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Abstract: The black widow spider optimization algorithm (BWOA) had the problems of slow conver-
gence speed and easily to falling into local optimum mode. To address these problems, this paper
proposes a multi-strategy black widow spider optimization algorithm (IBWOA). First, Gauss chaotic
mapping is introduced to initialize the population to ensure the diversity of the algorithm at the
initial stage. Then, the sine cosine strategy is introduced to perturb the individuals during iteration
to improve the global search ability of the algorithm. In addition, the elite opposition-based learning
strategy is introduced to improve convergence speed of algorithm. Finally, the mutation method
of the differential evolution algorithm is integrated to reorganize the individuals with poor fitness
values. Through the analysis of the optimization results of 13 benchmark test functions and a part
of CEC2017 test functions, the effectiveness and rationality of each improved strategy are verified.
Moreover, it shows that the proposed algorithm has significant improvement in solution accuracy,
performance and convergence speed compared with other algorithms. Furthermore, the IBWOA
algorithm is used to solve six practical constrained engineering problems. The results show that the
IBWOA has excellent optimization ability and scalability.

Keywords: black widow spider optimization algorithm; Gauss chaotic map; sine and cosine strategy;
elite opposition-based learning; differential evolutionary algorithm

1. Introduction

Meta-heuristic algorithms are a class of algorithms that seek to optimize solutions by
simulating natural and human intelligence. Swarm intelligence algorithms are a class of
meta-heuristic algorithms, which are abstracted by imitating the foraging or other group
behaviors of insects, herds, birds and fish. The common swarm intelligence algorithms
are: particle swarm optimization (PSO) [1], grey wolf optimization (GWO) [2] butterfly
optimization algorithm (BOA) [3], whale optimization algorithm (WOA) [4], cuckoo al-
gorithm (CS) [5] and so on. Swarm intelligence algorithms not only have the advantages
of simple implementation, good robustness, easy scalability and self-organization, but
can also effectively combine some unique strategies or other algorithms to balance global
search and local search capabilities to achieve optimal search.

The balance between local search and global search is the core and key of studying
swarm intelligence algorithms. Its core connotation is to ensure the convergence accuracy
and speed of the algorithm and to avoid the algorithm falling into local optimum mode at
the same time. For this reason, many scholars have made corresponding improvements
to the intelligent optimization algorithms they study. For example, Xu et al. [6] and
Liu et al. [7] improved their algorithms by using the ergodicity and randomness of Gauss
map to initialize the population, avoiding the influence of uncertainty caused by random
population. The algorithm has a wider search range and lays a good foundation for global
optimization. Kuo et al. [8] used a multi-objective sine cosine algorithm for sequence
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deep clustering and classification. The performance of the objective function is improved
by using the good global development ability of the sine cosine algorithm. Clustering
error and classification accuracy achieved superior performance compared with other
algorithms. Mookiah et al. [9] proposed an enhanced sine cosine algorithm. Using the
sine cosine algorithm forces the local optimal value out to determine the optimal threshold
of color image segmentation. Finally, good experimental results were obtained. When
Yuan et al. [10] and Zhou et al. [11] improved their algorithms, they all introduced the
elite opposition-based learning strategy, which makes full use of individuals with better
performance to optimize the next generation. The convergence speed and stability of the
algorithm are improved. The above strategies have achieved good results in different
algorithms. This also brings enlightenment to the algorithm improvement of this paper.
However, the effect of the above strategies applied to the same algorithm had not been
tested. This paper considers introducing the above strategy into an algorithm at the same
time, and the performance of the improved algorithm is tested.

The black widow spider optimization algorithm (BWOA) was proposed in 2020 by
Peña-Delgado et al. [12], inspired by the unique mating behavior of the black widow spider.
The algorithm simulated the different behaviors of black widow spiders during courtship.
Compared with existing optimization algorithms, the principle and structure of BWOA
are relatively simple, and fewer parameters need to be adjusted. However, the algorithm
itself still has some shortcomings. For example, for some complex optimization tasks, the
traditional BWOA suffers from premature convergence or easily falls into local optimum
mode. In addition, the convergence speed of the BWOA is not high enough to obtain high
precision solutions for complex problems. Therefore, to address the problems above, this
paper improves the original BWOA algorithm and proposes a multi-strategy black widow
spider optimization algorithm (IBWOA).

To verify the effectiveness of each improvement strategy and the performance of
the proposed algorithm, 13 benchmark functions and a part of CEC2017 were tested.
The optimization results are compared and statistically analyzed with other well-known
metaheuristic algorithms. Moreover, the IBWOA is used to solve six practical constrained
engineering problems, including welded beam design [2], tension spring design [2], three-
bar truss design [5], cantilever design [5], I-beam design [5] and tubular column design [5].
In general, the main highlights and contributions of this paper are summarized as follows:
(i) a multi-strategy black widow spider optimization algorithm (IBWOA) is proposed,
(ii) a proposed approach to optimize the 13 benchmark test functions and a part of CEC2017
test functions is used, which is compared with many typical meta-heuristic algorithms and
(iii) the proposed approach to solve six constrained engineering problems is used, which is
then compared with many advanced methods.

