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Abstract: A change point is a location or time at which observations or data obey two different
models: before and after. In real problems, we may know some prior information about the location
of the change point, say at the right or left tail of the sequence. How does one incorporate the
prior information into the current cumulative sum (CUSUM) statistics? We propose a new class of
weighted CUSUM statistics with three different types of quadratic weights accounting for different
prior positions of the change points. One interpretation of the weights is the mean duration in a
random walk. Under the normal model with known variance, the exact distributions of these statistics
are explicitly expressed in terms of eigenvalues. Theoretical results about the explicit difference of
the distributions are valuable. The expansions of asymptotic distributions are compared with the
expansion of the limit distributions of the Cramér-von Mises statistic and the Anderson and Darling
statistic. We provide some extensions from independent normal responses to more interesting
models, such as graphical models, the mixture of normals, Poisson, and weakly dependent models.
Simulations suggest that the proposed test statistics have better power than the graph-based statistics.
We illustrate their application to a detection problem with video data.

Keywords: asymptotic distribution; Brownian bridge; exact distribution; quadratic weights; weak
dependence

1. Introduction

A change point is a location or time at which observations or data obey two different
models: before and after. Detecting change points is a nontrivial problem and has been
studied by many authors; see a book treatment in [1] and recent advances in CUSUM-based
change point tests [2–4]. In real problems, we may know some prior information about
the location of the change point, say at the right or left tail of the sequence. How does one
incorporate prior information into current CUSUM-based statistics? We consider a new
class of weighted CUSUM statistics for a simple model and provide some extensions to
more complicated models.

Given a series of univariate random variables Y1, . . . , Yn, we consider the problem of
testing whether there is a change in the mean of their distribution. The test statistic we
use is:

Sn(Y ; τ, γ) =
n−1

∑
k=1

w−1
k (τ)

{
k

∑
i=1

(Yi − Ȳ)

}γ

, (1)

where Y = (Y1, . . . , Yn)>, Y = n−1 ∑n
j=1 Yj, γ > 0, and

wk(τ) = −(k− τ)2 + max{τ2, (n− τ)2} =


(n + k)(n− k), if τ = 0,
k(n− k), if τ = n/2,
k(2n− k), if τ = n,

(2)
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where τ = 0, n/2, and n account for three different prior positions of the change point,
respectively. We call Sn a weighted CUSUM (WC) statistic.

Inspired by the change point literature, we consider these types of quadratic weights.
The term max{τ2, (n− τ)2} = max0≤j≤n(j− τ)2 is introduced to ensure that the weight
wk(τ) is positive for any 0 < k < n. Usually, we choose γ = 2 to capture the change in
the mean. When τ = n/2, the weight wk(n/2) = k(n− k) corresponds to the likelihood
ratio test; see Csörgő and Horváth [1] and a related review in Jandhyala et al. [5]. If prior
information indicates that the change point more likely occurs in the right or left tail of the
sequence, we can set the weight wk(0) = (n + k)(n− k) (left drifted to the symmetry center
point 0) or wk(n) = k(2n− k) (right drifted to the symmetry center point n) to improve the
power of the test.

One interpretation of the weights is the mean duration in a random walk {Xi, i ≥ 0}
on N + 1 states, {0, 1, . . . , N}, whose transition probability is given by P(Xi+1 = k± 1|Xi =
k) = 1/2 for k = 1, . . . , N − 1, P(Xi+1 = 0|Xi = 0) = 1, and P(Xi+1 = N|Xi = N) = 1. Let
T denote the random time at which the process first reaches 0 or N. Then, for k = 1, . . . ,
n− 1, E(T|X0 = k) = k(n− k) = wk(n/2) if N = n; E(T|X0 = k) = k(2n− k) = wk(n)
if N = 2n; and E(T|X0 = n− k) = (n + k)(n− k) = wk(0) if N = 2n. Figure 1 depicts
four vectors wk for n = 10. The centers of symmetry of these quadratic weights are at
different positions.
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Figure 1. Plot of weights: n2 (uniform), k(n− k) (centered), (n + k)(n− k) (left shifted), and k(2n− k)
(right shifted).

The weights in (1) can be thought of as an inverse prior probability on the change
point, giving Sn a Bayesian flavor, as in Gardner [6], who used the uniform prior n−2,
or Perron [7], who devised a unit-root test for time series. From a frequentist perspective,
the weighted sum statistic offers an alternative to the maximum statistic most commonly
used Csörgő and Horváth [1], which we show (in small simulations omitted here) has
higher power, especially when the change point is at the center of the sequence for any τ,
in the right tail of the sequence for τ = n, and in the left tail of the sequence for τ = 0.

For these types of quadratic weights, a couple of questions naturally arise: will
different weights lead to different distributions of WC in Equation (1)? If so, how significant
will the differences in the distribution be? If two different weights lead to the same
distribution, are there any intrinsic reasons? Although one can estimate the distribution
of WC by simulation, theoretical results about the explicit differences of the distributions
are valuable. Moreover, simulations and computations of eigenvalues for large n are
computationally expensive. To answer the aforementioned questions, we shall study the
distribution of the WC theoretically; we derive Karhunen–Loève expansions of the exact
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and asymptotic distributions of the WC statistics. The calculation of a Karhunen–Loève
expansion is a nontrivial task, even under the normal model. Gardner [6] discussed the
uniform weight under the normal assumption, but the quadratic weights we consider
here increase the difficulty substantially. We present below a unified theory that enables
us to establish the distribution of WC using dual Hahn polynomials. The asymptotic
distributions for the quadratic weights wk(0) and wk(n) are identical, and the expansions
of asymptotic distributions between wk(0) and another quadratic weight wk(n/2) differ
by an odd number of terms. We make a comparison with the expansion of the limit
distributions of the Cramér-von Mises statistic and the Anderson and Darling statistics; see
also MacNeill [8].

The WC has some variants in other models. For example, in the graphical model, γ can
be 1 if we replace Y with a count of edges. Here, the main challenge is to approximate the
covariance of edge-count statistics under the null permutations. In the normal mixed model,
a variant of WC can be derived by considering a marginal likelihood function. In the Poisson
mixed model, however, the calculation of the marginal likelihood function is hindered
by an integral without a closed form. To approximate this integral, one may use Laplace,
or saddle point approximation [9–13]. Here, we apply the saddle point approximation to
the integral and provide a variant of WC related to the log link. For the classical change
point Poisson model without latent variables, see [1] (p. 27); for the Poisson process with a
change point, we refer readers to Akman and Raftery [14], Loader [15]. Moreover, to adopt
the assumption of weak dependence in practice, we avoid the estimation of the variance
and provide a randomized version of WC.

The structure of the paper is outlined as follows. In Section 2, we derive the explicit
expansions of the distribution of the WC statistics and explore their connections with
the Karhunen–Loève expansion. We derive extended versions of WC by considering the
observations as nodes in the graphical model and allowing the observations from a normal
or Poisson mixed model to be weakly dependent. In Section 3, we discuss the power of the
proposed WC test. In Section 4, we use simulation to compare the performance of this test
with that of a graph-based test statistic. In Section 5, we present an application for video
data. In Section 6, we discuss the extension to multiple change points and suggest future
work on other quadratic weights.

2. Exact and Asymptotic Distributions of the WC Statistics
2.1. Explicit Distribution for a Normal Model

We assume here that {Yi} are independent following a normal distribution with a
common known variance σ2. The case of unknown σ2 is addressed in Remark 3, and an
extension relaxing the independence assumption is given in Section 2.6.

