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Abstract: The power‑delay profile (PDP) estimation of wireless channels is an important step to gen‑
erate a channel correlation matrix for channel linear minimum mean square error (LMMSE) estima‑
tion. Estimated channel frequency response can be used to obtain time dispersion characteristics that
can be exploited by adaptive orthogonal frequency division multiplexing (OFDM) systems. In this
paper, a joint estimator for PDP and LMMSE channel estimation is proposed. For LMMSE channel
estimation, we apply a candidate set of frequency‑domain channel correlation functions (CCF) and
select the one that best matches the current channel to construct the channel correlation matrix. The
initial candidate set is generated based on the traditional CCF calculation method for different sce‑
narios. Then, the result of channel estimation is used as an input for the PDP estimation whereas the
estimated PDP is further used to update the candidate channel correlation matrix. The enhancement
of LMMSE channel estimation and PDP estimation can be achieved by the iterative joint estimation
procedure. Analysis and simulation results show that in different communication scenarios, the PDP
estimation error of the proposed method can approach the Cramér–Rao lower bound (CRLB) after
a finite number of iterations. Moreover, the mean square error of channel estimation is close to the
performance of accurate PDP‑assisted LMMSE.

Keywords: orthogonal frequency divisionmultiplexing; power‑delay profile; linearminimummean
square error; channel estimation

1. Introduction
The OFDM systems based on cyclic prefix (CP) can resist the frequency selective chan‑

nel and allow for simple one‑tap equalization to be performed [1]. However, the perfor‑
mance of the receiver mainly depends on the accuracy of channel estimation. Among the
channel estimation methods, least square (LS) estimation is one of the most widely used
methods. Although the implementation of LS estimation has low computation complex‑
ity, the performance is greatly affected by noise [2]. LMMSE estimation is the theoreti‑
cally optimal solution when minimizing the MSE. In addition to the noise power, LMMSE
also features a channel correlation matrix which depends entirely on channel statistical
information. However, in a wide range of systems, the statistical characteristics are un‑
known at the receiver [3]. Therefore, it is very challenging to achieve high‑performance
LMMSE estimation.

The channel PDP is often used to describe the statistical characteristics of frequency
selective channels. The time dispersion or delay spread of wireless channels is one of
the most important parameters in adaptive OFDM systems [4]. For example, the adap‑
tation of OFDM systems such as adaptive modulation and coding, adaptive CP, pilot pat‑
tern, and equalization technology [5–7] can adjust the transceiver parameters according to
the changes of channel time dispersion. These methods enhance system throughput and
transmission reliability [8]. When the channel characteristics of time dispersion are avail‑
able, the inter‑symbol interference can be reduced by adjusting the length of the CP [9].
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The LMMSE channel estimation also requires the time dispersion information of the chan‑
nel [10].

The statistics of channel time dispersion include the mean delay spread and the maxi‑
mum delay spread, which can be estimated by applying cross‑correlation of differentially
correlated received signals or setting a threshold for the estimated channel impulse re‑
sponse (CIR) [11,12]. However, these condensed parameters may be oversimplified and
cannot fully represent the time dispersion characteristics of the channel. To obtain PDP
information, the estimation method based on the maximum likelihood criterion of CP is
proposed [13]. Although this class of method can obtain better estimation accuracy, the
computational complexity is prohibitively high. In addition, the data‑assisted methods us‑
ing a training sequence or pilot can achieve better estimation performance [14]. To solve
the problem of generating channel correlation matrix, one approach is to utilize simple
PDP models such as the exponential decay or uniform‑model. The channel correlation
matrix for these PDPs can be simply calculated by estimating the mean delay and the root‑
mean‑squared (RMS) delay spread [15]. However, how to choose an appropriate PDP
model is still an open question. The mismatch of a PDP‑model and the estimation error
of delay parameters will degrade the performance of LMMSE. In response to this prob‑
lem, a large number of works have proposed to use a pilot to estimate channel PDP, or to
achieve LMMSE estimation through approximate PDP [16,17]. Although these methods
can effectively avoid the mismatch in frequency domain and the distortion caused by the
zero subcarrier, they still cannot guarantee the optimal performance of LMMSE estimation.
To solve the problem of PDP model mismatch, the LMMSE estimator with CCF selection
function is considered in [18]. The selected CCF is used to construct the channel correlation
matrix to avoid the performance loss.