The rest of this paper is organized as follows: Section 2 presents the mathematical
model of the original BWOA. In Section 3, some improved strategies are introduced and
integrated into the original algorithm. The IBWOA is proposed and its time complexity
is analyzed. Section 4 illustrates the comparative analysis for solving the numerical op-
timization, and the experimental results are also performed in detail. In Section 5, the
IBWOA is used to deal with six practical constrained engineering problems, which com-
pares the IBWOA with various optimization algorithms for optimization testing. Finally,
the conclusions and future studies are summarized in Section 6.

2. Basic Black Widow Spider Optimization Algorithm

This section introduces the different courtship-mating movement strategies and math-
ematical models of pheromone rates in black widow spiders.
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2.1. Movement

The black widow spider moves within the spider web in a linear and spiral fashion.
The mathematical model can be formulated as follows:

→
x i(t + 1) =

→
x ∗(t)−m

→
x r1(t) (1)

→
x i(t + 1) =

→
x ∗(t)− cos(2πβ)

→
x i(t) (2)

where
→
x i(t + 1) is the individual position after the update and

→
x ∗(t) is the current optimal

individual position. Random numbers are generated directly or indirectly using the rand
function (generates random numbers between 0 and 1). m is a random floating-point
number in [0.4, 0.9]. β is a random number in [−1, 1]. r1 is a random integer between 1
and the maximum population size.

→
x r1(t) is the randomly selected position r1, and

→
x i(t)

is the current individual position.
The way black widow spiders move is determined by random numbers. When the

random number generated by the rand function is less than or equal to 0.3, the individual
movement mode selects Equation (1), otherwise, the individual movement mode selects
Equation (2).

2.2. Sex Pheromones

Sex pheromones play a very important role in the courtship process of black widow
spiders. Well-nourished female spiders produce more silk than starving females. Male
spiders are more responsive to sex pheromones from well-nourished female spiders because
they provide a higher level of fertility, so that male spiders primarily avoid the cost of
risking mating with potentially hungry female spiders. Therefore, male spiders do not
prefer females with low sex pheromones levels. [12] The sex pheromones rate value of the
black widow spider is defined as:

pheromone(i) =
f itnessmax − f itness(i)
f itnessmax − f itnessmin

(3)

where f itnessmax and f itnessmin represent the worst and best fitness values in the current
population, f itness(i) is the fitness value of the individual i. The sex pheromones vector
contains normalized fitness in [0, 1]. For individuals with sex pheromones rates less than or
equal to 0.3, the position update method can be formulated as follows:

→
x i(t) =

→
x ∗(t) +

1
2

[→
x r1(t)− (−1)σ→x r2(t)

]
(4)

where
→
x i(t) is the position of female black widow spiders with low sex pheromones levels.

r1 and r2 are random integers from 1 to the maximum population size, and r1 6= r2. σ is a
random binary number in {0, 1}.

3. Improvements to the Black Widow Spider Optimization Algorithm

In this section, some improved strategies are introduced and integrated into the
original algorithm. The IBWOA is proposed and its time complexity is analyzed.

3.1. Gauss Chaos Mapping to Initialize the Population

Shan Liang et al. [13] found and proposed that when the initial sequence of positions
is uniformly distributed in the search space, it can effectively improve the algorithm opti-
mization performance. The original black widow spider algorithm directly uses the rand
function to initialize the population. This generates populations with high randomness,
but which are not necessarily uniformly distributed throughout the solution space. This
leads to a slow population search and insufficient algorithmic diversity. To address this
problem, Gauss chaotic mapping is introduced to initialize the population and improve
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the diversity of the algorithm. It enables the algorithm to quickly discover the location
of high-quality solutions, thus speeding up the convergence speed of the algorithm and
improving the convergence accuracy of the algorithm.

Gauss mapping is a classical mapping of one-dimensional mappings, and it is defined as:

zn+1 =

{
0, zn = 0
1

znmod(1) , zn 6= 0 (5)

1
znmod(1)

=
1
zn
−
[

1
zn

]
(6)

where mod is the residual function and [ ] denotes rounding and z1, z2, . . . , zn is the chaotic
sequence generated by the Gauss mapping. The BWOA after introducing Gauss mapping
to initialize the population is denoted as GBWOA.

The comparison between (a) and (b) in Figure 1 shows that Gauss chaotic mapping
produces a more uniform population distribution and a higher quality population.
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3.2. Sine and Cosine Strategy

The sine cosine algorithm (SCA) is a novel nature-like optimization algorithm pro-
posed by Seyedali Mirjalili in 2016 [14]. The algorithm creates multiple random candidate
solutions. The mathematical properties of the sine and cosine functions are used to adap-
tively change the amplitudes of the sine and cosine functions. In turn, the algorithm
balances global exploration and local exploitation capabilities in the search process and
eventually finds the global optimal solution. Its update can be formulated as follows:

→
x i(t + 1) =

→
x (t) + l1 · sin l2 ·

∣∣∣l3→·x∗(t)−→x (t)∣∣∣ (7)

→
x i(t + 1) =

→
x (t) + l1 · cos l2 ·

∣∣∣l3→·x∗(t)−→x (t)∣∣∣ (8)

where
→
x i(t + 1) is the individual position after updating.

