(1− x)
(
a− (λ + µ)y

)
, ẏ = y(1− y)

(
− c + (λ + µ)x

)
. (51)

3.3. Logarithmic Lagrangian Formulation of N = 2 Relativistic Toda Lattice Equation

In this example, we consider a Lagrangian with the cross entropic type kinetic energy
term,

L = q̇ ln (q̇ +
√

q̇2 + 1)−
(
(q̇ +

√
q̇2 + 1)−

(
q̇ +

√
q̇2 + 1)−1)− cosh q. (52)

Proposition 3. The Euler–Lagrange equation, the Lagrangian (52), yields:

q̈√
q̇2 + 1

= − sinh q. (53)

Proof. After an elaborate calculation from the entropic K. E. term (L1), it yields:

∂L1

∂q̇
= ln (q̇ +

√
q̇2 + 1) +

q̇√
q̇2 + 1

,

and the second K.E. term
(
(q̇ +

√
q̇2 + 1)−

(
q̇ +

√
q̇2 + 1)−1) = L2 yields:

∂L2

∂q̇
=

q̇√
q̇2 + 1

.

These two expressions lead to a magical cancellation of the term q̇√
q̇2+1

. Using the Euler–

Lagrange equation we obtain the equation.

The Ruijsenaars Hamiltonian is given by:

H =
N

∑
n=1

(
1 + q−1/2R2eqn−qn+1

)
eRpn , (54)

where q = eiRh̄.
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For N = 2 case this equation reduces to:

H2 = eRp1 + eRp2 + R2(eq1−q2+Rp1 + eq2−q1+Rp2
)
. (55)

Consider the centre of mass frame p1 + p2 = 0. Let us define:

p := Rp1, q := q1 − q2 + Rp1. (56)

We express H2 as:
Ĥ2 = ep + e−p + R2(eq + e−q); (57)

for practical purposes we scaled R = 1.
Let us express Hamiltonian (57) in terms of cosine hyperbolic function

H = cosh p + cosh q, (58)

where we drop the factor 2. The Hamiltonian equation yields:

q̇ =
∂H
∂p

= sinh p, ṗ = −∂H
∂q

= − sinh p, (59)

which reduces to Equation (53).

3.3.1. Connection to Calabi–Yau Manifold

We must note that the energy function E = ep + e−p + eq + e−q can be expressed as:

X + X−1 + Y + Y−1 = E. (60)

This defines a genus one Riemann surface. The complex 3D space V = X + X−1 + Y +
Y−1 − E describes a Calabi–Yau manifold. This sets up a connection with the Calabi–
Yau manifold. The Riemann surface has enough information to describe this Calabi–
Yau manifold. The energy function E(p, q) considered to be Hamiltonian appears in the
string theory.

Mirror symmetry states that a CY manifold has its mirror dual. The Kähler structure
of the original CY is mapped to the complex structure of the mirror CY, and vice versa.
In our case, the mirror curve is given by:

ep + µ1e−p + eq + µ2e−q = 1, (61)

where µ1 and µ2 are the complex moduli of the mirror CY.
The new equation is in the same form as the Lagrangian of the N = 2 relativistic Toda

lattice equation. Our case is similar to the case of the quantized mirror curve for the local
P1 × P1, which is related to the quantum eigenvalue problem of the relativistic Toda lattice
with just two particles.

3.3.2. Calogero–Leyvraz Type Lagrangian with Coupling Constant and Mirror Map

Consider the following map:

L = q̇ ln (q̇ +
√

q̇2 + 1)−
(
(q̇ +

√
q̇2 + 1)−

(
q̇ +

√
q̇2 + 1)−1)− γ−1 cosh q, (62)

where γ−1 is a coefficient ( or coupling ) parameter. The corresponding Hamiltonian or
energy function is given as:

E = (ep + e−p) + γ−1(eq + e−q). (63)
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This yields:
1
E
=

1
E2 (e

p + e−p) +
1

γE
(eq + e−q).