Due to the fact that the PDP is the inverse Fourier transform of the channel frequency
correlation, precise channel frequency response can be utilized to estimate exact PDPs. It
can be seen that most recent research uses matrix approximation or an inaccurate PDP
model to generate channel correlation matrices. Thus, they cannot avoid the performance
deterioration of LMMSE. Furthermore, applying independent PDP and LMMSE estima‑
tion algorithms is inefficient. This paper proposes an iterative joint estimation procedure
for channel LMMSE and PDP. Motivated by [18], the best‑matched CCF vector is selected
to construct the channel correlation matrix for channel LMMSE estimation. Then, the esti‑
mated channel frequency response (CFR) is used for PDP estimation. Iteratively, the esti‑
mated PDP can be exploited to update the CCF candidate set. In this way, the estimation
performance of both channel and PDP can be improved.

The rest of this paper is organized as follows: Section 2 gives a brief overview of the
related work in this field. Section 3 presents the system model and the conventional chan‑
nel estimation. The proposed algorithm is described in Section 4. Simulations in Section 5
validate the performance of the method. Section 6 concludes this paper and envisages the
future work.

Notation: In the following, lower case letter a is used for scalar variable, capital let‑
ter A is used for vector variable, the bold letter A is used for matrix, A[m, n] denotes the
(m, n)th element of A. N represents the set of natural numbers. (·)T, (·)∗ and (·)−1 denote
transpose, complex conjugate, and inverse operation, respectively. E{·} represents the ex‑
pectation operator, |·| and ∥·∥ denotes the modulus of a variable and the Euclidean norm
of a vector, respectively.

2. Related Work
The methods to obtain the statistical characteristics of time dispersion of channels

can be roughly divided into CP‑based methods and pilot‑based methods. Authors of [19]
suggest that the delay and power of multipath components can be determined by the knee‑
point locations and the gradients of the curve of the CP correlation function. Cui [20] esti‑
mates PDP using the maximum likelihood (ML) estimation based on the CP of the OFDM
signal. Furthermore, an approximate ML estimation algorithm of PDP and noise variance
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is proposed in [21] through a simplified joint parameter estimation model. Although the
proposed algorithm reduces the complexity of ML estimation, only the suboptimal solu‑
tion can be obtained. In [13], the LS solution of channel tap‑power and its relationshipwith
the correlation coefficient of CP are derived, along with the hypothesis test for identifying
the correct path. The proposed method can approach the CRLB of tap‑power estimation
in quasi‑stationary fading channels. However, the existing CP‑based methods above may
require a large number of OFDM symbols and lead to prohibitively high computational
complexity. Instead of using CP, another class of PDP estimation is the data‑aidedmethod
that exploits the training sequences or pilots. In [22], the level‑crossing rate (LCR) in the
frequency domainwas used for studying the characterization of frequency selectivity chan‑
nel. It indicates that LCR is proportional to RMS delay spread, and scaling factor depends
on the threshold level of observed LCR. However, accurate estimation of LCR requires in‑
tensive frequency sampling of the channel response and is highly sensitive to noise, which
leads to low spectrum efficiency and reliability. Manhattan distance is used as a symbol‑by‑
symbol correlator to estimate the channel delay parameters in [23]. This method has low
computation complexity but limits estimation accuracy. In [24], the Fourier transform of
the channel frequency correlation is used to estimate the PDP, and the channel‑magnitude‑
based algorithm is proposed to overcome the sensitivity to timing errors. However, the
estimation performance is greatly limited by the accuracy of the channel estimation.

For LMMSE estimation, the channel correlation matrix can be generated by using the
simplified PDP model. However, the mismatch of the correlation function will cause es‑
timation performance loss. To reduce the mismatch, Kim and Im [25] suggest using the
pilot symbols of all transmit antenna ports to estimate the PDP formultiple‑inputmultiple‑
output (MIMO) systems. The proposed method alleviates the spectral leakage and the
residual noise caused by insufficient samples of the estimated CIR. In [10], the PDP is ap‑
proximately represented by the curvature of the channel amplitude, and then the Wiener
filter coefficients corresponding to the subcarriers are generated by the estimation results.
The vector quantization method [26] avoids real‑time matrix inversion calculation by cal‑
culating the LMMSE filter matrices offline. The filter matrices can be stored in a look‑up
table and be used for themapping from the code vector to the quantized LMMSEfilter coef‑
ficient. To reduce the computational complexity of the channel correlationmatrix, discrete
cosine transform (DCT)‑basedmethods [27,28] approximate the channel correlationmatrix
as a diagonal matrix, and the singular value decomposition (SVD) method [29] divides the
channel correlation matrix into small submatrix products. However, the approximation
in these methods results in performance deterioration. Additionally, Mei [18] proposes to
design a candidate set of CCF vectors in advance and then selects the optimal one to con‑
struct the channel correlationmatrix. This scheme can still achieve goodMSE performance
when the channel knowledge is completely unknown.

