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Abstract: In recent years, spatial data widely exist in various fields such as finance, geology, en-
vironment, and natural science. These data collected by many scholars often have geographical
characteristics. The spatial autoregressive model is a general method to describe the spatial corre-
lations among observation units in spatial econometrics. The spatial logistic autoregressive model
augments the conventional logistic regression model with an extra network structure when the spatial
response variables are discrete, which enhances classification precision. In many application fields,
prior knowledge can be formulated as constraints on the parameters to improve the effectiveness
of variable selection and estimation. This paper proposes a variable selection method with linear
constraints for the high-dimensional spatial logistic autoregressive model in order to integrate the
prior information into the model selection. Monte Carlo experiments are provided to analyze the
performance of our proposed method under finite samples. The results show that the method can
effectively screen out insignificant variables and give the corresponding coefficient estimates of
significant variables simultaneously. As an empirical illustration, we apply our method to land
area data.

Keywords: spatial logistic autoregressive model; linear constraint; variable selection; maximum
likelihood

1. Introduction

Spatial econometrics, developed to deal with spatial correlation and spatial hetero-
geneity of data, has become a standard analytical tool for spatial data and has begun to
enter the mainstream of econometrics. Spatial models have a long history in econometrics.
Much progress has been made in the estimation of spatial models, please refer to the special
works of Anselin (1988) [1]; LeSage and Pace (2009) [2]. Nowadays, the spatial autoregres-
sive (SAR) model developed by Cliff and Ord in 1973 [3] is the most studied and widely
applied modeling method for dealing with spatial correlation. Additionally, the model can
be widely applied in many fields including social networks (Ma et al. (2020) [4]), real estate
(Dubin (1999) [5]; Osland (2010) [6]), crime incidents (Kakamu et al. (2008) [7]), sampled
network data (Zhou et al. (2017) [8]), artificial neural networks (Wang et al. (2019) [9]), and
geospatial data (Khalfi et al. (2021)). We can consider the spatial autoregressive model as an
ordinary regression model that additively takes the spatial spillover effect of the dependent
variable into account. Thus, this model can model both traditional covariates and network
dependence simultaneously in a convenient manner.

However, most of the conventional spatial analyses were designed to address the
problem of estimation or prediction based on continuous observations. In the case of
discrete or binary variables, for instance, in pathological diagnosis, there are only two
possible outcomes, positive (denoted as 1) or negative (denoted as 0). The logistic regressive
model is a popular method to deal with discrete binary responses. As one of the most
popular classification methods, the logistic regressive model has been studied extensively.
Essentially, the model assumes that an individual’s class label is influenced by a set of
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predictors. In practical use, observational data can be taken from different places. In
other words, the data generated can be cross-section data. The cross-section data involve
several locations. Therefore, it is possible that spatial effect influences the model. In
the presence of spatial effects, the usual logistic regression does not sufficiently model
the data. Thus, the spatial logistic regression model will be better to model data that
contains spatial effects [10]. Theoretical economists and practical researchers are interested
in the spatial logistic autoregressive model, which investigates how covariates affect the
correlation response of spatial discrete values. The study of spatial logistic regression
models, which use categorization technologies to model spatial data, is a relatively new
area of spatial econometrics, and research in this area is still quite restricted. Calabrese
and Elkink (2014) [11] introduced the binary spatial autoregressive model for the first
time. Hilwin Nisa et al. (2019) [12] proposed the spatial logistic regression model which is
obtained by the logistic regression model and spatial binary regression model.

High-dimensional spatial data appear frequently in many fields of social life and scien-
tific research, such as biomedical imaging, X-ray tomography, finance, and geoscience. In re-
cent years, a variety of regression methods have been proposed to model high-dimensional
data in spatial statistics. For example, Piribauer et al. (2016) [13] proposed a Bayesian vari-
able selection procedure in a spatial autoregressive model. A penalized quasi-maximum
likelihood method was put forth by Liu et al. (2018) [14] for variable selection in the spatial
autoregressive model. Model selection in spatial autoregressive models with varying coeffi-
cients was studied by Wei et al. (2019) [15]. Variable selection for the spatial autoregressive
models with a diverging number of parameters was considered by Xie et al. (2020) [16].
Cai et al. (2020) [17] considered variable selection and estimation for a high-dimensional
spatial autoregressive model. Li et al. (2020) [18] proposed a variable selection method
for the partially linear varying coefficient spatial autoregressive model. More recently, Li
et al. (2021) [19] proposed a new variable selection method for a higher-order partially linear
spatial autoregressive model with a diverging number of parameters. Liu et al. (2021) [20]
studied variable selection for the spatial autoregressive model with autoregressive distur-
bances. Song et al. (2021) [21] proposed a new robust variable selection method with an
exponential squared loss for the spatial autoregressive model.