Let us change the variable,

ep 7→ ep

E
, eq 7→ γ−1

E
eq. (64)

4. The κ-Deformed 2D Lotka–Volterra, Replicator and Relativistic Toda
Lattice Equations

By deforming the natural logarithm and exponential functions we present κ-deformed
2D Lotka–Volterra and relativistic Toda lattice equations in this section. We will use both
Kaniadakis and Tsallis deformations to derive new sets of κ-deformed systems.

4.1. The κ Deformation of 2D Lotka–Volterra Equation

We describe two types of κ-deformed systems, semi-deformation and full deformation.
In the first case we only deformed the kinetic part, whereas in the second case we consider
both the kinetic energy (K.E.) and potential energy (P.E.) parts of the deformations.

Case 1: (deforming only K.E) Consider the following κ-deformed Lagrangian:

Lκ = (1− q̇) lnκ (1− q̇)− q− e−q. (65)

Proposition 4. The Euler–Lagrange equation of the deformed Lagrangian (65) reads:

q̈
1− q̇

Expκ ln(1− q̇) + 1− e−q = 0. (66)

Proof. It is easy to see that:

∂Lκ

∂q̇
= − lnκ (1− q̇)− 1

2
(
(1− q̇)κ + (1− q̇)−κ

)
,

= −1
κ

sinh κ ln(1− q̇)− cosh κ ln(1− q̇).

Thus we obtain:

d
dt
(

∂Lκ

∂q̇
) =

q̈
1− q̇

(
cosh κ ln(1− q̇) + κ sinh κ ln(1− q̇)

)
=

q̈
1− q̇

Expκ ln(1− q̇),

where the generalized κ deformed exponential is given by

Expκx = cosh κx + κ sinh κx. (67)

The final result follows from the remaining part of the calculation.

It is clear that when κ → 0 we recover the ordinary Lotka–Volterra equation.

Case 2: (deforming both K.E. and P.E.) In this case we also deformed the exponential
term e−q in the potential. We take the following Lagrangian:

Ld
κ = (1− q̇) lnκ (1− q̇)− q− expκ(−q). (68)

Thus we obtain the following result from the straightforward computation.

Proposition 5. The Euler–Lagrange equation of the deformed Lagrangian Ld
κ yields:

q̈
1− q̇

Expκ ln (1− q̇) + 1− 1√
1 + κ2q2

expκ(−q) = 0. (69)
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4.1.1. Expressing κ-Deformed Equation

The inverse of the generalized κ deformed exponential Expκ(x) is given by:

Expκ(x)−1 = Exp− 1
κ
(x) = cosh κx− 1

κ
sinh κx. (70)

We now express Equation (66) in a standard form. Let us define:

1− q̇ = z, y = e−q. (71)

Thus we obtain:

ẏ = −e−q q̇ = −y(z− 1),
−ż
z

Expκ ln z + 1− y = 0.

This can be expressed as:

ẏ = y− zy, żExpκ ln z = z− yz. (72)

We recover the original equation when κ → 0.
Let w = ln z or z = ew. Then the second equation becomes

ẇw = Exp− 1
κ
(w)(1− y). (73)

A further change of variable p = 1
2 w2 yields a modified set of deformed Lotka–Volterra

equations:

q̇ = (e
√

2p − 1), ṗ = d(1− e−q), where d = Exp− 1
κ
(
√

2p). (74)

Hence we express the deformed Lotka–Volterra equation in a standard form using the
generalized κ deformed exponential function.

4.1.2. Tsallis Logarithm and Deformed Lotka–Volterra System

In section we express the Tsallis logarithm and exponential in terms of κ, which are
given as:

lnκ(q) =
qκ − 1

κ
, expκ(q) =

(
1 + κq)

1
κ . (75)

We now deform the Lotka–Volterra Lagrangian using the κ-deformed Tsallis logarithm
and exponential. It is defined as:

LT
κ = (1− q̇) lnκ (1− q̇)− q− expκ(−q), (76)

with

lnκ (1− q̇) =
(1− q̇)κ − 1

κ
, expκ(−q) =

(
1− κq)

1
κ , (77)

where 1− κq > 0.