3. SystemModel
The wide‑sense stationary‑uncorrelated scattering (WSSUS) model is often used to

represent time‑varying fading channels, in which the instantaneous channel impulse re‑
sponse for baseband can be written by

h(t, τ) =
L−1

∑
l=0

αl(t)δ(τ − τl), (1)

where L denotes the number of channel paths, αl(t) and τl represent the complex ampli‑
tude and time delay of the lth multipath component, respectively. For different multipath
component l, αl(t) is a wide‑sense stationary narrow‑band complex Gaussian process that
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is mutually independent. The mean delay τ and RMS delay spread τRMS of the channel
are expressed as

τ =
∑L−1

l=0 E
{
|αl |2

}
τl

∑L−1
l=0 E

{
|αl |2

} , (2)

τRMS =

√√√√√∑L−1
l=0 E

{
|αl |2

}
τl

2

∑L−1
l=0 E

{
|αl |2

} − τ2. (3)

By the Fourier transform of the channel impulse response h(t, τ) relative to τ, the
channel frequency response at instant t can be obtained as

H(t, f ) ≜
∫ +∞

−∞
h(t, τ)e−jπ2 f τdτ =

L−1

∑
l=0

αl(t)e−jπ2 f τl . (4)

Assuming that the number of subcarriers in the OFDM system is N, the CFR of the
mth OFDM block and the kth subcarrier in an OFDM data frame are expressed as

H[m, k] ≜ H(mTb, k∆ f ) =
L−1

∑
l=0

αl(mTb)e−jπ2k∆ f τl , (5)

where k = 0, 1, · · · , N − 1, Tb and ∆ f represent symbol duration and subcarrier spacing,
respectively. Using X[m, k] to represent the transmitted data, and removing the CP before
the discrete Fourier transform (DFT), the received symbol can be written as

Y
[
m, k] =X[m, k]H

[
m, k]ej(2π/N)kdm +W[m, k], (6)

where dm is timing error, andW[m, k] is additive white Gaussian noise (AWGN).
Assuming that the number of pilot subcarriers used for estimation is NP and omitting

the variable m, the LS channel estimation criterion is given by

ĤLS = arg
Ĥ
min

{∣∣Y− XĤ
∣∣}

= X−1Y =
[

Y[0]
X[0]

Y[1]
X[1] · · ·

Y[NP− 1]
X[NP− 1]

]T
.

(7)

LMMSE is the best linear estimation method in terms of MSE performance. Essen‑
tially, it involves a weighting matrix Φ to correct the influence of noise on the LS estima‑
tion: ĤLMMSE ≜ ΦĤLS, where Φ = arg

Φ

minE
{
∥H − ĤLMMSE∥

2
}
. Omitting the derivation

process, it can be derived as Φ = RHĤLS
R−1

ĤLSĤLS
. In order to reduce the number of matrix

inversions, the simplified LMMSE channel estimation is given by [30]

ĤLMMSE = RHĤLS

(
RHH +

β

SNR
I
)−1

ĤLS, (8)

where β = E
{
|x[n]|2

}
E
{
|1/x[n]|2

}
, n = 0, 1, · · · , N− 1 is a constant and depends on the

modulation type. SNR is the average signal‑to‑noise ratio. RHĤLS
is the cross‑correlation

matrix of the accurate channel vector and the LS estimation vector, and RHH is the auto‑
correlation matrix of the channel. The elements in RHĤLS

and RHH satisfy [31]

RHĤLS
[∆m, ∆k] = RHH [∆m, ∆k]

= E{H[m, k]H∗[m + ∆m, k + ∆k]}
= Rt

H [∆m]Rf
H [∆k],

(9)
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where Rf
H and Rt

H are CCF and channel time correlation, respectively. For the sameOFDM
symbol, the channel time correlation satisfies Rt

H [0] = J0(0) = 1, J0(·) is the zeroth‑order
Bessel function of the first kind. The Rf

H can be obtained by the Fourier transform of PDP.
In addition, if the statistical information of the channel is available, and the PDP decays
exponentially, the CCF can be obtained by Rf

H [∆k] = 1/(1 + j2πτRMS∆k∆ f ) [31]. However,
the PDP information is usually unknown to the receiver. Therefore, it is challenging to
achieve accurate LMMSE estimation.