The above methods mainly focus on the variable selection of continuous response vari-
ables based on the penalty regression technique. Penalized regression techniques shrink the
insignificant coefficients to 0, which has attracted increasing attention to high-dimensional
data analysis, such as least absolute shrinkage and selection operator (LASSO) (Tibshirani
(1996) [22]), smoothly clipped absolute deviation (SCAD) (Fan and Li (2001) [23]), and min-
imax concave penalty (MCP) (Zhang (2010) [24]) for mean regression. LASSO minimizes
the residual sum of squares subject to the sum of the absolute value of the coefficients being
less than a constant, for which it tends to produce some coefficients that are exactly 0 and
hence give interpretable models. However, LASSO has some bias in the estimation of the
coefficients. SCAD attempts to mitigate this bias and produce nearly unbiased estimates
for large coefficients while still retaining the continuous penalty for sparsity. MCP provides
the convexity of the penalized loss in sparse regions to the greatest extent given certain
thresholds for variable selection and unbiasedness. However, penalized spatial logistic
autoregression has been rarely studied. For high-dimensional spatial data, there are several
problems using spatial logistic autoregressive modeling such as endogeneity and including
too many variables in the model. First, the spatial lag term in the model will make it
endogenous. In the presence of endogeneity, the ordinary least squares (OLS) method can
produce biased and inconsistent parameter estimates. Second, as the dimensionality of
the variables increases, redundant variables will bring challenges to the estimation in the
modeling process.

Furthermore, as the penalized spatial logistic regression does not account for any
prior information, and then we can consider how to incorporate prior information into the
modeling procedure. Statistical models with linear constraints on variables have gained
widespread applications recently. These constraints on regression coefficients reflect the
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prior information and structure, which can help us to find the optimal parameters with
the given information. To incorporate the prior information in the modeling process, we
add linear constraints to the penalized spatial logistic autoregressive model. As far as we
are aware, no previous research has investigated penalized spatial logistics autoregressive
models with linear constraints. Thus, in this paper, we will study a penalized spatial logistic
autoregressive model with linear constraints. For the spatial logistic regression model (4),
we estimate β by solving the following optimization

min− ln[L(β, ρ)] + 2n ∑
p
j pλ

(∣∣β j
∣∣)

subject to Cβ ≤ d Eβ = f
(1)

where L(β, ρ) is the likelihood function, ρ ∈ R, β ∈ Rp, n is the sample size, pλ(·) is
the penalty function, and C ∈ Rq×p, d ∈ Rq, E ∈ Rs×p, and f ∈ Rs are determined
concretely according to the experience and knowledge of practical problems. In this paper,
our contribution is summarized as follows:

1. Propose a penalized spatial logistics autoregression with linear constraints. These
constraints contain the prior information and structure, which can improve the ro-
bustness of the model and help us to find the optimal parameters. Thus, the model
performs better in the variable selection and estimation under a high-dimensional
data space.

2. Provide the formula for degrees of freedom, and then construct the model selection
criteria to select the optimal tuning parameter.

3. Simulation results show that the performance of the proposed method is more ex-
planatory and reasonable than penalized quasi-maximum likelihood without linear
constraints, and an empirical application illustrates the usefulness of the methods in
practical work. The effectiveness of the penalized quasi-maximum likelihood with
linear constraints algorithm is demonstrated.

The following is how the paper is arranged. In Section 2, we introduce the general form
of the problem we study and present our penalized quasi-maximum likelihood without
linear constraints algorithm. The formula for degrees of freedom using Stein’s unbiased
risk estimation (SURE) lemma is derived in detail in Section 3. Some Monte Carlos results
on the performance of the proposed method are discussed in Section 4. Section 5 shows
our method for analyzing real data sets. Section 6 presents the conclusions.

2. Models
2.1. Spatial Autoregressive Model (SAR)

Think of a network that has n nodes. The matrix A ∈ Rn×n can be used to characterize
how the network is structured. Define aij = 1 when node i follows node j, and aij = 0
otherwise. With a n× 1 vector of observations on the dependent variable Y and a n× p
matrix of regressors X, we can establish the following SAR [3] model:

Y = ρWY + Xβ + ε, (2)

where ρ ∈ R is network autocorrelation coefficient and β = (β1, ..., βp)T ∈ Rp is the regres-
sion coefficient vector. W is the row-normalized version of A such that wij = aij/ ∑n

j=1 aij.
Let θ = (ρ, βT)T ∈ Rp+1 and denote ε = (ε1, ..., εn)T as the error vector of independent
disturbances with mean zero and finite variances σ2.

Denote G = I − ρW, S = Y − ρWY − Xβ. Then the SAR model’s log-likelihood
function is shown as follows:

ln L(θ, σ2) = −n
2

ln(2π)− n
2

ln σ2 + ln |G| − 1
2σ2 STS. (3)
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2.2. Spatial Logistic Regression Model

The spatial logistic regression model is a combination of the spatial autoregressive
model and the logistic regression model. Binary classification or multi-classification are
both acceptable response variables for a logistic regression model. However, we solely take
into account the case of the binary of the response variable.