Following the derivation in Gardner [6], we write (1) as a quadratic form

Sn(Y ; τ, 2) =
1
n2

n−1

∑
k=1

pk

{
k

∑
i=1

(n− k)Yi −
n

∑
i=k+1

kYi

}2

=
1
n2 Y>AA>Y = Y>QY , (3)

where pk = pk(τ) = w−1
k (τ), and n2Q = AA> with A = (A1, · · · , An−1). Here, Ak =

p1/2
k (n− k, · · · , n− k,−k, · · · ,−k)> such that the first k entries of Ak are p1/2

k (n− k) and
the last n− k entries −p1/2

k k.
By using the recurrence identity and the dual Hahn polynomial, we obtain a new exact

result in terms of the eigenvalues of Q in (3).

Theorem 1. Assume that {Yi} are independent normally distributed random variables with a
common mean and known variance σ2. The exact distribution of Sn(Y ; τ, 2) is

Sn(Y ; τ, 2)
σ2 =d

n

∑
k=1

λk(τ)Z2
k , (4)
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where Z2
k are independent and identically distributed normal random variables with mean zero and

variance 1, λn(τ) = 0, and

λk(τ) =

{ 1
k(k+1) , k = 1, . . . , n− 1, if τ = n/2

1
2k(2k+1) , k = 1, . . . , n− 1, if τ = 0 or n.

The proof of Theorem 1 is given in Appendix A. We make the following remarks.

Remark 1. It is interesting that λ2k(n/2) = λk(0) for all 0 < k < n/2; namely, the eigenvalues
for wk(n/2) with even indices coincide with the eigenvalues for wk(0) with indices less than n/2.
As the sample size increases from n to n + 1, the n− 1 nonzero eigenvalues are retained and the
added nonzero eigenvalue must be 1/{n(n + 1)} for wk(n/2) or 1/{2n(2n + 1)} for wk(0) or
wk(n). This interesting phenomenon has not been seen in the uniform weights of Gardner [6].
As far as we know, this recursive property of the eigenvalues for the non-uniform weights is new.
Figure 2 depicts the pattern of eigenvalues (cross products of rows and columns) illustrated by dots
for three weights wk(n/2) (blue), wk(0) (green), and wk(n) (purple) with the increase of n.

λk(τ) 0 1 1/2 1/3 1/4 1/5 1/6 1/7

0

1
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Figure 2. The pattern of eigenvalues (cross products of rows and columns) illustrated by dots for
three weights wk(n/2) for τ = n/2 (blue), wk(0) for τ = 0 (green) and wk(n) for τ = n (purple) with
the increase of n.

Remark 2. The distribution in (4) can be calculated numerically using Imhof’s method [16] or
simulated by a Monte Carlo method, but accurate analytical approximations are potentially faster
and more stable. A saddle point approximation to the distribution of quadratic forms in normal
variates was studied in Kuonen [17], building on Daniels [9,18] and Lugannani and Rice [19].

Remark 3. When the variance σ2 is unknown, we can replace σ2 with a consistent estimator

σ̂2 = (n− 1)−1
n

∑
i=1

(Yi −Y)2,
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by using Slutsky’s lemma. This also holds in Corollary 1. For dependent data, one issue is to give a
valid estimate of the variance; see Section 2.6.

2.2. Karhunen–Loève Expansion

The squared integral of a Brownian bridge arises in the study of tests for goodness-of-
fit. Given a sample of independent and identically distributed random variables with an
empirical distribution function Fn(x), the statistic

ω2
n(ψ) = n

∫ ∞

−∞
{Fn(t)− F(t)}2ψ{F(t)}dF(t)

provides a test of the null hypothesis that the observations come from the distribution
F(·). The Cramér-von Mises statistic has ψ(t) ≡ 1, and the Anderson-Darling statistic has
ψ(t) = 1/{t(1− t)}. Here, we shall discuss two new weights: ψ(t) = 1/{t(2− t)} and
ψ(t) = 1/(1− t2).

MacNeill [8] showed that∫ 1

0
{B(t)− tB(1)}2dt =

∞

∑
k=1

1
k2π2 Z2

k ,

using a Fourier expansion ofB(t)− tB(1) = ∑∞
k=1

√
2 sin(kπt)/(kπ)Zk, where {

√
2 sin(kπt),

k = 1, 2, · · · , ∞} is an orthonormal basis in L2(0, 1) and B(t) is a standard Brownian motion
and B(t)− tB(1) is a Brownian bridge.

Anderson and Darling [20] showed that

∫ 1

0

{B(t)− tB(1)}2

t(1− t)
dt =

∞

∑
k=1

1
k(k + 1)

Z2
k .

In Appendix B, we use Jacobi polynomials to derive the Karhunen–Loève expansion
for the integrals of the weighted square of the Brownian bridge with two new weights
ψ(t) = 1/ {t(2− t)} and ψ(t) = 1/(1− t2). The results are stated in the following theorem.

Theorem 2. The two weights ψ(t) = 1/{t(2− t)} and ψ(t) = 1/(1− t2) lead to the same
Karhunen–Loève expansions:

∫ 1

0

{B(t)− tB(1)}2

2t− t2 dt =
∞

∑
k=1

1
2k(2k + 1)

Z2
k (5)

and ∫ 1

0

{B(t)− tB(1)}2

1− t2 dt =
∞

∑
k=1

1
2k(2k + 1)

Z2
k . (6)

The proof of the above two equalities will be provided in Appendix B. One can see the
equivalence of these two equalities by using a change of variable.

Given different probabilities (p), Table 1 presents the critical values cp for which
p = P(χ2

n(τ) ≤ cp) for different n, where χ2
n(τ) = ∑n

k=1 λk(τ)Z2
k and calculations of

critical values for finite n are based on Imhof’s method [16] implemented in R package
CompQuadForm [21]. A few critical values are tabulated in Anderson and Darling [22]
for χ2

n(τ) with n = ∞. One can see the critical values converge very quickly as n increases
to ∞.
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Table 1. Critical values of ∑n
k=1 λk(τ)Z2

k for different weights in (4), sizes (n), and probabilities (p).

n

Weight p 20 40 60 80 100 200 400 1000 10,000 ∞
wk(n/2) 0.90 1.883 1.908 1.916 1.920 1.923 1.928 1.930 1.932 1.933 1.933

0.925 2.111 2.136 2.145 2.149 2.151 2.156 2.159 2.160 2.161
0.95 2.442 2.467 2.476 2.480 2.482 2.487 2.490 2.491 2.492 2.492
0.975 3.027 3.052 3.061 3.065 3.067 3.072 3.075 3.076 3.077 3.070
0.99 3.828 3.853 3.861 3.866 3.868 3.873 3.876 3.877 3.878 3.850

wk(0) 0.90 0.599 0.605 0.607 0.608 0.609 0.610 0.611 0.611 0.611
0.925 0.675 0.682 0.684 0.685 0.685 0.687 0.687 0.688 0.688
0.95 0.786 0.792 0.794 0.795 0.796 0.797 0.798 0.798 0.798
0.975 0.981 0.988 0.990 0.991 0.991 0.993 0.993 0.994 0.994
0.99 1.249 1.255 1.257 1.258 1.259 1.260 1.261 1.261 1.261

In fact, we can connect the limit distribution of WC statistic and its functional limit
distribution by the Karhunen–Loève expansion of the integral of the weighted square of
Brownian bridge in terms of the Jacobi polynomials. Theorem 1 immediately implies the
following asymptotic distribution as n→ ∞.

Corollary 1. Under the assumptions of Theorem 1, when n→ ∞,

Sn(Y ; τ, 2)
σ2 →d

∞

∑
k=1

λk(τ)Z2
k .

One can check ∑∞
k=n λk(τ)Z2

k →p 0 by Markov’s inequality. Hence, ∑n−1
k=1 λk(τ)Z2

k
converges to ∑∞

k=1 λk(τ)Z2
k in probability as n→ ∞. By the functional limit theorem,

Sn(Y ; τ, 2)
σ2 →d


∫ 1

0
{B(t)−tB(1)}2

1−t2 dt, if τ = 0,∫ 1
0
{B(t)−tB(1)}2

t(1−t) dt, if τ = n/2,∫ 1
0
{B(t)−tB(1)}2

2t−t2 dt, if τ = n.