4. Iterative Joint Estimation Algorithm for Channel and PDP
Each frame of the transmitted signal consists of a training sequence and a certain num‑

ber of data symbols. The CFR of LS estimation ĤLS can be obtained according to (7) by
using the training sequence. According to (8), LMMSE estimation needs the channel cor‑
relation matrix RHH and SNR. We also assume that the signal power is normalized. Noise
power is generally easy to be estimated [32,33]. Therefore, the difficulty of LMMSE estima‑
tion mainly depends on the acquisition of the RHH . Enabling the estimator with the ability
to select CCFs can effectively solve this problem, and we propose a looped algorithmic
architecture that enables joint PDP and channel estimation. The execution block diagram
of the algorithm at the receiver is shown in Figure 1.
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Firstly, we pre‑generate a CCF candidate set ℜ, and the CCF vectors are calculated
according to different scenarios. Secondly, theCCF selection algorithm is executed to select
the best‑matched CCF vector Rf

q∗. Then, the Rf
q∗ is used to calculate the channel correlation

matrix
ˉ
Ropt and complete the LMMSE estimation. Further, we use the CFR ĤLMMSE as

the input to PDP estimation, and the time dispersion parameters can be estimated. In
addition, Fourier transform is applied to the output of PDP estimation, and the result Rf

Est
is used to update the CCF set to improve the LMMSE estimation performance. Obviously,
the proposed algorithm architecture can be divided into two loops: LMMSE estimation
loop and PDP estimation loop. In the following, we describe the specific implementation
process of the two loops.

4.1. LMMSE Estimation Loop

Let ℜ =
{

Rf
1, Rf

2, · · · , Rf
Q

}
be the CCF candidate set, where Q is the cardinality of ℜ

and Rf
q =

[
Rf

q[0] Rf
q[1] · · · Rf

q[N − 1]
]T

is the qth candidate CCF vector. When the channel

PDP is available, Rf can be easily obtained by Fourier transform of PDP.When the accurate
information about the PDP is completely unknown, a robust channel frequency‑domain
correlation (R‑CCF) [34] is required. It can ensure that the loss of channel estimation per‑
formance is small, even when there are mismatches between the preset CCFs and the real
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CCF. A typical R‑CCF is the Fourier transform of the uniform spectrum, which can be
expressed as

Rf
= DFT{[N/No · · · N/No︸ ︷︷ ︸

No elements

0 · · · 0]}, (10)

where No = ⌈∆ f τmaxN⌉ = ⌈τmaxN/Ts⌉, Ts, and τmax are the system sampling interval
(OFDM symbol duration) and the possible maximum delay spread, respectively, and τmax
usually takes the length of CP.

Moreover, when the timing error is considered, the effective channel frequency‑domain
correlation function (E‑CCF) [31] can be calculated from the typical value of the timing er‑
ror or the statistical distribution of the timing error. The specific expression can be given as

Rf
[∆k] = E

{
ˉ
H[m, k]

ˉ
H
∗
[m, k + ∆k]

}
= E

{
H
[
m, k]ej(2π/N)kdmH∗

[
m, k + ∆k]e−j(2π/N)(k+∆k)dm

}
= Rf[∆k]E

{
ejπ2∆kdm/N

}
= Rf[∆k]∑dmax

dm=dmin
P(dm)ejπ2∆kdm/N ,

(11)

where P(dm) is the probability density function of the timing error dm. The Rf[∆k] of (11)
can be obtained by the Fourier transform of the PDP. When the channel statistics are com‑
pletely unknown, the Rf[∆k] can be substituted by the Rf obtained by (10).

After generating ℜ, the key step is CCF selection. The training sequence is divided
into two groups X1 and X2 at equal intervals in the order of subcarrier index, i.e., X1 =
[X1[0] X1[2] · · · X1[N − 2] ] and X2 = [X2[1] X2[3] · · · X2[N − 1] ]. The CFR vectors cor‑
responding to X1 and X2 are denoted as H1 and H2, respectively. The corresponding LS
estimation vectors are denoted as ĤLS_1 and ĤLS_2, respectively. Then, we use X1 to per‑
form MMSE interpolation to estimate H2, and use X2 to perform MMSE interpolation to
estimate H1. The interpolation results ĤINT_1 and ĤINT_2 are obtained by

ĤINT_1 =
ˉ
RH1 H2

(
ˉ
RH2 H2 +

β
SNR I

)−1

ĤLS_2

ĤINT_2 =
ˉ
RH2 H1

(
ˉ
RH1 H1 +

β
SNR I

)−1

ĤLS_1

. (12)