→
x ∗(t) is the current optimal

individual position. l2 is a random number in [0, 2π], and l3 is a random number in [0, 2].
→
x i(t) is the current individual position.

l4 is a random number in [0, 1]. When l4 < 0.5, the position update is performed using
Equation (8), otherwise, the position is updated using Equation (9). l1 is determined by the
following equation:

l1 = a ·
(

1− t
T

)
(9)
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where a is a constant generally taking the value of 2. t is the number of current iterations,
and T is the maximum number of iterations.

The random number is generated by the rand function to be less than or equal to
the mutation probability p to perform the mutation. The mutation probability p can be
formulated as follows:

p = exp
(

1− t
T

)−20
+ 0.35 (10)

Suppose that the maximum number of iterations T is 500, and so the variation trend
of the mutation probability is shown as follows:

It can be seen from Figure 2 that the introduction of mutation probability p controls
the weight of the algorithm to perform mutation. The probability of performing mutation
operation is higher in the middle and early stages of the algorithm iteration. The probability
of performing mutation in the later part of the algorithm iteration is smaller or even 0.
The sine cosine algorithm is introduced as a variance perturbation strategy to the original
BWOA, and is denoted as SBWOA.
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3.3. Elite Opposition-Based Learning

Opposition-based learning (OBL) is an intelligent technique proposed by Tizhoosh [15].
Its main idea is to evaluate both the current solution and its opposite solution and use
them in a meritocratic way in order to enhance the search range and capability of the
algorithm. Later, Wang et al. [16] further proposed the concept of general opposition-based
learning. Wang S.W et al. [17] proposed an elite opposition-based learning strategy (EO)
based on the general opposition-based learning strategy. The experimental results show
that the elite opposition-based learning strategy has better performance than the general
opposition-based learning strategy.

The elite opposition-based learning strategy merges the opposite population with the
current population and selects the best individuals into the next generation population. It
enhances the diversity of the population and reduces the probability of the algorithm falling
into local optimum. At the same time, it fully absorbs the useful search information of the
elite individuals in the current population. Therefore, it can accelerate the convergence
speed of the algorithm.

Definition 1. Suppose that xi(k) and x∗i (k) are the current solutions and the opposition solutions
of the generation k. xi,j(k) and x∗i,j(k) are values on dimension j of xi(k) and x∗i (k), respectively.
e (2 ≤ e ≤ N) elite individuals are denoted as: {e1 (k), e2(k), · · · ee(k)} ⊆ {x1 (k), x2(k), · · · xN(k)},
and can then x∗i,j(k) be defined as:

x∗i,j(k) = λ
(
aj(k) + bj(k)

)
− xi,j(k) (11)
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where aj(k) = min
(
e1,j(k), · · · , ee,j(k)

)
, bj(k) = max

(
e1,j(k), · · · , ee,j(k)

)
. λ is a random

number in (0, 1). Set the out-of-bounds treatment as follows: if x∗i,j(k) > bj(k), then take
x∗i,j(k) = bj(k); if x∗i,j(k) < aj(k), then take x∗i,j(k) = aj(k).

Research shows that the elite opposition-based learning strategy exhibits the best per-
formance when e = 0.1× N [17]. The elite opposition-based learning strategy is introduced
into the original BWOA notated as EBWOA and is executed at the end of each iteration.

3.4. Differential Evolution Algorithm

The differential Evolution (DE) algorithm was proposed in 1997 by Rainer Storn
and Kenneth Price [18] on the basis of the genetic algorithm (GA). The variation can be
formulated as follows:

→
x i(t) =

→
x r1(t) + F ·

(→
x r2(t)−

→
x r3(t)

)
(12)

where
→
x r1(t),

→
x r2(t),

→
x r3(t) are three individual positions randomly selected from the

current population and are different from each other. F is the scaling factor. too small an F
may cause the algorithm to fall into a local optimum, and too large an algorithm does not
converge easily. Therefore, F is usually taken as a random number between [0.4, 1].

Combine the principle of BWOA, where the position update is guided by the current
optimal individual. Replace the random individual position

→
x r1(t) in Equation (11) with

the current optimal individual position
→
x ∗(t). For individuals with sex pheromones rate

values less than or equal to 0.3 in BWOA, the new individual position update can be
formulated as follows:

→
x i(t) =

→
x ∗(t) + F ·

(→
x r1(t)−

→
x r2(t)

)
(13)

Comparing Equation (4), it can be seen that after combining the mutation principle of
the differential evolution algorithm, the individual position updating method removes the
random binary number σ and constitutes a strict differential vector

→
x r1(t)−

→
x r2(t). The

introduction of the scaling factor F to replace the fixed constant 0.5 in Equation (4) makes
the position update method more random and diverse. This operation is more conducive
to the recombination of individuals with poor fitness values and to the full utilization of
the population resources. Equation (13) was introduced to replace Equation (4) with the
original BWOA, noted as DBWOA.

3.5. Time Complexity Analysis

The time complexity of the BWOA is O(N × d×Max_iter), where N is the population
size, d is the dimensionality and Max_iter is the maximum number of iterations.

The DBWOA is a modification of the original algorithm in a variant way, so the time
complexity is unchanged.