2.3. Graphical Model

Assume the {Yi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ q} are independent and have common mean
E(Yi,j) = µi and variance Var(Yi,j) = σ2

i . Consider testing

H0 : µi ≡ µ, σ2
i ≡ σ2 vs Ha : µi =

{
µ−, for i ≤ k∗,
µ+, for k∗ > i,

or σ2
i =

{
σ2
−, for i ≤ k∗,

σ2
+, for k∗ > i,

(7)

where µ− 6= µ+ or σ2
− 6= σ2

+, the parameters µ, µ−, µ+, σ2, σ2
−, and σ2

+ are unknown.
A graphical model can be established by treating each q-dimensional vector as a node

and assigning the Euclidean distance between any two vectors. Here, we consider a path P
with an ordering of nodes (v1, . . . , vn) and edges (vi, vi+1) for i = 1, . . . , n− 1. Associated
with the path, the count of edges that connect nodes between arbitrary two disjoint sets
Nk = {1, . . . , k} and Nk = {k + 1, . . . , n} is defined to be:

CP (Nk,Nk) =
n−1

∑
i=1

I
[{

(vi ∈ Nk) ∩ (vi+1 ∈ Nk)} ∪ {(vi+1 ∈ Nk) ∩ (vi ∈ Nk)
}]

, (8)

where I(·) is an indicator function that takes 1 if true otherwise 0. The CP (Nk,Nk) counts
edges between two groups Nk and Nk.
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Denote the expectation and variance of CP (Nk,Nk) under n! permutations of nodes as
EpermCP (Nk,Nk) and VarpermCP (Nk,Nk). By [23],

EpermCP (Nk,Nk) =
2k(n− k)

n
and VarpermCP (Nk,Nk) =

2k(n− k){2k(n− k)− n}
n3 − n2 .

A WC statistic may be constructed as

Sn(P ; τ, γ) =
n−1

∑
k=1

w−1
k (τ)

{
−CP (Nk,Nk) +

2k(n− k)
n

}γ

. (9)

A large value of observed Sn(P∗; τ, γ) based on the shortest Hamiltonian path (SHP),
P∗, indicates a rejection of the null hypothesis, i.e., there is a change point; see the heuristic
algorithm of SHP in Biswas et al. [24] and the analysis of power and change point in Shi,
Wu and Rao [25,26] for γ = 2 and wk(τ) = VarpermCP (Nk,Nk). Here, we will establish the
asymptotic distribution of Sn(P ; τ, γ) for γ = 1, 2. First, we give the following Lemma.

Lemma 1. For k = btnc with 0 < t < 1,

1√
2n

{
−CP (Nk,Nk) +

2k(n− k)
n

}
→d {B(t)− tB(1)}2 − t(1− t), n→ ∞. (10)

By the functional limit theorem,

√
n
2

Sn(P ; τ, 1)→d


∫ 1

0
{B(t)−tB(1)}2

1−t2 dt + log(2)− 1, if τ = 0,∫ 1
0
{B(t)−tB(1)}2

t(1−t) dt− 1, if τ = n/2,∫ 1
0
{B(t)−tB(1)}2

2t−t2 dt + log(2)− 1, if τ = n,

(11)

and

1
2

Sn(P ; τ, 2)→d


∫ 1

0
[{B(t)−tB(1)}2−t(1−t)]

2

1−t2 dt, if τ = 0,∫ 1
0
[{B(t)−tB(1)}2−t(1−t)]

2

t(1−t) dt, if τ = n/2,∫ 1
0
[{B(t)−tB(1)}2−t(1−t)]

2

2t−t2 dt, if τ = n,

(12)

which solves an open problem in [25,26]. Different values of γ lead to different rates of
convergence and different ”normings”.

2.4. Normal Mixed Model

Assume Yi,j = µi + Ui + ei,j, where 1 ≤ i ≤ n, 1 ≤ j ≤ q, ei,j are independent and
identically normally distributed with mean zero and variance σ2, and Ui are independent
latent variables following a normal distribution with mean zero and variance ν2.

Consider testing

H0 : µi ≡ µ vs Ha : µi =

{
µ−, for i ≤ k∗,
µ+, for k∗ > i,

(13)

where µ− 6= µ+, the parameters µ, µ− and µ+ are unknown, and we tentatively assume
the time k∗, called the change point, and the variances σ2 and ν2 to be known.

The marginal log-likelihood function of µ under H0 is

`(µ) = `0 −
∑n

i=1(Yi• − µ)2

2ν2 + 2σ2/q
,

where `0 does not depend on µ and Yi• = ∑
q
j=1 Yi,j/q.
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Therefore,

max
µ

`(µ) = `0 −
n

∑
i=1

(Yi• − µ̂1,n)
2

2ν2 + 2σ2/q
,

where µ̂t1,t2 = ∑t2
i=t1

Yi•/(t2 − t1 + 1).
In a similar way, the marginal log-likelihood function of µ− and µ+ under Ha can be

obtained. Then, the marginal log-likelihood ratio is

n

∑
i=k∗+1

(Yi• − µ̂1,n)
2

ν2 + σ2/q
−

k∗

∑
i=1

(Yi• − µ̂1,k∗)
2

ν2 + σ2/q
−

n

∑
i=k∗

(Yi• − µ̂k∗+1,n)
2

ν2 + σ2/q
,

which is equal to

n
{

∑k∗
i=1(Yi• − µ̂1,n)

}2

k∗(n− k∗)(ν2 + σ2/q)
.

As the change point k∗ could be unknown in practice, we may sum over k∗ = 1, . . . , n−
1 and consider the average value, which leads to

Sn(Y•; n/2, 2) =
n−1

∑
k=1

w−1
k (n/2)

{
k

∑
i=1

(Yi• − µ̂1,n)

}2

. (14)

where Y• = (Y1,•, . . . , Yn,•)>.
By Theorem 1 and Remark (3) in terms of weighted version for any τ, as n→ ∞,

Sn(Y•; τ, 2)

(n− 1)−1
{

∑n
i=1(Yi• − µ̂1,n)

}2 →d

∞

∑
k=1

λk(τ)Z2
k .

2.5. Poisson Mixed Model

Assume Yi,j follows a Poisson distribution with conditional mean E(Yi,j|Ui) = exp(ρi +
Ui). Consider testing

H0 : ρi ≡ ρ vs Ha : ρi =

{
ρ−, for 1 ≤ i ≤ k∗,
ρ+, for k∗ < i ≤ n,

(15)

where ρ− 6= ρ+, the parameters ρ, ρ− and ρ+ are unknown. Under normal distribution
for Ui, the likelihood ratio contains an integral. With the focus on the simple Poisson
mixed model without a change point, Hall et al. [27,28] applied the Gaussian variational
approximation (GVA) to approximate the integral so as to avoid solving the integral. We
provide a saddle point approximation here.

The marginal log-likelihood function of ρ under H0 is

`(ρ) = `1 +
n

∑
i=1

log Ii(ρ), (16)

where `1 does not depend on r and Ii(ρ) =
∫ ∞
−∞ exp

{
−qeρ+u + qYi•(ρ + u)− u2

2ν2

}
du.

The calculation of `(ρ) is hindered by the lack of a closed form of the integral Ii(ρ).
Here, we apply the saddle point approximation to the integral as shown in Lemma 2.

Lemma 2. For the integral I(ρ; a, b, ν2) =
∫ ∞
−∞ exp

{
−beu + au− (u−ρ)2

2ν2

}
du,

I(ρ; a, b, ν2) ≈ (
a
be
)a
√

2π

a
e−

(c−ρ)2

2ν2 ,
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where the symbol ≈ means asymptotic equivalence and the saddle point c solves φ′(u) = 0 with
φ(u) = au− beu, i.e., c = log(a/b).