The evaluation index of the CCF selection algorithm is given by

ξn =
1
N

(
∥ĤINT_1 − ĤLS_1∥

2
+ ∥ĤINT_2 − ĤLS_2∥

2
)

. (13)

In Equation (12),
ˉ
R is the corresponding channel correlation matrix, whose elements

come from the candidate CCF vector Rf
q. By evaluating each candidate CCF vector accord‑

ing to Equation (13), the CCF that best matches the current channel can be selected as

q∗ = arg
q
minξq. (14)

Finally, the CFR of the LMMSE estimator is obtained by

ĤLMMSE =
ˉ
Ropt

(
ˉ
Ropt +

β

SNR
I
)−1

ĤLS, (15)
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where
ˉ
Ropt is the channel correlation matrix constructed by the CCF vector Rf

q∗. It is rep‑
resented as

ˉ
Ropt ≜


Rf

q∗[0] Rf
q∗[1] · · · Rf

q∗[N − 1]

Rf
q∗[−1] Rf

q∗[0] · · · Rf
q∗[N − 2]

...
. . . . . .

...
Rf

q∗[−N + 1] Rf
q∗[−N + 2] · · · Rf

q∗[0]

. (16)

Different ℜmay produce different estimation results. Therefore, with updated ℜ, we
perform Equations (12)–(15) to complete a new LMMSE estimation loop.

4.2. PDP Estimation Loop
The PDP estimation can rely on the principle that the channel frequency correlation

and the channel PDP are Fourier transform pairs. The instantaneous channel frequency
correlation can be calculated by using the estimated CFR ĤLMMSE as

Rf
ĤLMMSE

(∆k) = Eu,k
{

ĤLMMSE,u[k]Ĥ∗LMMSE,u[k + ∆k]
}

, (17)

where u is the index of the frame. The Eu,k{·} is the expectation over u and k. The ex‑
pectation of multiple frames can effectively reduce the impact of noise. Then, the inverse
discrete Fourier transform (IDFT) is performed on the obtained channel correlation value
to calculate the PDP

Pl = IDFT
{

Rf
ĤLMMSE

(∆k)
}

= 1√
N

N−1
∑

∆k=0
Rf

ĤLMMSE
(∆k)ejπ2∆kl/N , 0 ≤ l ≤ L− 1,

(18)

where Pl = E
{
|αl |2

}
is the power of the lth channel tap. In addition, the tapswhose power

is less than 25 dB of the strongest tap power are omitted. Then, τ and τRMS are calculated
according to Equations (2) and (3), respectively.

Moreover, it is worthmentioning that when using LS‑estimated CFR ĤLS, the channel
frequency correlation obtained according to (16) can be simplified into the sum of effective
channel frequency correlation and noise correlation values

Rf
ĤLS

(∆k) = Rf
H(∆k) + δ(∆k)σ2

Z, (19)

where σ2
Z is the variance of channel estimation error caused by noise, and δ(·) is Dirac

delta function. To remove the influence of noise term, we use the correlation value of non‑
zero lag to fit the parabola by the LS method. Then, replace the correlation value Rf

ĤLS
(0)

of zero lag with the polynomial coefficients obtained by fitting. By this means, we can
approximate the value of Rf

H(∆k) as R̃f
H(∆k) and the PDP can be estimated by the inverse

Fourier transform of R̃f
H(∆k).

It should be noted that the performance of the proposed PDP estimation algorithm
is limited to the accuracy of channel estimation. Figure 2 shows the amplitude curve of
normalized channel frequency correlation calculated according to (17) for accurate CFR,
LS estimation, and the proposed LMMSE estimation under the ITU‑VA channel when the
SNR is 5 dB. The dotted lines represent the simulation curves when STO obeys the uni‑
form distribution of [−10, 0]. As can be observed, in the case of perfect synchronization,
the channel frequency correlation amplitude of the LMMSE is lower than the accurate CFR
but higher than that of the LS channel estimate. In the presence of STO, the channel fre‑
quency correlation amplitude of LMMSE and LS shows an obvious reduction. However,
the correlation amplitude of LMMSE is still higher than that of LS. That is to say, the pro‑
posed LMMSE estimator is able to alleviate the noise effects compared with LS estimation
and do not need any prior channel knowledge.
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Therefore, we consider using the CFR obtained by the proposed LMMSE estimator as
the input of the PDP estimation algorithm instead of the LS estimation value. In addition,
with the output of the newLMMSE estimation loop, we can perform a new PDP estimation
loop to get a more accurate PDP.