Proposition 6. The Euler–Lagrange equation associated with the Tsallis deformed Lagrangian LT
κ

yields:

q̈(1 + κ)(1− q̇)κ−1 + 1−
expκ(−q)
(1− κq)

= 0. (78)

Proof. Using the properties of the Tsallis logarithm and exponential functions we arrive at
our desired result.
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One can readily check that, when κ → 0, Equation (79) reduces to the usual Lotka–
Volterra equation. If we assume only the deformation of the kinetic term using the Tsallis
logarithm, then Equation (79) reduces to:

q̈(1 + κ)2(1− q̇)κ−1 + 1− exp(−q) = 0. (79)

4.2. The κ-Deformed Replicator Equation

We can deform the Lagrangian of the replicator Equation (48) using the Kaniadakis or
Tsallis deformation of logarithm term. Using Kaniadakis deformation we obtain:

L = q̇i lnκ q̇i + (1− q̇i) ln (1− q̇i) + λq̇1q2 − µq̇2q1 + aq1 − cq2, i = 1, 2. (80)

Proposition 7. With the Euler–Lagrange equation related to the deformed Lagrangian (80), we
obtain the Kaniadakis deformed coupled equation:

q̈1
(
(1− q̇1) cosh κ ln q̇1 + q̇1 cosh κ ln (1− q̇1)

)
= q̇1(1− q̇1)

(
a− (λ + µ)q̇2

)
, (81)

q̈2
(
(1− q̇2) cosh κ ln q̇2 + q̇2 cosh κ ln (1− q̇2)

)(
− c + (λ + µ)q̇1

)
. (82)

Corollary 3. The Kaniadakis κ deformed replicator equation is given by:

ẋ
(
(1− x) cosh κ ln x + x cosh κ ln (1− x)

)
= x(1− x)

(
a− (λ + µ)y

)
, (83)

ẏ
(
(1− y) cosh κ ln y + y cosh κ ln (1− y)

)
= y(1− y)

(
− c + (λ + µ)x

)
, (84)

where x = q̇1 and y = q̇2.

One can readily see when κ → 0 the deformed replicator Equations (83) and (84)
reduces to the original replicator equation.

We can repeat the same procedure using Tsallis deformation of the logarithm. The cou-
pled equations are given by:

(1 + κ)q̈1
(
q̇κ−1

1 + (1− q̇1)
κ−1) = a− (λ + µ)q̇2, (1 + κ)q̈2

(
q̇κ−1

2 + (1− q̇2)
κ−1) = −c + (λ + µ)q̇1, (85)

which leads to the Tsallis deformed replicator equation,

(1 + κ)ẋ
(

xκ−1 + (1− x)κ−1) = a− (λ + µ)y, (1 + κ)ẏ
(
yκ−1 + (1− y)κ−1) = −c + (λ + µ)x. (86)

This again reduces to the original replicator equation for κ → 0.

4.3. The κ-Deformed N = 2 Relativistic Toda Lattice System

In this section, at first we also modify the entropic kinetic energy term, keeping all
other terms unchanged. The Kaniadakis κ-deformed Lagrangian for the N = 2 relativistic
Toda lattice system is defined as:

L1κ = q̇ lnκ(q̇ +
√

q̇2 + 1)− 1
2
(
q̇ +

√
q̇2 + 1) +

1
q̇ +

√
q̇2 + 1

)
− γ−1 cosh q. (87)

Proposition 8. The Euler–Lagrange equation corresponding to the κ-deformed Lagrangian L1κ

yields:
q̈√

1 + q̇2
cosh κ ln (q̇ +

√
1 + q̇2) +

d
dt

( q̇√
1 + q̇2

(
cosh κ ln( q̇ +

√
1 + q̇2)− 1

))
+ γ−1 sinh q = 0. (88)

Proof. This proof follows from the direct computation.