In (16), Ii(ρ) = I(ρ; qYi•, q, ν2), so Lemma 2 gives the leading term as

`(ρ) ≈ `1 −
n

∑
i=1

(log Ȳi• − ρ)2

2ν2 ,

and the leading term approximation to maxρ `(ρ)

`1 −
n

∑
i=1

(log Ȳi• − ρ̂1,n)
2

2ν2 ,

where ρ̂t1,t2 = ∑t2
i=t1

log Ȳi•/(t2 − t1 + 1).
In a similar way, maxρ1,ρ2 `(ρ1, ρ2) under Ha can be approximated, giving the approxi-

mate log-likelihood ratio

n

∑
i=1

(log Ȳi• − ρ̂1,n)
2

ν2 −
k∗

∑
i=1

(log Ȳi• − ρ̂1,k∗)
2

ν2 −
n

∑
i=k∗+1

(log Ȳi• − ρ̂k∗+1,n)
2

ν2

=
n{∑k∗

i=1(log Ȳi• − ρ̂1,n)}2

k∗(n− k∗)ν2 . (17)

Considering that the change point k∗ is unknown, we may sum (17) over k∗ = 1, . . . ,
n− 1 as shown in (1) and consider the average value,

Sn(log Y•; n/2, 2) =
n−1

∑
k=1

w−1
k (n/2)

{
k

∑
i=1

(log Yi• − ρ̂1,n)

}2

. (18)

Note that the term wk(n/2) is derived from the approximate likelihood ratio statistic,
different from the classical Poisson change point statistic in Csörgő and Horváth [1] (p. 27).

By Theorem 1 and Remark 3 in terms of weighted version for any τ, as n, q→ ∞,

Sn(log Y•; τ, 2)

(n− 1)−1
{

∑n
i=1(log Yi• − ρ̂1,n)

}2 →d

∞

∑
k=1

λk(τ)Z2
k .

2.6. Weak Dependence

Now, we consider a space-time model for the distribution of Yi,j, where i indexes time
and j indexes space. First, we assume some weak dependence conditions on space by
supposing the central limit theorem holds:

1
√

q

q

∑
j=1

(Yi,j −Yi•)→d N(0, σ2), (19)

where σ2 = limq→∞ qvar(Ȳi•).
Next, we assume some weak dependence conditions on time by supposing that the fol-

lowing invariance principle or functional central limit theorem holds for any t ∈ (0, 1) [29,30]:

1
√

nq

[nt]

∑
i=1

(Yi• −Y••)⇒ σ̃{B(t)− tB(1)}, (20)

where Y•• = ∑n
i=1 Yi•/n = µ̂1,n and σ̃2 = limnq→∞ nq var(Ȳ••).
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The weak dependence conditions in (19) and (20) are satisfied if the series is m-
dependence, mixing, or linear process. Shao and Zhang [31] proposed a normalized
change point statistic

Mn,q(Y•) = max
k

n
wk

{
k

∑
i=1

(Yi• − Ȳ••)

}2

, (21)

where Y• = (Y1,•, . . . , Yn,•)> and wk = ∑k
i=1{∑i

j=1 Yj• − (i/k)∑i
j=1 Yj•}2 + ∑n

i=k+1

{∑n
j=i Yj• − (n− i + 1)/(n− k)∑n

j=k+1 Yj•}2 is a random weight.
They showed that

Mn,q(Y•)

q
→d max

0<t<1

{B(t)− tB(1)}2

D1,0,t + D2,t,1
,

where D1,0,t =
∫ t

0 {B(s) − (s/t)B(t)}2ds and D2,t,1 =
∫ 1

t [B(1) − B(s) − (1 − s)/(1 − t)
{B(1)−B(t)}]2ds.

Similarly, with the same wk as above, we propose a randomized version of WC:

Sn,q(Y•) =
n−1

∑
k=1

1
wk

{
k

∑
i=1

(Yi• − Ȳ••)

}2

. (22)

By the functional central limit theorem, when n→ ∞,

Sn,q(Y•)

q
→d

∫ 1

0

{B(t)− tB(1)}2

D1,0,t + D2,t,1
dt.

3. Power and Change Point Estimation

Considering the WC statistic Sn(Y•; τ, 2) in (14), we now consider the power of change
point test based on

Sn(Y•; τ, 2)

(n− 1)−1
{

∑n
i=1(Yi• − µ̂1,n)

}2 , (23)

under the alternative hypothesis in Section 2.4. We assume some weak dependence condi-
tions in Section 2.6. We note that (23) has the same asymptotic null distribution as (4) in
Theorem 1. The asymptotic distribution is shown in Theorem 2. To establish the consistency
of the test, we make a further assumption that the change point index k∗ is bounded away
from the endpoints.

Theorem 3. Assume E(Yi,j) = µi = µ− if i ≤ k∗, µ+ otherwise. Under the alternative hypothesis,
the change magnitude ∆ = µ+ − µ− 6= 0. Under a weak dependence satisfying (19) and (20),
0 < τ1 ≤ k∗/n ≤ τ2 < 1, τ1 and τ2 are two constants, nq∆2 → ∞, and n3/2q−1/2|∆| → ∞,
qSn(Y•; τ, 2)→p ∞.

The proof of Theorem 3 is in Appendix E. As expected, the power of the test based on
(23) increases with n, q, and the size of the change in the mean.

The estimated change point is

k̂(τ) = arg max
1≤k<n

w−1/2
k (τ)

∣∣∣∣∣ k

∑
i=1

(Yi• −Y••)

∣∣∣∣∣. (24)

We refer the reader to Bai [32,33] for some early works on the asymptotic distribution
of k̂(n/2) and [34] for a treatment on the convergence rate of k̂(n/2).
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4. Simulations

The main purpose of this simulation is to assess the effect of different values for wk(τ),
n, q, and change magnitude on the power of our test in (23), and that of the graph-based
tests [25,26,35], as both can handle high-dimensional data, and the distance of the graph
can be changed to test different changes of parameters for a fair comparison. For example,
if we are not sure whether the mean or variance changes, the Euclidean distance can be
used to measure the distance between any two nodes in the graph:

di1,i2 =

{
q

∑
j=1

(Yi1,j −Yi2,j)
2

}1/2

; (25)

see Chen and Zhang [35], and Shi, Wu and Rao [25]. Another pseudo-distance can be used

d∗i1,i2 =
∣∣Yi1,• −Yi2,•

∣∣, (26)

if only the change in the mean needs to be detected; see Shi, Wu and Rao [26]. We denote
the maximal test of Chen and Zhang based on Euclidean distance by MST and based on the
pseudo-distance by MST*. The associated algorithm is in the R package gSeg [36]. Similarly,
we denote Shi, Wu, and Rao’s test (Shi, Wu and Rao [25,26]) based on Euclidean distance
by SHP and based on the pseudo-distance by SHP∗, and the associated R package can be
accessed from [37].

First, we simulate {Yi,j, 1 ≤ i ≤ k∗, 1 ≤ j ≤ q} independent standard normal random
variables and {Yi,j, k∗ + 1 ≤ i ≤ n, 1 ≤ j ≤ q} independent normal random variables
with mean ∆ and variance 1. The critical values for α = 0.05 are given in Table 1 with
p = 1− α. We use these critical values and generate 200 simulations with sample sizes
n = 40, 80, dimensions q = 50, 100, change point locations k∗ = n/4, n/2, 3n/4, and change
magnitude ∆ = 0.1, 0.2.

In Table 2, we show the percentage of rejections of the null hypothesis at level 0.05 for
each of the change point tests. We can see that the power of the graph-based method MST∗

or SHP∗ is higher than that of MST and SHP, which use the pseudo-distance for detecting
changes in the mean. Interestingly, the power of the graph-based method for change point
detection is still not as high as that of (23). This aspect of the comparison, which we have
not seen in other literature so far, is considered a new and meaningful comparison, and at
least we can claim that there is room for improvement in the change point detection of the
graph-based method.