The model (2) can be written as:

y∗ = (I − ρW)−1(Xβ + ε)
= (I − ρW)−1Xβ + (I − ρW)−1ε
= HXβ + e, e ∼ MVN(0, Ω)

(4)

where MVN denotes the multivariate normal distribution. For simplicity, we use y∗ instead
of Y where H = (I− ρW)−1 is an (n× n) matrix, and define e = (I− ρW)−1ε as an (n× 1)
vector. Latent variable y∗ has a binary category which is defined as variable y:

yi =

{
1, for y∗i > 0
0, for y∗ ≤ 0.

(5)

Therefore, the probability of P(yi = 1) and P(yi = 0) is:

P(yi = 1 | Xi) = P(y∗i > 0)

= P([HXβ]i + e > 0)

= P(−e ≤ [HXβ]i)

=
1

1 + exp(−[HXβ]i)

(6)

P(yi = 0 | Xi) = P(y∗i ≤ 0)

= P([HXβ]i + e ≤ 0)

= P(−e > [HXβ]i)

= 1− P(−e ≤ [HXβ]i)

= 1− 1
1 + exp(−[HXβ]i)

(7)

When we assume the mean value of e is 0 and the variance is Ω, then we get

P(yi = 1) =
1

1 + exp
(
− [HXβ]i

Ωii

) (8)

where Ωii is the diagonal element of Ω, which is formed as Ω = [(I − ρW)′(I − ρW)]−1. The
same idea applies to P(yi = 0).

The parameter estimation of spatial logistic regression can be obtained by maximum
likelihood estimation (MLE). The parameter is estimated by maximizing the likelihood
function of random variable yi, which follows a Bernoulli distribution:

L(β, ρ) =
n

∏
i=1


 1

1 + exp
(
− [HXβ]i

Ωii

)
yi
1− 1

1 + exp
(
− [HXβ]i

Ωii

)
1−yi

 (9)

Then, the natural log(ln) is used to transform the likelihood function as follows:

ln[L(β, ρ)] =
n

∑
i=1

yi ln[
[

1 + exp
(
− [HXβ]i

Ωii

)]
+

n

∑
i=1

(1− yi) ln

1− 1

[1 + exp
(
− [HXβ]i

Ωii

)
 (10)



Entropy 2022, 24, 1660 5 of 12

To estimate β and ρ, we use the maximization formula (10), then define

(β̂, ρ̂) = arg max
(β,ρ)

ln[L(β, ρ)].

3. Main Results
3.1. Variable Selection with Linear Constraints

In many application fields, prior knowledge can be formulated as constraints on
parameters to improve the effectiveness of variable selection and estimation. In this section,
we consider the variable selection of the spatial logistic regression model with linear
constraints.

We will concentrate on the variable selection for the spatial logistic regression model
with linear constraints, that is

min− ln[L(β, ρ)] + 2n
p

∑
j=1

pλ

(∣∣β j
∣∣) s.t Cβ ≥ d, Eβ = f . (11)

where ρ ∈ R, β ∈ Rp, n is the sample size, and C ∈ Rq×p, d ∈ Rq, E ∈ Rs×p, and
f ∈ Rs are determined concretely according to practical knowledge and experience. pλ(•)
is the penalty function, and the shrinkage degree of the penalty is determined by the
tuning parameter λ in the penalty term. There are many popular choices for the penalty
function pλ(•) in the statistics literature: (1) the LASSO penalty with pλ(t) = λ|t|; (2) the
SCAD penalty with pλ(t) = λ

∫ |t|
0 min{1, (a− t/λ)+/(a− 1)}dt, a > 2 where v+ denotes

its positive part, that is, vI(v ≥ 0); (3) the MCP with pλ(t) = λ
∫ |t|

0 (1− t/(λa))+dt, a > 1.
Penalty functions can provide estimators with three properties which include unbiasedness,
sparsity, and continuity according to Fan and Li (2001) [23].

LASSO is not unbiased, and MCP calculation is relatively complex. Fan and Li
(2001) [23] demonstrated the oracle properties for the SCAD in the variable selection aspect,
and pointed out that the LASSO penalty does not possess the oracle properties. Compared
with ridge regression, the SCAD penalty method reduces the prediction variance of the
model. Moreover, the SCAD penalty method outperforms the LASSO penalty ones, which
reduces the deviation of parameter estimation. Thus, we choose to use the SCAD penalty
here.

3.2. Selection of the Tuning Parameter

We decided to choose the SCAD [23] penalty, relying on the analyses mentioned above.
The penalty function is defined as:

pλ(|β|) =


λ
∣∣β j
∣∣, 0 ≤

∣∣β j
∣∣ < λ,

−
(∣∣β j

∣∣2 − 2aλ
∣∣β j
∣∣+ λ2

)
/(2a− 2), λ ≤

∣∣β j
∣∣ < aλ,

(a + 1)λ2/2,
∣∣β j
∣∣ ≥ aλ,

(12)

where λ ≥ 0 and a > 2 are tuning parameters. Here, a is usually taken to be 3.7, a fact
that is elucidated in the work of Fan and Li (2001) [23]. At the same time, they have also
shown that λ determines the shrinkage strength of parameter estimation. In this paper, the
selection of tuning parameter λ by Bayesian information criterion (BIC) is also related to
degrees of freedom.