One can readily check that for κ → 0 (89) reduces to the ordinary N = 2 relativistic
Toda lattice equation.
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For the most general case, we deform the potential term cosh q too, which yields the
following Lagrangian:

L =1κ= q̇ lnκ(q̇ +
√

q̇2 + 1)− 1
2
(
q̇ +

√
q̇2 + 1) +

1
q̇ +

√
q̇2 + 1

)
− γ−1 coshκ q.

We obtain κ-deformed N = 2 relativistic Toda lattice equation,

q̈√
1 + q̇2

cosh κ ln (q̇ +
√

1 + q̇2) +
d
dt

( q̇√
1 + q̇2

(
cosh κ ln (q̇ +

√
1 + q̇2)− 1

))
+

1√
1 + q̇2

γ−1 sinhκ q = 0. (89)

This yields the most general Kaniadakis κ-deformation of the N = 2 relativistic Toda lattice
equation which reduces to the original one when κ goes to zero.

Tsallis Deformed N = 2 Relativistic Toda Lattice Equation

In this section we present the deformation of the the N = 2 relativistic Toda lattice
equation using Tsallis deformation. Let the entropic part of the kinetic term be given by:

LKE = q̇ lnκ (q̇ +
√

q̇2 + 1) = q̇
(q̇ +

√
q̇2 + 1)κ − 1

κ
.

We now compute the equation of motion using the Tsallis deformed kinetic energy.

Proposition 9. The Euler–Lagrange equation of the Tsallis κ-deformed Lagrangian

LRT
κ = q̇ lnκ (q̇ +

√
q̇2 + 1)− 1

2
(
q̇ +

√
q̇2 + 1 +

1
q̇ +

√
q̇2 + 1

)
− γ−1 cosh q (90)

yields

q̈√
q̇2 + 1

(q̇ +
√

q̇2 + 1)κ +
( q̇√

q̇2 + 1
(q̇ +

√
q̇2 + 1)κ − 1

)
+ γ−1 sinh q = 0. (91)

5. Outlook

In this paper we considered a special class of Lagrangians proposed by Calogero
and Leyvraz with an “exotic” kinetic energy term. This term has a close resemblance to
the Shannon entropy function, q̇ ln q̇. Using this new type of Lagrangian, we derived the
celebrated Lotka–Volterra and replicator equation. We then generalized the construction
of Calogero and Leyvraz and considered a different type of kinetic energy term based on
cross entropy. We then manufactured an N = 2 relativistic Toda lattice system. We also
discussed the significance of this equation in modern physics. Different avatars of this
equation appeared in string theory and theoretical high energy physics—purely imaginary
position and momentum coordinates lead to the Hofstadter model.

The main goal is to express all these celebrated equations in terms of logarithmic kinetic
energy using the deformation of the entropic kinetic energy term. We used the Kaniadakis
κ-deformed logarithm and exponential functions to deform these Calogero–Leyvraz type
Lagrangians to give a new formulation of κ -deformed Lotka–Volterra, replicator equation
and N = 2 relativistic Toda lattice system. We also extended this deformation to the Tsallis
class and derived Tsallis-deformed equations. All the original equations can be recovered
from the deformed systems when κ → 0.

In a nutshell, this paper elucidated the strength of the Calogero–Leyvraz formalism
based on entropic kinetic terms. It would be interesting to derive more known and not so
well known systems using this method. The predator–prey models are one of the best places
to apply our scheme. We may try to apply this scheme to planar generalized Lotka–Volterra
(GLV) equations; for example, consider two interacting populations with densities x > O
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and y > O with the simplest formal description of interaction with the linear dependence
of the growth rates ẋ/x and ẏ/y. This yields the following GLV equation:

ẋ = x
(
a + bx + cy

)
, ẏ = y

(
d + ex + f y).

We can generalize this construction and check whether we can manufacture this new
equation using the Calogero–Leyvraz formalism. We then implement the κ - deformation
of such equations and study their dynamics.

It would be worth investigating the Calabi–Yau manifold connected to the κ-deformed
Hamiltonian of the N = 2 relativistic Toda lattice equation.
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