Now we look at the effect of the weights on the power. This weight wk(n/2) yields
the highest power when the change point is in the middle; however, the wk(n) weight
yields the highest power when the change point is near the beginning of the sequence,
and conversely, the wk(0) weight yields the highest power when the change point is near
the end of the sequence. Moreover, the power increases with increasing n, q, and ∆, which
agrees with Theorem 3.

Now, we introduce a mixture distribution and slightly change the way the random
variables are generated. We simulate {Yi,j, k∗ + 1 ≤ i ≤ n, 1 ≤ j ≤ q} from a mixture of two
normal distributions with mixture weights (0.5, 0.5) or (0.8, 0.2), means (0, 0.2) or (0, 1), and
variance always being (1, 1), which corresponds to ∆ = 0.1 or ∆ = 0.2. We keep the other
settings from the previous comparison. As we expected, the difference between Table 2
and Table 3 is very small.
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Table 2. Estimated power (%) for the wk(0), wk(n/2), and wk(n) in (23), MST, MST∗, SHP, and SHP∗,
based on 200 simulations; n are the sample sizes, q are the dimensions, k∗ are the change point
locations, and ∆ is the size of the change in the mean of the normal random variables.

n 40 80

q 50 100 50 100

∆ 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
k∗
n

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

wk(0) 23 41 36 67 91 84 39 72 72 96 100 100 43 74 67 97 100 100 75 96 91 100 100 100
wk(n/2) 31 43 31 82 92 82 51 73 62 99 100 99 57 77 61 99 100 100 87 97 89 100 100 100
wk(n) 32 43 23 89 92 64 59 73 46 99 100 91 61 74 49 100 100 97 91 97 76 100 100 100
MST 3 5 4 7 6 10 3 5 5 6 19 9 3 4 5 7 21 10 5 8 4 13 35 14
MST∗ 18 24 16 44 38 44 33 29 38 75 77 75 21 21 21 65 80 69 36 43 35 95 99 98
SHP 4 6 5 7 9 12 4 6 9 10 16 6 3 8 6 9 22 13 5 6 8 13 24 16
SHP∗ 10 13 8 33 37 33 17 23 18 67 77 65 9 12 13 49 71 54 22 32 21 90 97 92

Table 3. Estimated power (%) for the wk(0), wk(n/2), wk(n), MST, MST∗ in (23), SHP, and SHP∗,
based on 200 simulations; n are the sample sizes, q are the dimensions, k∗ are the change point
locations, and ∆ is the size of the change in the mean of mixed normal distributions.

n 40 80

q 50 100 50 100

∆ 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
k∗
n

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

1
4

1
2

3
4

wk(0) 18 35 40 64 92 81 37 74 62 89 100 98 43 72 59 94 100 99 73 98 90 100 100 100
wk(n/2) 28 36 37 80 94 74 50 76 57 98 100 97 53 74 52 98 100 99 84 98 87 100 100 100
wk(n) 32 38 27 83 95 56 58 75 42 99 100 92 60 72 44 100 100 96 89 99 73 100 100 100
MST 4 5 6 4 5 4 6 6 6 5 10 6 4 4 6 4 24 20 5 6 2 8 25 20
MST∗ 20 11 24 41 44 39 27 28 27 70 72 64 22 21 24 60 75 65 38 39 33 95 100 95
SHP 4 4 8 10 15 13 6 5 10 17 28 21 8 6 5 10 29 18 9 11 6 28 54 41
SHP∗ 9 7 11 26 41 26 16 20 18 55 70 57 12 12 15 44 59 49 22 28 23 92 96 88

5. Data Analysis

Here, we analyze the video data provided by Dr. Mathieu Lihorea, which are available
from [26]. In Lihoreau, Chittka and Raine [38], the authors used artificial pollen to attract
bees and an automatic monitoring camera to capture the bee’s flight path. However, this
automatic monitoring feature does not fully start recording when the bee enters and stops
recording when the bee leaves, in fact in this video, the recording starts before the bee
enters and does not stop when the bee leaves. Since we only care about the part of the
video with bees, detecting the arrival and departure of bees helps us to automatically cut
the original video. Although the video contains the interference of ants, the bees are much
larger compared to the ants, so it can be assumed that the presence and departure of the
bees cause a change in the mean value of the pixel values of the image.

This video has a length of 49 seconds, a frame width of 352, a frame height of 288,
and a frame rate of 29.97 frames per second. Shi, Wu and Rao [26] extracted the video into
n = 49 images according to the rate of one frame per second. From these 49 images, we can
obtain that the image positions corresponding to the bee entering and leaving are 4 and 40,
respectively. Moreover, we can extract this video into more images according to the rate
of 2 or 5 frames per second. So, the number of images obtained, n, increases to 98 or 245,
and at the same time, the positions of the images corresponding to the entry and exit of
the bees also change with n. If we call the image locations where these bees appear and
leave as change points, k∗, we assume that k∗/n is constant with respect to n and close to 0
or 1, respectively. In Figure 3 the first row is four images located at 4 (change point), 5, 40
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(change point), and 41 from extracted 49 images; the second row is four images located at 7
(change point), 8, 79 (change point), and 80 from extracted 98 images; and the third row is
four images located at 19 (change point), 20, 198 (change point), and 199 from extracted 245
images. Since the images contain R, G, and B components, we use a weighted average of
the R, G, and B components and same-scale transformations on the weighted average as
suggested by Shi, Wu and Rao [26].

Figure 3. Typical images in three different image sets extracted from the same video data with
different frame rates. The first row contains four images located at 4 (change point), 5, 40 (change
point), and 41 from the first set of extracted 49 images (1 frame per second); the second row contains
four images located at 7 (change point), 8, 79 (change point), and 80 from the second set of extracted
98 images (2 frames per second); and the third row contains four images located at 19 (change point),
20, 198 (change point), and 199 from the third set of extracted 245 images (5 frames per second).

Our quadratic weight test statistics are able to detect these two change points. We
compared them to the graph-based change point estimates by applying the method of SHP∗

and MST∗ once to the whole sequence. As shown in Table 4, all tests are significant at a
level 0.05 except the quadratic weight wk(0) for the size of 49 returns a p-value 0.067; wk(0)
and wk(n) give the estimates of the second and first change points, respectively; wk(n/2)
gives the same estimates of change points as wk(n), and both cannot give the estimates of
the second change point, such as SHP∗ and MST∗. Thus, we recommend these two weights
wk(0) and wk(n) for detecting the departure and arrival of the bee.

Table 4. Estimated change points for the wk(0), wk(n/2), wk(n), MST∗, and SHP∗, based on extracted
49, 98, and 245 images; n are the sample sizes and k∗ are the change point locations.

n 49 98 245

k∗ 4 40 7 79 19 198
wk(0) 41 82 206
wk(n/2) 4 8 19
wk(n) 4 8 19
MST∗ 4 7 19
SHP∗ 4 7 19
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6. Discussion

This paper mainly focuses on single change point detection. However, it is possible
to extend our method and apply the WC statistic to the detection of multiple change
points. An approach recommended in the literature is to select data intervals where there is
evidence for a single change point. Some researchers suggested penalty procedures based
on either the adaptive lasso [39] or smoothly clipped absolute deviation [40–42]; others
applied CUSUM statistics [4,43–45]. As long as the aforementioned intervals have been
chosen, one could use tests based on WC. If the tests are rejected for some of the intervals,
then the change point can be estimated by (24).

It would also be of interest, although challenging, to consider other quadratic weights,
such as wk(n/4) and wk(3n/4), as these statistics may be more powerful to detect some
change points that are close to the third-quarter and quarter positions of the sequence. The
eigenvalues of these quadratic terms may not have recursive formulas.

Author Contributions: X.S., X.-S.W. and N.R. designed research; X.S., X.-S.W. and N.R. performed
research; X.S. analyzed data; X.S., X.-S.W. and N.R. wrote the paper. All authors have read and agreed
to the published version of the manuscript.