The number of degrees of freedom measures the number of effective parameters in
the regression model and the complexity of the model. It plays an important role in model
assessment and selection. There are different ways to measure degrees of freedom. Assume
that y follows a distribution y ∼ (µ, σ2), where µ is the true mean and σ2 is the variance.
Ye(1998) [25] and Efron(2004) [26] defined the number of degrees of freedom as

df(µ̂) =
1
σ2

n

∑
i=1

cov(yi, µ̂i). (13)
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where µ̂(y) = ŷ = X∗ β̂ is the fitted response for y ∈ Rn.
Under the framework of Stein’s unbiased risk estimation (SURE) theory (Stein (1981) [27]),

cov(yi, µ̂i) can be estimated by σ2E
[

∂µ̂i
∂yi

]
, if µ̂(y) is continuous and almost differentiable. Then

the expression for degrees of freedom of fitted µ̂ can be calculated as

df(µ̂) = E

[
n

∑
i=1

∂µ̂i
∂yi

]
. (14)

to apply it. We need to assume that the response is normally distributed, that is, y ∼
N
(
µ, σ2 In

)
.

Degrees of freedom are used effectively while selecting the tuning parameter λ. In this
study, the model selection criteria will be based on the Bayesian information criterion (BIC)
(Schwarz (1978) [28]):

BIC(λ) = ln

(
1
n

n

∑
i=1

δτ

(
yi − t̂i,λ

))
+

ln n
n

d f
(
t̂λ

)
. (15)

Since we have calculated the corresponding ρ̂(λ) and β̂(λ) at each tuning parameter
λ, we can use the corresponding fitted value t̂(λ) and degrees of freedom d f (t̂(λ)) to select
the optimal λ that minimizes BIC(λ).

4. Simulation Studies
4.1. Simulation Experiment Design

In the simulation experiment, we test the performance of the model through Monte
Carlo simulation. The random sample is generated by model (2.1) combined with model
(2.7), in which the covariate is considered when the (q + 3)-dimensional normal distri-
bution with zero mean and covariance matrix

(
σij
)
, where σij = 0.5|i−j|. Therefore, X

is an n× (q + 3) matrix. In the following simulation, we set the number of samples
n ∈ {60, 90, 120}, and the number of insignificant covariates q ∈ {5, 10, 25}. In this paper,
we show the cases of q = 5 and q = 10 in the simulation results.

In the spatial autoregressive model, the network autocorrelation coefficient ρ is gener-
ated by the uniform distribution on the interval [ρ1 − 1, ρ1 + 1], where ρ1 ∈ {0.8, 0.5, 0.2}.
Define the spatial weight matrix W = IR ⊗ Bm, where Bm = (1/(m− 1))

(
1m · 1T

m − Im
)
,

and⊗ is the Kronecker product. Denote 1m as the m-dimensional column vector of 1. In the
simulation experiment, we consider m = 3, and differet values of R, where R ∈ {20, 30, 40}.
The regression coefficients are set to β =

(
β1, β2, β3, 0q

)T , where (β1, β2, β3) is generated
from the 3-dimensional normal distribution with the mean vector of (3, 2, 1.6), and the
covariance matrix is 0.001I3.

To simplify the calculation, the regression coefficients are set to
(
3, 2, 1.6, 0q

)T , where
0q is a q-dimensional zero vector. The response variable is given by the following formula:

y∗ = (In − ρW)−1(Xβ + εn) (16)

Then use the following formula to convert the response variable into a category variable:

Yi =

{
1, for y∗i > 0
0, for y∗i ≤ 0.

(17)

Thus, we can obtain the binary classification of the response variable Y. For purpose
of confirming the robustness of the model, the error terms εis are independently generated
from the following two distributions: (a) normal distribution εi ∼ N

(
0, σ2 In

)
, denoted as

ε0 and (b) Gaussian mixture distribution εi ∼ 0.5N
(
−1, 2.52)+ 0.5N

(
1, 0.52), denoted as

ε1. σ2 is generated by the uniform distribution on the interval [σ1 − 0.1, σ1 + 0.1], where
σ1 ∈ {1, 2}. In the simulation experiment, we set σ = 1.5.
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In order to verify that the effect of the model with linear constraints is better, we will
compare it with the model without constraints. In one case, we can set the constraints as:

β3 + β6 = 1.6

β1 + β5 = 3

β1 + β3 ≥ 4

β2 + β6 ≤ 2.5

(18)

Obviously, we can find C , d , E, and f .

4.2. Evaluation Indicators

According to the above simulation experiments, we set the number of Monte Carlo
repetitions at 1000. We define the following three indicators to evaluate the performance
of variable selection in different settings.