The time complexity of introducing Gauss chaos mapping sequence to initialize the
population is O(N × d). The time complexity of the GBWOA for introducing a Gauss
chaotic mapping sequence to initialize the population can be formulated as follows:

O(N × d×Max_iter + N × d) = O(N × d×Max_iter) (14)

Introduce the sine cosine strategy. The mutation perturbation update position cost is
O(Max_iter)O(N × d). The time complexity of the SBWOA with the introduction of the
sine cosine strategy can be formulated as follows:

O(N × d×Max_iter) + O(Max_iter)O(N × d) = O(N × d×Max_iter) (15)
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Introduce the elite opposition-based learning strategy. The cost of calculating the
fitness value of each individual is O(N × d× f ), where f represents the cost of the objective
function. The cost of obtaining the elite opposition-based solution is O(N × d). The cost of
quick sort is O

(
N2). The time complexity of the EBWOA with the introduction of the sine

and cosine strategy can be formulated as follows:

O(N × d×Max_iter) + O(Max_iter)O
(

N2 + N × d× ( f + 1)
)

(16)

The IBWOA introduces and integrates many of these improvement strategies men-
tioned above. Initialize the population using Gauss mapping, which integrates the mutation
approach of the differential evolution algorithm. Randomly select one of the sine cosine
and elite opposition-based learning strategies to execute. Ensure the convergence speed
of the algorithm, while performing as many mutation perturbations as possible. Help the
algorithm to better jump out of the local optimum mode and improve the accuracy of the
test results. The time complexity of the IBWOA can be formulated as follows:

O(N × d×Max_iter) + O(c)O
(

N2 + N × d× ( f + 1)
)

(17)

where c (c < Max_iter) represents the number of elite opposition-based learning executions.
The pseudo-code of the proposed algorithm is shown in Algorithm 1.

Algorithm 1: The pseudo-code of IBWOA

Initializing populations using Gauss chaos mapping
Calculate the fitness value of each spider
Record the current worst fitness value, the best fitness value and its location information
while t < Tmax

initialize random parameters m, β, p, l1, l2, l3, l4
for i = 1 : N

if random ≤ 0.3
the spider moves and update its location information using Equation (1)
or else
the spider moves and update its location information using Equation (2)
end if
calculating the pheromone value of the spider using Equation (3)
update the spider with low pheromone values using Equation (13)

if random ≤ p
h = 0
if ≤ 0.5
update the spider location information using Equation (7)
or else
update the spider location information using Equation (8)
end if
or else
h = 1
end if

calculate the fitness value of the spider
if the fitness value of the spider ≤ the best fitness value,
update the best fitness value and its location information
end if

end for
if h == 1
Obtain opposition solutions using Equation (11)
Retaining spiders with higher fitness values
end if

t = t + 1
end while
Output the best fitness value
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4. Results of Experiments

In this section, the performance of the IBWOA is substantiated extensively. To ver-
ify the effectiveness of each improvement strategy and the performance of the proposed
algorithm, 13 benchmark functions and a part of CEC2017 were tested. Moreover, the
optimization results are compared and statistically analyzed with other well-known meta-
heuristic algorithms.

The simulation environment is: Intel Core i5-8400 CPU with 2.80 GHz, Windows 11 64-bit
operating system and simulation software Matlab2017 (b).

4.1. Introduction of Benchmarking Functions

In order to test the performance of IBWOA, 13 benchmark test functions used in
the literature [19] were selected for the optimization test, where f1− f4 are unimodal
functions, f5− f10 are multimodal functions and f11− f13 are fixed-dimensional functions.
The information related to the benchmark test function is shown in Table 1.

Table 1. Information of benchmark function.

Function Name Expressions Range Optimal Accept

Sphere Model f1(x) =
n
∑

i=1
x2

i
[−100, 100] 0 1.00 × 10−3

Schwefel’s problem 2.22 f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | [−10, 10] 0 1.00 × 10−3

Schwefel’s problem 1.2 f3(x) =
n
∑

i=1

(
i

∑
i=1

xj

)2
[−100, 100] 0 1.00 × 10−3

Generalized Rosenbrock’s f4(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
[−30, 30] 0 1.00 × 10−2

Generalized Schwefel’s
problem 2.26 f5(x) =

n
∑

i=1
−xi sin

√
|xi | [−500, 500] −418.9829n 1.00 × 102

Generalized Rastrigin’s f6(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] 0 1.00 × 10−2

Ackley’s Function f7(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] 0 1.00 × 10−2

Generalized Griewank f8(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos xi√
i
+ 1 [−600, 600] 0 1.00 × 10−2

Generalized Penalized

f9 = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4 , u(xi , a, k, m) =

 k(xi − a)2, xi > a
0,−a < xi < a

k(−xi − a)m , xi < −a

[−50, 50] 0 1.00 × 10−2

Generalized Penalized 2
f10(x) = 0.1{sin2(3πx1) +

n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]
}+

n
∑

i=1
u(xi , 5, 100, 4)

[−50, 50] 0 1.00 × 10−2

Kowalik’s Function f11(x) =
11
∑

i=1

[
ai −

xi(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5] 3.07 ×10−4 1.00 × 10−2

Six-Hump Camel-Back f12(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5] −1.0316 1.00 × 10−2