Funding: Shi’s work was supported by NSERC Discovery Grant RGPIN 2022-03264, the Interior
Universities Research Coalition and the BC Ministry of Health, and the University of British Columbia
Okanagan (UBC-O) Vice Principal Research in collaboration with UBC-O Irving K. Barber Faculty
of Science.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank two anonymous reviewers for helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1. The exact distribution of Sn(Y ; τ, 2) is determined by the eigenvalues
of Q. Define the n× (n− 1) matrix B = (B1, · · · , Bn−1) with Bk = p−1/2

k (0, · · · , 0, 1,−1,
0, · · · , 0)> such that all entries of Bk are zeros except the k entry p−1/2

k and the k + 1 entry
−p−1/2

k . It is readily seen that A>B = nIn−1 and thus B>QB = In−1. Note that

B>B = P−1/2TP−1/2 =

p−1/2
1

. . .
p−1/2

n−1




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


p−1/2

1
. . .

p−1/2
n−1

,

where P is a diagonal matrix with Pkk = pk and T is a tridiagonal matrix with Tkk = 2 and
Tk,k+1 = Tk+1,k = −1.

We shall find the relationship between Q and B>B. We diagonalize B>B = RΓR> with
RR> = In and Γ diagonal matrix with Γkk = γk. Set C = BRΓ−1/2. We have C>C = In−1
and C>QC = Γ−1. Finally, we introduce u = (n−1/2, · · · , n−1/2)> such that Qu = 0,
C>u = 0 and u>u = 1. Define U = (C, u). It then follows that U>U = In and

U>QU =

(
C>QC C>Qu
u>QC u>Qu

)
=

(
Γ−1 0

0 0

)
.

This implies that the nonzero eigenvalues of Q are reciprocals of those of B>B.
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Let (v1, · · · , vn−1)
> be the eigenvector corresponding to an eigenvalue λ of B>B. We

have the recurrence identity

− p−1/2
k−1 vk−1 + 2p−1/2

k vk − p−1/2
k+1 vk+1 = λp1/2

k vk, (A1)

where v0 = vn = 0, p0 = 1, and k = 1, · · · , n− 1. The above recurrence relation appears in
Gardner [6] (1.7) as an eigenvalue equation for a forward difference operator. As mentioned
in Gardner [6], it is difficult to find an explicit formula for the eigenvalues unless the prior
distribution is uniform; i.e., pk is independent of k. To overcome this difficulty, we make
use of the above recurrence relation and then apply the classical theory of orthogonal
polynomials and special functions. To be more specific, we shall link the eigenvector in
(A1) to the dual Hahn polynomial by making some transformations.

Let vk = (pk pk−1)
1/2 · · · (p1 p0)

1/2 fk. The above recurrence relation becomes

− fk−1
pk pk−1

+
2 fk
pk
− fk+1 = λ fk.

We further denote gk = (−1)k fk and πk = gk+1. It is readily seen that

gk−1
pk pk−1

+
2gk
pk

+ gk+1 = λgk,

and (by shifting the index k)

πk−1
pk pk+1

+
2πk
pk+1

+ πk+1 = λπk,

where π−1 = πn−1 = 0 and π0 = 1. By induction, πk is a monic kth order polynomial of λ.
Now, we consider three quadratic weights in (2).
Case I. If pk = 1/{k(n− k)} for k = 1, · · · , n− 1, then πk is related to the dual Hahn

polynomial

πk = lim
N→n−2

(2)k(−N)kRk(λ− 2; 1, 1, N) = lim
N→n−2

(2)k(−N)k

k

∑
j=0

(−k)j(−x)j(x + 3)j

(1)j(2)j(−N)j
,

where (a)j := ∏
j−1
i=0(a + i) is the Pochhammer symbol which is commonly used in the field

of orthogonal polynomials and special functions, Rk is the dual Hahn polynomial of degree
k and λ− 2 = x(x + 3). In particular,

πn−1 = (−1)n−1(−x)n−1(x + 3)n−1 =
n−2

∏
j=0

(x− j)(x + 3 + j) =
n−2

∏
j=0

[λ− (j + 1)(j + 2)].

This implies that the eigenvalues of B>B are (j + 1)(j + 2) for j = 0, · · · , n− 2. Conse-
quently, the eigenvalues of Q are 0 and 1/{k(k + 1)} for k = 1, · · · , n− 1.

Case II. If pk = 1/{k(2n− k)} for k = 1, · · · , n− 1, then πk is related to the dual Hahn
polynomial as follows

πk = (2)k(2− 2n)kRk(λ− 2; 1, 1, 2n− 2) = (2)k(2− 2n)k

k

∑
j=0

(−k)j(−x)j(x + 3)j

(1)j(2)j(2− 2n)j
,

where Rk is the dual Hahn polynomial of degree k and λ− 2 = x(x + 3). In particular,

πn−1 = (2)n−1(2− 2n)n−1

n−1

∑
j=0

(1− n)j(−x)j(x + 3)j

(1)j(2)j(2− 2n)j
.
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By Watson’s sum, πn−1 = 0 when x = 2k− 1 or x = −2− 2k with k = 1, · · · , n− 1.
This implies that the eigenvalues of B>B are (2k)(2k+ 1) for k = 1, · · · , n− 1. Consequently,
the eigenvalues of Q are 0 and 1/{2k(2k + 1)} with k = 1, · · · , n− 1.

Case III. If pk = 1/{(n + k)(n− k)} for k = 1, · · · , n− 1, then the eigenvalues of Q
are also 0 and 1/[2k(2k + 1)] with k = 1, · · · , n− 1 because the sequence {p1, · · · , pn−1} is
just the reverse of that in Case II.

Since it is a quadratic form in normal random variables, the results follow.

Appendix B

Proof of Theorem 2. Case I. For the weight 2t − t2, we define Xt = B(t)−tB(1)√
2t−t2 . By the

Karhunen–Loève expansion,

Xt =
∞

∑
k=1

Zkek(t),

where random variables Zk are stochastically independent normal and ek(·) are an or-
thonormal basis. Then, the integral of the square of Xt becomes ∑∞

k=1 Z2
k , and we need the

variance of Zk. We consider the covariance of Xt, called the Mercer Kernel:

KX(t, s) = E(XtXs) =
min(t, s)− ts√
2t− t2

√
2s− s2

.

By Mercer’s theorem, there exists a set {λk, ek(t)} such that

KX(t, s) =
∞

∑
k=1

λkek(t)ek(s),

where λk are eigenvalues and ek(t) are eigenfunctions satisfying the Fredholm integral
equation

∫ 1
0 KX(t, s)ek(s)ds = λkek(t).

Thus, we have the eigenvalue problem∫ 1

0

min(t, s)− ts√
2t− t2

√
2s− s2

e(s)ds = λe(t).

Denote e(t) =
√

2t− t2 f (t). After the multiplication of
√

2t− t2 on both sides,
the above eigenvalue problem becomes∫ 1

0
[min(t, s)− ts] f (s)ds = λ(2t− t2) f (t).

Let f (t) = ∑∞
k=0 fktk. It follows that

∞

∑
k=0

fk

∫ 1

0
[min(t, s)− ts]skds = λ

∞

∑
k=0

fk(2t− t2)tk.

Note that ∫ 1

0
[min(t, s)− ts]skds =

t− tk+2

(k + 1)(k + 2)
.

We then have

∞

∑
k=0

fkt
(k + 1)(k + 2)

−
∞

∑
k=0

fktk+2

(k + 1)(k + 2)
= λ

∞

∑
k=0

2 fktk+1 − λ
∞

∑
k=0

fktk+2.
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Obviously, λ 6= 0; otherwise fk = 0 for all k ≥ 0. Now, we compare the coefficients of
tk with k ≥ 0 on both sides of the above identity. It follows that

2λ f0 =
∞

∑
k=0

fk
(k + 1)(k + 2)

,

and
− fk
(k + 1)(k + 2)

= λ(2 fk+1 − fk).