Correct: the average number of coefficients of the true zeros correctly set to zero;
Incorrect: the average number of coefficients of the true nonzeros incorrectly set to

zero;
ME: the mean error between the true value and the estimate, which is defined by:

1
1000

1000

∑
i=1

∥∥θi − θ̂i
∥∥

1 (19)

4.3. Simulation Results

Tables 1 and 2 show the results of models with linear constraints without linear con-
straints, respectively. The constrained model is recorded as "Const”, and the unconstrained
model is recorded as “Unconst”. The results in Table 1 clearly show that the spatial logistic
model performs better with linear constraints, which also confirms the effectiveness of
our model. Most significantly, when ρ1 = 0.8, the error of the models with constraints
and without constraints are very different, which shows that when the spatial effect is
strong the constraints can greatly improve the accuracy of model parameter estimations.
Moreover, we find that the effect of the model tends to become bad by increasing the
network autocorrelation coefficient ρ1, which indicates the importance of the spatial effect.
Moreover, by setting two types of errors, we observe that the model has good robustness.
Additionally, in most cases, the model with an error term of ε1 performs better than the one
with an error term of ε0. Similarly, with the increase in sample size n, the incorrect rate of
variable selection and the estimation error both decrease. This situation is in line with our
prediction of the effect of the model. Moreover, it can be seen in Table 1 that the mean error
is minimum when n = 120, ρ1 = 0.2, and ε = ε1, which also confirms our analysis above.

In Table 2, by increasing the dimension to q = 10, we find that with the increase in the
network autocorrelation coefficient ρ1, the effect of the model becomes bad. Compared to
the case of q = 5, we find an increase in the mean error of estimation. After analysis, the
possible reason is that the proportion of data size to dimension is bad, that is, the dimension
of the sample is higher than the sample size. suppose the network complexity increases, it
will have a certain negative impact on the effect of variable selection. For high-dimensional
samples, the model results can be optimized by increasing the sample size. Simultaneously,
according to the simulation results, compared with the unconstrained case, the spatial
logistic model has stronger robustness, higher accuracy, and lower estimation error rate.

We compare the variable selection using the SCAD penalty and LASSO penalty under
constraints. The simulation results are shown in Table 3. We can clearly observe that in the
case where ρ1 = 0.2 and ρ1 = 0.5, the performance of the SCAD penalty is significantly
better than the LASSO penalty, which is shown in higher correct selection rate and lower
estimation error. As the network autocorrelation coefficient increases to ρ1 = 0.8, the correct
rate of variable selection of the SCAD penalty is higher than the LASSO penalty, while
the incorrect rate of the LASSO penalty is lower than the SCAD penalty. Additionally, the
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estimation error between them is not much different. The reason may be that the tuning
parameter λ in the LASSO penalty is too large and the shrinkage strength is stronger.

Table 1. Simulation results of the SCAD penalty model with constraints and without constraints
(q = 5).

Method n = 60, q = 5 n = 90, q = 5 n = 120, q = 5

Const Unconst Const Unconst Const Unconst

ρ1 = 0.2 Correct 4.703 4.637 4.755 4.809 4.789 4.812
ε0 Incorrect 0 0.189 0 0.099 0 0.068

ME 0.323 4.052 0.290 3.013 0.273 2.542

ρ1 = 0.2 Correct 4.780 4.634 4.783 4.782 4.784 4.837
ε1 Incorrect 0 0.114 0 0.050 0 0.032

ME 0.314 5.651 0.288 4.789 0.262 3.959

ρ1 = 0.5 Correct 4.682 4.421 4.752 4.589 4.701 4.664
ε0 Incorrect 0 0.135 0 0.062 0 0.044

ME 0.402 6.965 0.331 5.434 0.319 4.995

ρ1 = 0.5 Correct 4.692 4.385 4.675 4.548 4.700 4.672
ε1 Incorrect 0 0.084 0 0.050 0 0.029

ME 0.374 9.335 0.338 7.735 0.319 7.073

ρ1 = 0.8 Correct 3.894 2.998 4.101 3.619 4.179 3.809
ε0 Incorrect 0.075 0.065 0.021 0.018 0.018 0.015

ME 2.362 45.941 1.442 29.596 1.093 23.867

ρ1 = 0.8 Correct 3.865 2.837 4.126 3.542 4.174 3.876
ε1 Incorrect 0.074 0.052 0.016 0.014 0.028 0.007

ME 2.243 51.830 1.365 35.213 1.092 29.309

Table 2. Simulation results of the SCAD penalty model with constraints and without constraints
(q = 10).