4.3. Iterative Joint Estimation Procedure
It is evident that the LMMSE estimator can obtain a better CFR in terms of MSE per‑

formance than the LS estimator when the channel information is unavailable. Moreover,
the performance of the proposed LMMSE estimator depends on the candidate CCF vec‑
tors. Thus, we can update the candidate CCF set according to the latest PDP estimation. In
this case, the performance of the LMMSE estimation is improved by the updated CCF set.
Since the results of each estimation process can be applied to the other one, the proposed
algorithm is performed in an iterative manner, as shown in Figure 3.

We denote the number of iterations as i, i ∈ N and imax is the maximum number
of iterations with i = 0 representing the initial process. Firstly, the initial CCF set ℜ0 ={

Rf
Inl_1, Rf

Inl_2, · · · , Rf
Inl_Q

}
is generated according to (10) and (11) for different scenarios,

and the LS estimation value ĤLS is calculated by Equation (7). The ℜ0 and ĤLS are the
inputs of the iterative algorithm. According to the principle of the proposed LMMSE es‑
timator, the CCF selection algorithm is executed to select the CCF vector, Rf

q∗, that best

matches the current channel by Equations (12)–(14). Using Rf
q∗ to construct channel cor‑

relation matrix
ˉ
Ropt according to (16), the initial value Ĥi=0

LMMSE can be obtained by using
Equation (15). According to (17), Ĥi=0

LMMSE is used to calculate the channel frequency cor‑
relation, and the results of multiple frames are counted to obtain the expectation. Then,
the PDP estimation is completed by Equation (18). On this basis, we can calculate τ̂i=0

RMS
according to (3), and a CCF vector Rf

Est can be obtained by performing DFT on the result of
PDP estimation. We add i by 1 after each LMMSE estimation and PDP estimation, which
means that a new estimation process will begin. Then, we add Rf

Est,i−1 to the CCF set to
obtain a new CCF vector set

ℜi = ℜi−1 ∪
{

Rf
Est,i−1

}
. (20)
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Based on the above procedure, the channel LMMSE and PDP estimation algorithms
are executed iteratively to obtain the channel estimation Ĥi

LMMSE and the estimated RMS
delay τ̂i

RMS of the ith iteration. Because ℜi has more accurate CCF vectors than ℜi−1, we
can ensure that the performance of each iteration is improved. After each execution of the
PDP estimation algorithm, the value of i is judged. The algorithm ends when i > imax. The
proposed scheme is summarized as Algorithm 1.
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Algorithm 1: Iterative joint estimation procedure for channel and PDP

Input: ℜ0 =
{

Rf
Inl_1, Rf

Inl_2, · · · , Rf
Inl_Q

}
, ĤLS;

Output: Ĥi
LMMSE, τ̂i

RMS;
1. begin
2. i← 0
3. while i ≤ imax, do
4. Execute the CCF selection algorithm (12)–(14)

5. Generate channel correlation matrix
ˉ
Ropt (16)

6. Perform LMMSE channel estimation and get CFR Ĥi
LMMSE (15)

7. Using Ĥi
E−LMMSE to estimate PDP and get the result Rf

Est,i,τ̂i
RMS (17) and (18)

8. end
9. i ← i + 1

10. Update the CCF set with Rf
Est,i−1 to get ℜi (20)

11. end

4.4. Analysis of Computational Complexity
Generally, the LMMSE‑based algorithm has significantly higher computational com‑

plexity than the one based on the LS estimation proposed in [24]. The process of deter‑
mining q∗ needs to calculate the evaluation index ξq from all candidate CCFs. Therefore,
the complexity of the proposed LMMSE estimation loop is proportional to the number of
the candidate CCF vectors. Using Equations (12)–(14) to calculate ξq requires two N/2‑
order matrix inversion operations. For the candidate CCF set ℜ, we need to calculate
Q times of ξq according to (13), corresponding to 2Q times of N/2‑order matrix inver‑
sions. When the SNR and q∗ are determined, the LMMSE estimator needs to calculate
ˉ
Ropt

(
ˉ
Ropt + (β/SNR)I

)−1

, once in Equation (15) with N3 multiplications and in the N‑

ordermatrix inversion. Meanwhile, the LS result ĤLS also needs N times ofmultiplications.
Finally, considering the number of iterations imax, the multiplication and matrix inversion
times are counted independently. The results are shown in Table 1, where Lr is the length
of CP. It can be seen that, compared with the matrix approximation method [27] and the
singular value decomposition (SVD) method [29], the LMMSE estimator with CCF selec‑
tion [18] has a relatively large amount of computation. It is evident that the amount of calcu‑
lation of algorithm suggested in [24] is minimal since it only performs PDP estimation and
needs no matrix inversion operations. Compared with [18], the proposed algorithm only
slightly increases the computational complexity when performing both channel LMMSE
and PDP estimation.