We shall prove that λn = {1/[(2n)(2n + 1)], n = 1, . . .} are eigenvalues of KX(t, s). To
see this, we obtain from the above recurrence relation

fk+1
fk

=
(k + 1)(k + 2)− (2n)(2n + 1)

2(k + 1)(k + 2)
=

(k + 1− 2n)(k + 2n + 2)
2(k + 1)(k + 2)

.

Making use of the Pochhammer symbol (a)j := ∏
j−1
i=0(a + i), we obtain

fk
f0

=
(1− 2n)k(2n + 2)k

2k(1)k(2)k
.

Consequently,

2λ f0 =
∞

∑
k=0

fk
(k + 1)(k + 2)

= f0

∞

∑
k=0

(1− 2n)k(2n + 2)k

2k(1)k+1(2)k+1
=

2 f0

(−2n)(2n + 1)

∞

∑
j=1

(−2n)j(2n + 1)j

2j(1)j(2)j

Since

∞

∑
j=0

(−2n)j(2n + 1)j

2j(1)j(2)j
= 0,

we then have
2λ f0 =

−2 f0

(−2n)(2n + 1)
=

2 f0

(2n)(2n + 1)
,

which agrees with λ = 1/[(2n)(2n + 1)]. By normalizing f0 = 1, we can express the
eigenfunction as

f (t) =
∞

∑
k=0

(1− 2n)k(2n + 2)k

2k(1)k(2)k
tk =

1
2n

P(1,1)
2n−1(1− t),

where

P(α,β)
n (z) =

(α + 1)n

n!

n

∑
j=0

(−n)k(n + α + β + 1)k
(1)k(α + 1)k

(
1− z

2
)j

is the Jacobi polynomial.
So, we have ∫ 1

0

{B(t)− tB(1)}2

2t− t2 dt =
∞

∑
k=1

1
2k(2k + 1)

Z2
k ,

where Zk are independent normal random variables, each having mean zero and variance
1. That proves (5).

Case II. For the weight 1− t2, we intend to solve the eigenvalue problem∫ 1

0

min(t, s)− ts√
1− t2

√
1− s2

e(s)ds = λe(t).
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Denote e(t) =
√

1− t2 f (t). After the multiplication of
√

1− t2 on both sides, the above
eigenvalue problem becomes∫ 1

0
[min(t, s)− ts] f (s)ds = λ(1− t2) f (t).

Let f (t) = ∑∞
k=0 fktk. It follows that

∞

∑
k=0

fk

∫ 1

0
[min(t, s)− ts]skds = λ

∞

∑
k=0

fk(1− t2)tk.

Note that ∫ 1

0
[min(t, s)− ts]skds =

t− tk+2

(k + 1)(k + 2)
.

We then have

∞

∑
k=0

fkt
(k + 1)(k + 2)

−
∞

∑
k=0

fktk+2

(k + 1)(k + 2)
= λ

∞

∑
k=0

fktk − λ
∞

∑
k=0

fktk+2.

Obviously, λ 6= 0; otherwise fk = 0 for all k ≥ 0. Now, we compare the coefficients of
tk with k ≥ 0 on both sides of the above identity. It follows that f0 = 0, and

λ f1 =
∞

∑
k=0

fk
(k + 1)(k + 2)

,

and
− fk
(k + 1)(k + 2)

= λ( fk+2 − fk).

On account of f0 = 0, the above recurrence relation implies that f2j = 0 for all j ≥ 0.
Now, we set gj = f2j+1 with j ≥ 0. The above recurrence relation (with k = 2j + 1) becomes

−
gj

(2j + 2)(2j + 3)
= λ(gj+1 − gj).

For convenience, we let 1/λ = 2µ(2µ + 1). It is readily seen that

gj+1

gj
=

(2j + 2)(2j + 3)− (2µ)(2µ + 1)
(2j + 2)(2j + 3)

=
(j + 1− µ)(j + 3/2 + µ)

(j + 1)(j + 3/2)
.

Making use of the Pochhammer symbol (a)j := ∏
j−1
i=0(a + i), we obtain

f2j+1

f1
=

gj

g0
=

(1− µ)j(3/2 + µ)j

(1)j(3/2)j
.

Consequently,

∞

∑
k=0

fk
(k + 1)(k + 2)

=
∞

∑
j=0

f2j+1

(2j + 2)(2j + 3)
=

f1

6

∞

∑
j=0

(1− µ)j(3/2 + µ)j

(2)j(5/2)j
.

The left-hand side is λ f1. When µ = n + 1 with n = 0, 1, · · · , by Pfaff-Saalschütz
identity, we calculate the right-hand side as

f1

6

∞

∑
j=0

(1− µ)j(3/2 + µ)j(1)j

(2)j(5/2)j(1)j
=

f1

6
· (1)n(−1/2− n)n

(2)n(−3/2− n)n
=

f1

(2n + 2)(2n + 3)
.
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Hence, λn = 1
(2n+2)(2n+3) , n = 0, 1, · · · are the eigenvalues. By normalizing f1 = 1, we

can express the eigenfunction as

f (t) =
∞

∑
j=0

f2j+1t2j+1 =
n

∑
j=0

(−n)j(5/2 + n)j

(1)j(3/2)j
t2j+1 =

tn!
(3/2)n

P(1/2,1)
n (1− 2t2).

So, we have ∫ 1

0

{B(t)− tB(1)}2

1− t2 dt =
∞

∑
k=1

1
2k(2k + 1)

Z2
k ,

where Zk are independent normal random variables, each having mean zero and variance
1. This gives (6).

Appendix C

Proof of Lemma 1. It is well known that (1− t)B( t
1−t ) =d B(t) − tB(1) We first show

the covariance: Cov{(1 − s)2B2( s
1−s ), (1 − t)2B2( t

1−t )} for 0 < s < t < 1. Note that
B( s

1−s ) ∼ N(0, s
1−s ).

Since B2( t
1−t )− B2( s

1−s ) = {B( t
1−t )− B(

s
1−s )}2 + 2{B( t

1−t )− B(
s

1−s )}B(
s

1−s ), we
have E{B2( t

1−t )−B2( s
1−s )} = E{B( t

1−t )−B(
s

1−s )}2 and E[B2( s
1−s ){B2( t

1−t )−B2( s
1−s )}]

= E{B2( s
1−s )}E{B(

t
1−t )−B(

s
1−s )}2 by the independence of increments. These lead to

E[B2(
s

1− s
){B2(

t
1− t

)−B2(
s

1− s
)}] = E{B2(

s
1− s

)}E{B2(
t

1− t
)−B2(

s
1− s

)}.

Therefore, we have

Cov{(1− s)2B2(
s

1− s
), (1− t)2B2(

t
1− t

)}

= (1− s)2(1− t)2E{B2(
s

1− s
)B2(

t
1− t

)} − s(1− s)t(1− t),

where

E{B2(
s

1− s
)B2(

t
1− t

)} = E[B2(
s

1− s
){B2(

s
1− s

) + B2(
t

1− t
)−B2(

s
1− s

)}]

= E{B4(
s

1− s
)}+ E{B2(

s
1− s

)}E{B2(
t

1− t
)−B2(

s
1− s

)}

= 3(
s

1− s
)2 +

s
1− s

(
t

1− t
− s

1− s
).