Branin f13(x) =
(

x2 − 5.1
4π2 x2 + 5

π
x1 − 6

)2
+
(
1− 1

8π

)
cos x1 + 10 [−5, 5] 0.398 1.00 × 10−2

4.2. Comparison of the Optimization Results of Each Improvement Strategy

In order to test the optimization effect of different improvement strategies and verify
the rationality and effectiveness of each improvement strategy, four typical benchmark
test functions, f1, f3, f5 and f9, are selected and run 30 times independently in different
dimensions for the BWOA, and GBWOA, SBWOA, EBWOA and DBWOA. The mean and
standard deviation of the optimized test results were recorded. The population number
of each algorithm was set to 30, and the max iteration was set to 500. The test results are
given in Table 2, and the search curve of each improvement strategy in 30 dimensions is
given in Figure 3, where the x-axis represents the number of iterations of the algorithms
and the y-axis represents the logarithmic form of the fitness values.
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Table 2. Performance Comparison of Improved Strategies in Different Dimensions.

Fun Algorithm Dim = 30 Dim = 100 Dim = 500

Mean Std Mean Std Mean Std

f1

BWOA 3.60 × 10−312 0 2.36 × 10−302 0 2.35 × 10−298 0
GBWOA 3.53 × 10−312 0 5.46 × 10−310 0 3.96 × 10−299 0
SBWOA 1.53 × 10−14 8.16 × 10−14 1.46 × 10−14 6.82 × 10−14 1.79 × 10−14 9.33 × 10−14

EBWOA 0 0 0 0 0 0
DBWOA 1.26 × 10−306 0 2.73 × 10−297 0 9.88 × 10−307 0

f3

BWOA 5.24 × 10−320 0 5.82 × 10−302 0 1.25 × 10−299 0
GBWOA 1.60 × 10−320 0 5.77 × 10−310 0 4.75 × 10−308 0
SBWOA 1.96 × 10−10 1.02 × 10−9 5.57 × 10−8 3.00 × 10−7 3.27 × 10−7 1.80 × 10−6

EBWOA 0 0 0 0 0 0
DBWOA 9.78 × 10−297 0 1.40 × 10−297 0 1.26 × 10−293 0

f5

BWOA −4.48 × 103 8.68 × 102 −9.05 × 103 2.24 × 103 −1.89 × 104 3.64 × 103

GBWOA −8.09 × 103 1.71 × 103 −2.80 × 104 5.61 × 103 −1.30 × 105 3.57 × 104

SBWOA −1.23 × 104 7.08 × 102 −4.08 × 104 2.65 × 103 −2.07 × 105 7.50 × 103

EBWOA −6.89 × 103 7.02 × 102 −1.54 × 104 1.91 × 103 −3.61 × 104 4.50 × 103

DBWOA −5.84 × 103 1.17 × 103 −1.12 × 104 2.46 × 103 2.53 × 104 7.65 × 103

f9

BWOA 8.41 × 10−1 2.56 × 10−1 1.11 × 100 1.11 × 10−1 1.18 × 100 2.05 × 10−2

GBWOA 2.14 × 10−1 2.00 × 10−1 2.00 × 10−1 1.28 × 10−1 1.65 × 10−1 2.00 × 10−2

SBWOA 1.75 × 10−7 2.48 × 10−7 3.45 × 10−7 1.54 × 10−7 4.61 × 10−7 3.18 × 10−6

EBWOA 4.56 × 10−1 1.77 × 10−1 7.52 × 10−1 8.90 × 10−2 1.02 × 10−1 2.90 × 10−2

DBWOA 8.41 × 10−1 2.79 × 10−1 1.11 × 100 9.64 × 10−2 1.17 × 100 1.78 × 10−2

(The bold numbers in a table are the best results, which are shown in each row of the table).
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After each improvement strategy is applied to the algorithm, the performance of the
search in different dimensions remains basically the same.

After introducing Gauss mapping to initialize the population, the improvement effect
of the GBWOA on unimodal functions f1 and f3 are not obvious. However, for multimodal
functions f5 and f9, the search accuracy is significantly improved. It shows that Gauss
mapping improves the diversity at the beginning of the population and can better jump out
of the local optimum mode. It is helpful for improving the search accuracy of the algorithm.

In the optimization test for unimodal functions f1 and f3, after the introduction of
the elite opposition-based learning strategy, the EBWOA is able to converge quickly to the
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theoretical optimal value 0 in all dimensions. Compared with the test results of the original
BWOA, the improvement of the optimization effect is very obvious. The EBWOA also
improves the search accuracy for the multimodal functions f5 and f9, and achieves better
results than the original algorithm. However, the result is still quite far from the theoretical
optimal value. It shows that the introduction of the elite opposition-based learning strategy
can improve the convergence speed and the search accuracy of the algorithm.

In the optimization test for multimodal functions f5 and f9, the SBWOA converges
to near the theoretical optimal value in all dimensions after the introduction of the sine
cosine strategy. Compared with the test results of the original BWOA, the improvement
of the optimization effect is very obvious. In the optimization test for unimodal functions
f1 and f3, the search accuracy is reduced compared with the original algorithm instead.
It shows that the introduction of the sine cosine perturbation can better jump out of the
local optimum mode and improve the algorithm’s search accuracy when dealing with the
multimodal problem, but it also slows down the convergence speed of the algorithm.