Method n = 60, q = 10 n = 90, q = 10 n = 120, q = 10

Const Unconst Const Unconst Const Unconst

ρ1 = 0.2 Correct 9.255 8.740 9.374 9.363 9.571 9.614
ε0 Incorrect 0 0.166 0 0.074 0 0.036

ME 0.383 3.713 0.317 3.072 0.281 2.487

ρ1 = 0.2 Correct 9.777 9.282 9.861 9.178 9.642 9.546
ε1 Incorrect 0 0.102 0 0.021 0 0.015

ME 0.328 5.679 0.293 4.697 0.262 4.134

ρ1 = 0.5 Correct 8.036 7.220 8.344 7.970 8.598 8.298
ε0 Incorrect 0 0.133 0 0.052 0 0.022

ME 0.671 6.641 0.493 5.272 0.446 4.853

ρ1 = 0.5 Correct 9.571 6.632 8.395 8.160 8.690 8.576
ε1 Incorrect 0 0.117 0 0.034 0 0.009

ME 0.414 9.101 0.488 7.217 0.419 6.829

ρ1 = 0.8 Correct 5.688 4.049 5.889 5.204 6.221 9.755
ε0 Incorrect 0.129 0.070 0.071 0.020 0.080 2.937

ME 10.522 57.696 6.465 34.675 5.039 6.697

ρ1 = 0.8 Correct 5.669 4.046 6.019 5.152 6.194 9.759
ε1 Incorrect 0.134 0.043 0.076 0.023 0.079 2.935

ME 9.901 57.584 6.345 37.509 4.627 6.690
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Table 3. Simulation results of the constrained model with the SCAD penalty and LASSO penalty.

Method n = 60, q = 5 n = 90, q = 5 n =120, q = 5

SCAD LASSO SCAD LASSO SCAD LASSO

ρ1 = 0.2 Correct 4.703 3.496 4.755 3.495 4.789 3.483
ε0 Incorrect 0 0 0 0 0 0

ME 0.323 2.182 0.290 2.162 0.273 2.152

ρ1 = 0.2 Correct 4.780 3.482 4.783 3.472 4.784 3.397
ε1 Incorrect 0 0 0 0 0 0

ME 0.314 2.157 0.288 2.146 0.262 2.096

ρ1 = 0.5 Correct 4.682 3.633 4.752 3.646 4.701 3.625
ε0 Incorrect 0 0 0 0 0 0

ME 0.402 2.227 0.331 2.212 0.319 2.219

ρ1 = 0.5 Correct 4.692 3.605 4.675 3.683 4.700 3.624
ε1 Incorrect 0 0 0 0 0 0

ME 0.374 2.210 0.338 2.222 0.319 2.221

ρ1 = 0.8 Correct 3.894 3.516 4.101 3.516 4.179 3.509
ε0 Incorrect 0.075 0 0.021 0 0.018 0

ME 2.362 2.327 1.442 2.285 1.093 2.307

ρ1 = 0.8 Correct 3.865 3.478 4.126 3.538 4.174 3.485
ε1 Incorrect 0.074 0 0.016 0 0.028 0

ME 2.243 2.348 1.365 2.274 1.092 2.272

5. Real Data Example

In this section, we provide a real-world example to demonstrate the performance
of the variable selection procedure proposed in this paper for spatial logistic regression
models with linear constraints.

5.1. The Land Area Utilization Data

Land area utilization is analyzed by the spatial logistic model. The data set is different
types of land area data from 48 states in the United States from 1954 to 2012 (recorded
every five years). The dependent variables are binary, with “1” denoting a low land
utilization rate, which means that most of the land has not been properly developed, and
“0”, denoting a high land utilization rate, which means that most of the land has been
efficiently developed and exploited. As for the independent variables, there are eight
properties, which are Cropland used for crops, Cropland used for pasture, Cropland idled,
Grassland pasture and range, Forest-use land grazed, Land in rural transportation facilities,
Land in urban areas, and Other idle land (shown in Table 4).

Table 4. Summary of predictor variables for the land area utilization model.

Variable Name Description

CLand_C Cropland used for crops
CLand_P Cropland used for pasture
CLand_I Cropland idled
Grass_P Grassland pasture and range
Land_G Forest-use land grazed
Land_T Land in rural transportation facilities
Land_U Land in urban areas
Land_I Other idle land

5.2. Variable Selection and Estimation

For the above land area utilization data sets, we constructed a spatial logistic autore-
gressive model. We use the land utilization rate as a response variable, and take eight
variables, Cropland used for crops, Cropland used for pasture, Cropland idled, Grassland
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pasture and range, Forest-use land grazed, Land in rural transportation facilities, Land in
urban areas, and Other idle land, as the independent variables.

According to theoretical knowledge, the idle area of cropland and other idle land areas
have a significant impact on the probability of classification results. Through the fitting
of the model, the following two cases are considered: the first is the parameter estimation
without constraints, and the other is the parameter estimation with linear constraints, as
shown in Tables 5 and 6.