So, Cov{(1− s)2B2( s
1−s ), (1− t)2B2( t

1−t )} = 2s2(1− t)2.
In the next step, we will show that n−1Covperm{CP (N`,N`), CP (Nm,Nm)} → 4s2(1−

t)2 for ` = bsnc, m = btnc, and ` < m.
We first decompose Covperm{CP (N`,N`), CP (Nm,Nm)}. Note that CP (N`,N`) = CP (N`,

N` ∩Nm) + CP (N`,Nm) and CP (Nm,Nm) = CP (N`,Nm) + CP (N` ∩Nm,Nm). Then,

Covperm{CP (N`,N`), CP (Nm,Nm)}
= Covperm{CP (N`,N` ∩Nm), CP (N`,Nm)}+ Covperm{CP (N`,N` ∩Nm), CP (N` ∩Nm,Nm)}
+ Covperm{CP (N`,Nm), CP (N`,Nm)}+ Covperm{CP (N`,Nm), CP (N` ∩Nm,Nm)}.
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To calculate the covariance, we need the following moments for any disjoint subsets
A1, A2, and A3 of Nn. Their sizes are denoted as n1, n2 and n3 with n1 + n2 + n3 ≤ n.

EpermCP (A1,A2) =
n−1

∑
i=1

P[{(vi ∈ A1) ∩ (vi+1 ∈ A2)} ∪ {(vi+1 ∈ A1) ∩ (vi ∈ A2)}]

=
2n1n2

n
. (A2)

The following calculations of second moments need to consider three cases i = j,
|i− j| = 1 and |i− j| > 1 for 1 ≤ i, j < n, with #{i = j|1 ≤ i, j < n} = n− 1, #{|i− j| =
1|1 ≤ i, j < n} = 2(n− 2), and #{|i− j| > 1|1 ≤ i, j < n} = (n− 2)(n− 3). Therefore, we
have

Eperm{CP (A1,A2)CP (A2,A3)}

=
n−1

∑
i=1

n−1

∑
j=1

P
[{

(vi ∈ A1) ∩ (vi+1, vj+1 ∈ A2) ∩ (vj+1 ∈ A3)
}

∪
{
(vi ∈ A1) ∩ (vi+1, vj+1 ∈ A2) ∩ (vj ∈ A3)

}
∪
{
(vi+1 ∈ A1) ∩ (vi, vj ∈ A2) ∩ (vj+1 ∈ A3)

}
∪
{
(vi+1 ∈ A1) ∩ (vi, vj+1 ∈ A2) ∩ (vj ∈ A3)

}]
= ∑

i=j,1≤i,j<n
0 + ∑

|i−j|=1,1≤i,j<n

n1n2n3

n(n− 1)(n− 2)
+ ∑
|i−j|>1,1≤i,j<n

4n1n2(n2 − 1)n3

n(n− 1)(n− 2)(n− 3)

=
2n1n3n2(2n2 − 1)

n(n− 1)
. (A3)

In a similar way, we have

Eperm{C2
P (A1,A2)} = ∑

i=j,1≤i,j<n

2n1n2

n(n− 1)
+ ∑
|i−j|=1,1≤i,j<n

n1n2(n1 + n2 − 2)
n(n− 1)(n− 2)

+ ∑
|i−j|>1,1≤i,j<n

4n1(n1 − 1)n2(n2 − 1)
n(n− 1)(n− 2)(n− 3)

=
2n1n2

n
+

2n1n2(n1 + n2 − 2)
n(n− 1)

+
4n1(n1 − 1)n2(n2 − 1)

n(n− 1)
. (A4)

After tedious calculations using (A3) and (A4), we have

Covperm{CP (N`,N`), CP (Nm,Nm)} = 2`(n−m){2`(n−m)− n}/(n3 − n2),

which leads to n−1Covperm{CP (N`,N`), CP (Nm,Nm)} → 4s2(1− t)2. The proof of Lemma 1
is finished.

Appendix D

Proof of Lemma 2. Consider the integral

I(ρ; a, b, ν2) =
∫ ∞

−∞
exp{au− beu − (u− ρ)2/(2ν2)}du,

where a > 0 is large and b > 0. The saddle point for the phase function au − beu is
c = log(a/b). We set s = u− c and define

az2/2 = beu − au− (bec − ac) = a(es − s− 1)
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such that z is analytic near s = 0 and z ∼ s as s→ 0. It is easily seen that

z = s +
s2

6
+

s3

36
+

s4

270
+ · · · , s = z− z2

6
+

z3

36
− z4

270
+ · · · .

Moreover,
du
dz

=
az

beu − a
=

z
es − 1

=
z

s + z2/2
.

Now, we can rewrite the integral as

I(ρ; a, b, ν2) = (
a
be
)a
∫ ∞

−∞
e−az2/2 ze−(u−ρ)2/(2ν2)

s + z2/2
dz.

A simple calculation gives

e−
(u−ρ)2

2ν2 = e−
(c−ρ)2

2ν2 −
(c−ρ)s

ν2 − s2

2ν2 = e−
(c−ρ)2

2ν2 [1− (c− ρ)s
ν2 − s2

2ν2 +
(c− ρ)2s2

2ν4 + O(s3)]

= e−
(c−ρ)2

2ν2 [1− (c− ρ)(z− z2/6)
ν2 − z2

2ν2 +
(c− ρ)2z2

2ν4 + O(z3)]

= e−
(c−ρ)2

2ν2 [1− (c− ρ)

ν2 z +
(c− ρ)ν2 − 3ν2 + 3(c− ρ)2

6ν4 z2 + O(z3)],

and

z
s + z2/2

=
1

1 + z/3 + z2/36 + O(z3)
= 1− z

3
+

z2

12
+ O(z3).

Consequently,

ze−(u−ρ)2/(2ν2)

s + z2/2
= e−

(c−ρ)2

2ν2 [1− 3(c− ρ) + ν2

3ν2 z + (
(c− ρ)ν2 − ν2 + (c− ρ)2

2ν4 +
1

12
)z2 + O(z3)].

By Watson’s lemma, we obtain

I(ρ; a, b, ν2)

= (
a
be
)ae−

(c−ρ)2

2ν2

{∫ ∞

−∞
e−az2/2[1− 3(c− ρ) + ν2

3ν2 z + (
cν2 − ν2 + (c− ρ)2

2ν4 +
1

12
)z2]dz + O(a−5/2)

}
= (

a
be
)ae−

(c−ρ)2

2ν2

[√
2π

a1/2 + (
(c− ρ)ν2 − ν2 + (c− ρ)2

2ν4 +
1
12

)

√
2π

a3/2 + O(a−5/2)

]

= (
a
be
)a
√

2π

a
e−

(c−ρ)2

2ν2

[
1 + (

(c− ρ)ν2 − ν2 + (c− ρ)2

2ν4 +
1

12
)a−1 + O(a−2)

]
.

Appendix E

Proof of Theorem 3. We denote Y∗i• = Yi• − E(Yi•), µ̂∗1,n = µ̂1,n − Eµ̂1,n. Under the alterna-
tive hypothesis, Eµ̂1,n = {k∗µ− + (n− k∗)µ+}/n.

We first find a lower bound Sn(Y•; τ, 2), i.e., Sn(Y•; τ, 2) ≥ Sk∗(Y•; τ, 2). Then, we
decompose the lower bound into three terms:

Sk∗(Y•; τ, 2) = Sk∗(Y
∗
• ; τ, 2) +

2(n− k∗)(µ− − µ+)

n
Sk∗(Y

∗
• ; τ, 1)

+
(n− k∗)2(µ− − µ+)2

n2

k∗

∑
k=1

k2w−1
k (τ),
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where Sn(Y
∗
• ; τ, γ) = ∑n

k=1 w−1
k (τ)

{
∑k

i=1(Y
∗
i• − µ̂∗1,n)

}γ
.

By the weak dependence, qSk∗(Y
∗
• ; τ, 2) = Op(1) and qSk∗(Y

∗
• ; τ, 1) = Op(|∆|

√
q
n ).

Furthermore, n−2(n− k∗)2(µ− − µ+)2 ∑k∗
k=1 k2w−1

k (τ) = O(n∆2).
qSn(Y•; τ, 2)→p ∞ holds because nq∆2 → ∞ and n3/2q−1/2|∆| → ∞.
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