After improving the original BWOA by integrating the mutation of the differential
evolution algorithm, the accuracy of the DBWOA for the multimodal function f5 in the
optimization test is improved compared with the original algorithm, but the improvement
for other test functions is not obvious. It is shown that after integrating the mutation of
differential evolution to restructure the individuals with poor fitness values, the algorithm
has improved the accuracy of the search in dealing with complex multimodal problems.

In summary, the reasonableness and effectiveness of each improvement strategy are verified.

4.3. Analysis of Success Rate and Average Running Time of the Algorithm

In order to verify the speed and success rate of IBWOA in handling optimization
problems, the BWOA, GBWOA, SBWOA, EBWOA and IBWOA were selected to optimize
the benchmark test functions f1– f13. The success rate and the average running time of per
execution of the algorithm are recorded. The population number of each algorithm was set
to 30, and the max iteration was set to 500. Each algorithm was run 30 times independently.
The success rate of algorithms defined according to the literature [20] can be formulated as:

Assuming that the fitness error is F(t), the mathematical model of F(t) can be formulated as:

F(u) = X(u)− X∗ (18)

where u is the number of times of the algorithm runs. X(u) is the actual optimization result
of the algorithm running for the time u. X∗ is the theoretical optimal value.

The variable δ(u) is defined and its mathematical model can be formulated as:

δ(u) =
{

1, if |F(u)| < ε
0, if |F(u)| ≥ ε

(19)

where ε is the fitness error accuracy. The specific value of ε is shown in Table 1.
The mathematical model of Pc, the success rate of algorithm can be formulated as follows:

Pc =
1

30

30

∑
u=1

δ(u) (20)

Defining the variable ϕ(u) as the running time of the algorithm for the time u, the
average running time of each execution of the algorithm Y(Unit is second) can be formulated
as follows:

Y =
1

30

30

∑
u=1

ϕ(u) (21)

As shown in Table 3, when testing 13 benchmark functions, the BWOA, GBWOA,
DBWOA and SBWOA have a relatively short and almost same average running time
per execution. The EBWOA with the introduction of the elite opposition-based learning
strategy has the longest average running time per execution. The average running time
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per execution of the IBWOA after integrating various strategies is increased based on the
original algorithm, but is lower than that of EBWOA.

Each algorithm has a relatively short average running time per execution when the
algorithms optimize unimodal functions, except f3 and fixed-dimension multimodal func-
tions. In the optimization of the unimodal function f3, the algorithms have the long average
running times per execution. This is related to the solution complexity of the fitness of the
objective function itself.

The difference in success rate is mainly reflected in the algorithms optimized functions
f4, f5, f9 and f10. The GBWOA improves the optimization accuracy of the algorithms, but
the improvement is limited. The DBWOA mainly improves the optimization accuracy of the
algorithms for multimodal functions, but again the improvement is limited. EBWOA mainly
improves the convergence speed of the original algorithm, but the improvement in success
rate is not obvious. The SBWOA adds mutation perturbation to help the algorithm jump
out of the local optimum, so the success rate of the algorithm on the multimodal function
is significantly improved. The IBWOA integrates the advantages of each improvement
strategy. Its success rate reaches 100 % and the stability is the best when optimizing 13
benchmark test functions.

Table 3. Comparison of average runtime and success rate of 13 benchmarking functions for optimization.

Fun
BWOA GBWOA DBWOA SBWOA EBWOA IBWOA

Y Pc Y Pc Y Pc Y Pc Y Pc Y Pc

f1 5.92 × 10−2 100% 6.31 × 10−2 100% 5.55 × 10−2 100% 5.98 × 10−2 100% 4.88 × 10−1 100% 3.18 × 10−1 100%
f2 7.15 × 10−2 100% 7.16 × 10−2 100% 6.62 × 10−2 100% 6.87 × 10−2 100% 5.06 × 10−1 100% 3.32 × 10−1 100%
f3 6.19 × 10−1 100% 6.11 × 10−1 100% 6.27 × 10−1 100% 6.00 × 10−1 100% 1.98 × 100 100% 1.39 × 100 100%
f4 9.13 × 10−2 0% 9.07 × 10−2 0% 1.16 × 10−1 0% 9.16 × 10−2 83.3% 5.61 × 10−1 0% 3.70 × 10−1 90%
f5 1.14 × 10−1 0% 1.17 × 10−1 0% 1.02 × 10−1 0% 1.23 × 10−1 70% 5.84 × 10−1 0% 3.90 × 10−1 80%
f6 7.75 × 10−2 100% 7.47 × 10−2 100% 7.72 × 10−2 100% 7.73 × 10−2 100% 4.78 × 10−1 100% 3.26 × 10−1 100%
f7 1.00 × 10−1 100% 9.91 × 10−2 100% 1.07 × 10−1 100% 8.90 × 10−2 100% 5.09 × 10−1 100% 3.46 × 10−1 100%
f8 1.22 × 10−1 100% 1.25 × 10−1 100% 1.47 × 10−1 100% 1.13 × 10−1 100% 5.99 × 10−1 100% 4.03 × 10−1 100%
f9 1.50 × 10−1 0% 1.41 × 10−1 0% 2.08 × 10−1 0% 1.45 × 10−1 100% 6.92 × 10−1 0% 4.65 × 10−1 100%
f10 1.34 × 10−1 0% 1.43 × 10−1 0% 1.49 × 10−1 0% 1.50 × 10−1 100% 6.60 × 10−1 0% 4.74 × 10−1 100%
f11 5.76 × 10−2 40% 5.68 × 10−2 63.3% 5.65 × 10−2 40% 6.12 × 10−2 63.3% 2.00 × 10−1 53.3% 1.44 × 10−1 100%
f12 4.81 × 10−2 86.6% 4.71 × 10−2 86.6% 4.42 × 10−2 100% 4.66 × 10−2 100% 1.53 × 10−1 73.3% 1.09 × 10−1 100%
f13 5.11 × 10−2 100% 4.51 × 10−2 100% 4.59 × 10−2 100% 4.04 × 10−2 100% 1.12 × 10−1 100% 9.35 × 10−2 100%