Table 1. Computational complexity comparison.

Multiplication N‑Order Matrix Inversion N/2‑Order Matrix Inversion

Yuceks’s method [24] N2 + N/2 log2 N — —
DCT based LMMSE [27] 2N2 1 —
SVD based LMMSE [29] (Lr + 2)N2 + Lr N — —

Mei’s LMMSE [18] (Q/4 + 1)N3 + (Q/2 + 1)N2 1 2Q
Proposed iterative joint
estimation algorithm

(imax+1)((Q/4 + 1)N3

+(Q/2 + 1)N2)+N2 + N/2 log2 N
imax+1 (imax+1)(imax+2Q)

5. Simulation Results and Analysis
In this section, the performance of the proposed iterative joint estimation algorithm

is analyzed by simulation. We build an OFDM simulation platform in which the envi‑
ronment parameters are shown in Table 2, and the rest of the system parameters are set
according to the IEEE 802.11ax standard. In this paper, we consider using an OFDM
symbol‑length Zadoff‑Chu sequence as the training sequence for channel estimation. The
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transmitted frame contains 50 data symbols. The results are obtained through 1000 Monte
Carlo simulations.

Table 2. Simulation parameter settings.

Simulation Parameters Value

Bandwidth 10 MHz
Center frequency 2.4 GHz
Modulation type 16 QAM

FFT size 256
CP length 64

Channel model ITU‑R

In order to evaluate the performance of channel PDP estimation, we use the normal‑
izedmean square error (NMSE) of channel second‑order statistics τRMS as the performance
metricwhich can accurately reflect the deviation of the estimator from the theoretical value.
The NMSE of τRMS is defined as NMSE(τRMS) ≜ E

{
|τRMS − τ̂RMS|2

}
/τ2

RMS, in which τ̂RMS

represents the estimated values. In addition, the CRLB of the τRMS estimator is used as the
comparison [24]

CRLB(τRMS) =
1

Mu

L−1

∑
l=0

P2
i

4τ2
RMS

 τ2
l

∑
l

Pl
+

∑
l

Plτ
2
l(

∑
l

Pl

)2 +

∑
l

Plτl(
∑
l

Pl

)3

(
τl∑

l
Pl −∑

l
Plτl

)
2

, (21)

where Mu is the number of frames used for estimation. The performance of channel esti‑
mation is evaluated by the mean square error (MSE) of CFR: MSE(H) = E

{
∥H − Ĥ∥2

}
and compared with three typical LMMSE estimation methods [18,27,29].

Since the proposed algorithm is based on the LMMSE estimator, the initial estimation
value Ĥi=0

LMMSE directly affects the performance of the proposed algorithm. The key to the
LMMSE estimator lies in the design of candidate setℜ0. In order to comprehensively inves‑
tigate the performance of the proposed algorithm, we divide the possible communication
scenarios into three types.

Scenario 1: It is assumed that all possible channel models’ statistics are available. For
example, ITU‑R defines the four models shown in Table 3. In this scenario, ℜ0 can be
composed of all possible PDPs. In addition, in order to improve the robustness of the
estimator, No takes the value of {4, 16, 64}, and theR‑CCFs are also added toℜ0 according to
(10). The simulated channel of each transmission is randomly selected among four models.

Table 3. PDPs of ITU‑R model.

Model Parameter
Path Number

1 2 3 4 5 6

Pedestrian A
Delay (ns) 0 110 190 410 — —
Power (dB) 0 −9.7 −19.2 −22.8 — —

Pedestrian B
Delay (ns) 0 200 800 1200 2300 3700
Power (dB) 0 −0.9 −4.9 −8.0 −7.8 −23.9

Vehicle A
Delay (ns) 0 310 710 1090 1730 2510
Power (dB) 0 −1.0 −9.0 −10.0 −15 −20.0

Vehicle B
Delay (ns) 0 300 8900 12,900 17,100 20,000
Power (dB) −2.5 0 −12.8 −10.0 −25.2 −16.0

Scenario 2: Consider a more complex communication scenario, where the channel
knowledge is unavailable. In this case, ℜ0 can be obtained by R‑CCF and E‑CCF. Specif‑
ically, three values {4, 16, 64} are set for No, and the corresponding R‑CCF is obtained
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according to (10). In addition, in order to expand the number of CCF, the E‑CCF with the
value of dm = [−5,−1] is also added to ℜ0. In the simulation of this scenario, the channel
is fixed as the ITU‑VA model.