According to the results of parameter estimation based on the spatial logistic model,
it is found that the performance of variable selection is not obvious under unconstrained
conditions. Among them, “Forest-use land grazed” and “Land in rural transportation
facilities” have little impact on land use efficiency, which can be almost ignored. However,
“Other idle land” has a great influence on the classification effect. Considering the greater
relationship between land use area and idle land area, the performance of model selection is
greatly improved with constraints. According to the table below, it is found that “Cropland
idle” and “Other idle land” have a great impact on the classification results, and the fitting
parameters of other attributes are very small and can be ignored.

Table 5. Parameter estimation results without constraints.

Year CLand_C CLand_P CLand_I Grass_P Land_G Land_T Land_U Land_I

1954 0 0 0.982 0.423 0 0 0 0.602
1959 0 1.700 0 −1.740 0 0 0.3050 1.27
1964 0 1.28 0 −0.615 0 0 0 0.892
1969 0 1.55 0.715 −1.49 0 −0.385 0 1.06
1974 0.854 1.52 1.39 −2.26 0 −0.596 −0.651 1.52
1978 0.663 0 1.90 −1.72 −0.249 −0.287 0.614 1.26
1982 0.302 1.45 1.12 −1.12 0 0 −0.984 1.14
1987 0 1.15 0.664 0 0 0 −1.11 1.25
1992 0.981 0 0.174 2.82 0 −0.949 −2.41 1.80
1997 0.568 0 0.262 2.75 0 −0.877 −1.93 1.87
2002 2.42 0 1.61 −1.21 0 −1.00 0 2.39
2007 1.30 0.852 1.76 −1.20 0 0 −0.383 2.47
2012 0 0 2.58 −0.468 0 −0.799 0 1.02

Table 6. Parameter estimation results with linear constraints.

Year CLand_C CLand_P CLand_I Grass_P Land_G Land_T Land_U Land_I

1954 0 0 0.982 0.419 0 0 0 0.604
1959 0 0 0.660 −0.298 0.600 −0.464 0 1.16
1964 0 0 0 0.663 0 0 0 0.691
1969 0 0 1.03 −0.3.16 0.311 −0.452 0 0.814
1974 0 0 1.74 −1.21 0.640 −0.639 0 1.10
1978 0 0 1.83 −0.741 0 0 0 1.41
1982 0 0 0.922 0 0.604 −0.499 0 0.884
1987 0 0 0.903 0 0.585 −0.547 0 0.945
1992 0 0 0.514 0.596 0.447 −0.545 0 0.981
1997 0 0 0.586 0.770 0.408 −0.610 0 1.05
2002 0 0 1.48 0 0 0 0 2.24
2007 0 0 2.05 0 0 0 0 1.04
2012 0 0 1.76 0 0 0 0 0.694

6. Conclusions

In the paper, we obtain a spatial logistic model from the spatial autoregressive model
(SAR) and logistic regression model. In order to improve the accuracy of the model, we
take the prior information into account, and finally, propose a variable selection method
with linear constraints for the spatial logistic model. According to the simulation results,
by comparing the constrained and unconstrained variable selection models, we find that
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the performance of variable selection is more stable with the increase in sample size in the
case of limited samples. When we fix the sample size at a constant value, the performance
of the model tends to improve with the increase in network complexity. At the same time,
the model has strong robustness to noise. In order to verify the superiority of the SCAD
penalty, we compare the performance of the SCAD and LASSO penalties in the case of
the linear constraint model and find that the SCAD penalty has a better effect on variable
selection.

In practical application, most data show the characteristics of small sample size and
high dimensions. For purpose of verifying the wide adaptability of the model, we verify
that the proposed model can be effectively applied to the data set of high-dimensional and
small samples through simulation experiments. However, we find that in this case, when
the network complexity is very high, the performance effect of the model is not very good.
The sample size being too small might be the cause of this.

Author Contributions: Methodology, Y.S. (Yunquan Song); Software, Y.S. (Yuqi Su); Writing—
original draft, Z.W. All authors have read and agreed to the published version of the manuscript.

Funding: The researches are supported by the National Key Research and Development Program of
China (2021YFA1000102), NSF project (ZR2019MA016) of Shandong Province of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988.
2. LeSage, J.; Pace, R. K. Introduction to Spatial Econometrics; Chapman & Hall: New York, NY, USA, 2009.
3. Ord, K. Estimation methods for models of spatial interaction. J. Am. Stat. Assoc. 1975, 70, 120–126. [CrossRef]
4. Ma, Y.; Pan, R.; Zou, T. A Naive Least Squares Method for Spatial Autoregression with Covariates. Stat. Sin.2020 30, 653–672.
5. Dubin, R., Pace, K., and Thibodeau, T. Spatial autoregression techniques for real estate data. J. Real Estate Lit. 1999, 7, 79–95.

[CrossRef]
6. Osland, L. An application of spatial econometrics in relation to hedonic house price modelling. J. Real Estate Res. 2010, 32, 289–320.

[CrossRef]
7. Kakamu, K.; Polasek, W.; Wago, H. Spatial interaction of crime incidents in Japan. Math. Comput. Simul. 2008, 78, 276–282.