4.4. Performance Comparison of IBWOA with Other Algorithms

In order to test the optimization performance of the IBWOA for the benchmark test
functions, the BWOA, PSO [21], GWO [2], WOA [4], CS [5], BOA [3] and IBWOA, were
selected. The 13 benchmark test functions were also selected. The population number of
each algorithm was set to 30, and the max iteration was set to 500. The dimension was
30. The optimization test was run 30 times independently, and the mean and standard
deviation were recorded. The main parameters of each algorithm are set in Table 4, and the
results of the test are shown in Table 5. Figure 4 shows the convergence curves of the seven
algorithms used in the experiment on 13 benchmark functions.

Table 4. Algorithm Parameter Setting.

Algorithm Parameter

PSO c1 = c2 = 2, w ∈ [0.2, 0.9], Vmax = 1, Vmin = −1
GWO afirst = 2, afianl = 0
WOA b = 1
BOA a = 0.1, p = 0.6, c0 = 0.01
CS Pa = 0.25

BWOA —
IBWOA —
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Table 5. Comparison of Optimization Results of 7 Algorithms in 30 Dimensions.

Fun
PSO CS BOA WOA GWO BWOA IBWOA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

f1 9.03 × 10−7 1.35 × 10−6 5.02 × 10−39 1.65 × 10−38 1.41 × 10−11 1.25 × 10−12 1.41 × 10−30 4.91 × 10−30 6.05 × 10−34 1.14 × 10−33 3.60 × 10−312 0 0 0
f2 2.02 × 10−3 2.58 × 10−3 3.77 × 10−20 7.77 × 10−20 5.58 × 10−9 6.32 × 10−10 1.06 × 10−21 2.39 × 10−21 2.37 × 10−20 2.37 × 10−20 7.19 × 10−158 2.69 × 10−150 0 0
f3 6.41 × 100 3.40 × 100 5.48 × 10−38 2.07 × 10−37 1.17 × 10−11 1.42 × 10−12 5.39 × 10−7 2.93 × 10−6 1.98 × 10−7 7.35 × 10−7 5.24 × 10−320 0 0 0
f4 9.67 × 101 6.01 × 101 3.95 × 101 2.36 × 101 2.88 × 101 3.13 × 10−2 2.79 × 101 7.64 × 10−1 2.68 × 101 6.99 × 101 2.90 × 101 2.56 × 10−2 5.46 × 10−3 8.83 × 10−3

f5 −4.84 × 103 1.15 × 103 −1.09 × 102 1.08 × 101 −2.26 × 103 4.56 × 102 −5.01 × 103 7.00 × 102 −6.12 × 103 −4.09 × 103 −4.48 × 103 8.68 × 102 −1.25 × 104 7.94 × 101

f6 5.01 × 101 1.44 × 101 0 0 5.23 × 101 8.55 × 101 0 0 1.39 × 100 3.21 × 100 0 0 0 0
f7 3.29 × 10−4 2.45 × 10−4 8.88 × 10−16 0 5.38 × 10−9 1.13 × 10−9 7.40 × 100 9.90 × 100 4.27 × 10−14 3.81 × 10−15 8.88 × 10−16 0 8.88 × 10−16 0
f8 2.03 × 101 5.88 × 100 0 0 9.02 × 10−13 8.90 × 10−13 2.90 × 10−4 1.59 × 10−3 3.54 × 10−3 7.24 × 10−3 0 0 0 0
f9 6.92 × 10−3 2.63 × 10−2 3.15 × 100 1.27 × 100 6.05 × 10−1 1.57 × 10−1 3.40 × 10−1 2.15 × 10−1 5.34 × 10−2 2.07 × 10−2 8.41 × 10−1 2.56 × 10−1 2.16 × 10−6 2.56 × 10−6

f10 6.68 × 10−3 8.91 × 10−3 5.71 × 100 2.09 × 100 2.81 × 100 2.05 × 10−1 1.89 × 100 2.66 × 10−1 6.54 × 10−1 4.47 × 10−3 2.95 × 100 1.68 × 10−1 3.81 × 10−5 3.55 × 10−5

f11 5.77 × 10−4 2.22 × 10−4 4.19 × 10−4 1.22 × 10−4 4.81 × 10−4 1.28 × 10−4 5.72 × 10−4 3.24 × 10−4 3.82 × 10−3 7.41 × 10−3 4.26 × 10−3 5.28 × 10−3 3.10 × 10−4 1.64 × 10−5

f12 −1.0316 6.2 × 10−16 −1.0316 6.8 × 10−15 −1.0316 6.6 × 10−15 −1.0316 4.2 × 10−7 −1.0316 7.7 × 10−8 −1.0272 1.24 × 10−2 −1.0316 7.78 × 10−8

f13 0.398 0 0.398 4.91 × 10−12 0.404 0.015 0.398 2.7 × 10−5 0.398 1.61 × 10−5 0.553 8.33 × 10−1 0.398 0