Scenario 3: On the basis of scenario 2, this scenario further considers the non‑ideal fac‑
tor: STO. It is assumed that dm obeys the uniform distribution of [−10, 0]. In this scenario,
ℜ0 and other simulation parameters are the same as in scenario 2.

Figure 4 shows the relationship between the NMSE of τRMS and the number of frames
used to estimate in Scenario 1 and Scenario 2. The label “Yuceks’s Method” represents the
algorithm based on the LS estimation proposed in [24]. The “i = 0”means the initial result
when the algorithm does not start an iteration. That is to say, the candidate CCF set of the
LMMSE estimator isℜ0. In this case, the estimated result of PDP is calculatedwith Ĥi=0

LMMSE
as the input. Because the algorithm in [24] is performed based on LS channel estimation,
the results are the same in two scenarios, and the MSE are significantly higher than those
of the proposed algorithm. The initial result of the proposed algorithm in scenario 1 is
better than that in scenario 2. In scenario 1, after one iteration, the NMSE of τRMS is close
to CRLB, whereas in scenario 2, it takes four iterations to get a similar result. It is because
the ℜ0 of scenario 1 contains all possible PDPs and it make the algorithm efficient.
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Figure 4. NMSE performance of the RMS delay spread estimators as a function of the number of
frames used for estimation in Scenario 1 and Scenario 2, SNR = 5 dB.

Figure 5 shows theNMSEof τRMS as a function of the SNR in Scenario 1 and Scenario 2,
where Mu is the number of frames. It can be seen that when the SNR is lower than 4 dB,
the performance of the algorithms is improved with the increase of SNR, and the perfor‑
mance of the proposed algorithm is better than the algorithm proposed in [24]. However,
when SNR rises to around 5 dB, the NMSE of RMS is SNR‑independent. This is due to the
limitation of the number of statistical frames.

Figure 6 simulates the performance of the LMMSE estimation in Scenario 1 and Sce‑
nario 2. It should be noted that the results of [24] are also the results of the proposed
algorithm when i = 0. It can be seen that, compared with the DCT based LMMSE and
the SVD based LMMSE in [27,29], the LMMSE with CCF selection is more robust and the
proposed iterative algorithm can further improve the performance of LMMSE, especially
in scenario 2. The proposed algorithm approaches the accurate LMMSE result after 1 and
4 iterations, respectively, in the two scenarios.

Figures 7 and 8 show the simulation results in scenario 3. It can be seen that the per‑
formance of PDP estimation is greatly affected by STO, compared with scenarios 1 and 2.
The NMSE of τRMS is similar compared to the third iteration and the second iteration. It
indicates that the performance of the algorithm cannot be significantly improved after the
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third iteration. In addition, the performance of the proposed LMMSE estimator still has
great advantages over the other three algorithms in this scenario.
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6. Conclusions and Future Work
In this paper, we propose a joint estimation algorithm for channel and PDP, including

the LMMSE estimate loop and PDP estimate loop. The proposed LMMSE estimator has
the ability to select the best‑matched CCF, which solves the problem of channel correlation
matrix generation. The CFR obtained is used for PDP estimation, and the results can be
applied to update the CCF set. Since both PDP and channel estimation requires the result
from the other one, an iterative joint algorithm is proposed. The proposed algorithm is
evaluated by the NMSE of the second‑order statistic of PDP and the channel MSE. Simu‑
lation results show that the performance of PDP estimation is better than that of existing
LS‑based methods in different scenarios. The NMSE of RMS can approach CRLB after a
limited number of iterations. The results of this paper can be used to obtain accurate PDP
results and improve the performance of channel estimators in OFDM systems. As for fu‑
ture extensions of this work, we will consider further performance improvement by the
joint estimation process of channel response and Doppler spread. By generating the candi‑
date set of channel correlation function and choosing the best‑matched correlation function
vector, the channel frequency response estimated by LMSME can be used to estimate the
Doppler spread. Therefore, the estimated results can update the channel correlation ma‑
trix. A joint estimation process of channel and the Doppler spectrum can also be obtained.
This approach is appealing especially in adaptive OFDM systems.
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