[CrossRef]
8. Zhou,J.; Tu,Y.; Chen,Y.; Wang,H. Estimating Spatial Autocorrelation with Sampled Network Data. J. Bus. Econ. Stat. 2017, 35,

130–138. [CrossRef]
9. Wang,W.; Andrews, B. Partially Specified Spatial Autoregressive Model with Artificial Neural Network. arXiv 2019,

arXiv:1801.07822.
10. Madsen, H.; Thyregod, P. Introduction to General and Generalized Linear Models; CRC Press: New York, NY, USA, 2010.
11. Calabrese, R.; Elkink, J.A. Estimators of Binary Spatial Autoregressive Models: A Monte Carlo Study. J. Reg. Sci. 2014, 54, 664–687.

[CrossRef]
12. Nisa, H.; Mitakda, M.B.; Astutik, S. Estimation of propensity score using spatial logistic regression. IOP Conf. Ser. Mater. Sci. Eng.

2019 , 546, 052048. [CrossRef]
13. Piribauer, P.; Crespo Cuaresma, J. Bayesian Variable Selection in Spatial Autoregressive Models. Spat. Econ. Anal. 2016, 11,

457–479. [CrossRef]
14. Liu, X.; Chen, J.; Cheng, S. A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive

model. Spat. Stat. 2018, 25, 86–104. [CrossRef]
15. Wei, H.; Sun, Y.; Hu, M. Model Selection in Spatial Autoregressive Models with Varying Coefficients. Front. Econ. China 2019, 13,

559–576.
16. Xie, T.; Cao, R.; Du, J. Variable selection for spatial autoregressive models with a diverging number of parameters. Stat. Pap. 2020,

61, 1125–1145.
17. Cai, L.; Maiti, T. Variable selection and estimation for high-dimensional spatial autoregressive models. Scand. J. Stat. 2020, 47,

587–607. [CrossRef]
18. Li, T.; Yin, Q.; Peng, J. Variable selection of partially linear varying coefficient spatial autoregressive model. J. Stat. Comput. Simul.

2020, 90, 2681–2704. [CrossRef]

http://doi.org/10.1080/01621459.1975.10480272
http://dx.doi.org/10.1080/10835547.1999.12090079
http://dx.doi.org/10.1080/10835547.2010.12091282
http://dx.doi.org/10.1016/j.matcom.2008.01.019
http://dx.doi.org/10.1080/07350015.2015.1061437
http://dx.doi.org/10.1111/jors.12116
http://dx.doi.org/10.1088/1757-899X/546/5/052048
http://dx.doi.org/10.1080/17421772.2016.1227468
http://dx.doi.org/10.1016/j.spasta.2018.05.001
http://dx.doi.org/10.1111/sjos.12452
http://dx.doi.org/10.1080/00949655.2020.1788560


Entropy 2022, 24, 1660 12 of 12

19. Li, T.; Kang, X. Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of
parameters. Stat. Pap. 2021, 63, 243–285. [CrossRef]

20. Liu, X.; Chen, J. Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances. Mathematics 2021,
9, 1448. [CrossRef]

21. Song, Y.; Liang, X.; Zhu, Y.; Lin, L. Robust variable selection with exponential squared loss for the spatial autoregressive model.
Comput. Stat. Data Anal. 2021, 155, 107094. [CrossRef]

22. Tibshirani, R.J. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B. 1996, 58, 267–288. [CrossRef]
23. Fan J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96,

1348–1360. [CrossRef]
24. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 2010, 38, 894–942. [CrossRef]
25. Ye, J. On ineasuring and correcting the effects of data mining and model selection. J. Am. Statist. Assoc. 1998, 93, 120–131.

[CrossRef]
26. Efron, B. The estimation of prediction error: Covariance penalties and cross-validation. J. Am. Statist. Assoc. 2004, 99, 619–632.

[CrossRef]
27. Stein, C.M.Estimation of the mean of a multivariate normal distribution. Ann. Statist. 1981, 9, 1135–1151. [CrossRef]
28. Schwarz, G. Estimating the dimension of a model. Ann. Statist. 1978, 6, 461–464. [CrossRef]

http://dx.doi.org/10.1007/s00362-021-01241-4
http://dx.doi.org/10.3390/math9121448
http://dx.doi.org/10.1016/j.csda.2020.107094
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1214/09-AOS729
http://dx.doi.org/10.1080/01621459.1998.10474094
http://dx.doi.org/10.1198/016214504000000692
http://dx.doi.org/10.1214/aos/1176345632
http://dx.doi.org/10.1214/aos/1176344136

	Introduction
	Models
	Spatial Autoregressive Model (SAR)
	Spatial Logistic Regression Model

	Main Results
	Variable Selection with Linear Constraints
	Selection of the Tuning Parameter

	Simulation Studies
	Simulation Experiment Design
	Evaluation Indicators
	Simulation Results

	Real Data Example
	The Land Area Utilization Data 
	Variable Selection and Estimation

	Conclusions
	References