(The bold numbers in a table are the best results, which are shown in each row of the table).
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For the unimodal test functions f1– f3 and the multimodal test functions f6 and f8,
the IBWOA converges to 0, the theoretical optimum value. For the complex multimodal
test functions f5, the test results of the IBWOA are close to −12,569.48, the theoretical
optimum value. The test results of the IBWOA for the functions f4, f9 and f10 also satisfy
the allowable absolute error accuracy and are better than the various algorithms compared.
For the fixed-dimensional test functions f11– f13, the IBWOA also converges to the near
theoretical optimal value. In addition, the IBWOA find the global optimum with the
smallest standard deviation, reflecting the good robustness of the algorithm.

In summary, the IBWOA has the best results in terms of convergence speed, search
accuracy and robustness compared to the other listed algorithms.

4.5. Wilcoxon Rank Sum Detection

If only analyzing and comparing the mean and standard deviation of the respective
algorithms themselves, such data analysis lacks integrity and scientific validity. In order
to further examine the robustness and stability of IBWOA, a statistical analysis method
was used: Wilcoxon rank sum detection, which detects complex data and analyzes the
performance difference between the IBWOA and other algorithms from a statistical point of
view. The PSO, CS, BOA, GWO, WOA and BWOA were selected to optimize 13 benchmark
test functions, and the results of each algorithm running independently for 30 times were
recorded. Wilcoxon rank sum detection was performed with these data against the results
of the IBWOA runs, and P values were calculated. It is set that when P < 5%, it can be
considered as a strong validation to reject the null hypothesis.

The test results are shown in Table 6, where NaN indicates that there is no data to
compare with the algorithm. The +, = and − indicate that the IBWOA outperforms, equals
and underperforms against the compared algorithms, respectively.

Table 6. Wilcoxon rank sum detection results.

Fun PSO CS BOA WOA GWO BWOA

f1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 2.16 × 10−2

f2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

f3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 2.16 × 10−2

f4 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

f5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

f6 1.21 × 10−12 NaN 1.70 × 10−8 NaN 1.21 × 10−12 NaN
f7 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN
f8 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN
f9 838 × 10−7 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

f10 1.41 × 10−4 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

f11 1.54 × 10−1 8.89 × 10−10 6.74 × 10−6 3.26 × 10−7 3.51 × 10−2 9.76 × 10−10

f12 2.36 × 10−12 1.45 × 10−11 1.82 × 10−9 5.86 × 10−6 5.19 × 10−2 3.02 × 10−11

f13 1.21 × 10−12 1.21 × 10−12 2.37 × 10−10 6.05 × 10−7 1.03 × 10−2 1.37 × 10−1

+/=/− 12/0/1 10/3/0 13/0/0 12/1/0 12/0/1 9/3/1

As shown in Table 6, the results of the Wilcoxon rank sum detection for the IBWOA
show that the values for P are overwhelmingly less than 5%. It shows that the optimization
advantage of IBWOA for the benchmark function is obvious from the statistical point of
view. The robustness of IBWOA is verified.

4.6. The Performance of the IBWOA on the CEC2017

Most of the CEC2017 test functions [22] are a combination of the weights of multiple
benchmark functions. Such a combination of the weights makes the characteristics of the
CEC2017 test functions more complex. These test functions with complex characteristics to
test the optimization performance of the IBWOA can be used to further verify the optimiza-
tion capability and applicability of the IBWOA in the face of complex functions. A part
of CEC2017 single-objective optimization functions were selected for the optimization
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test, which included unimodal (UN), multimodal (MF), hybrid (HF) and composition (CF)
functions. The specific information related to the function is given in Table 7.

Table 7. Information of part CEC2017 function.

Fun Dim Type Range Optimal

CEC03 10 UN [−100, 100] 300
CEC04 10 MF [−100, 100] 400
CEC05 10 MF [−100, 100] 500
CEC06 10 MF [−100, 100] 600
CEC08 10 MF [−100, 100] 800
CEC011 10 HF [−100, 100] 1100
CEC016 10 HF [−100, 100] 1600
CEC017 10 HF [−100, 100] 1700
CEC020 10 HF [−100, 100] 2000
CEC021 10 CF [−100, 100] 2100
CEC023 10 CF [−100, 100] 2300
CEC024 10 CF [−100, 100] 2400
CEC025 10 CF [−100, 100] 2500

PRO [23], WOA [23], GWO [23] and BWOA were selected for testing and comparison.
The population number of each algorithm was set to 50, and the max iteration was set to
1000. The dimension was 10. Each function runs 30 times independently and the mean and
standard deviation are recorded. The results of the optimization test and are given in Table 8.

Table 8. Comparison of CEC2017 function optimization results.

Fun PRO WOA GWO BWOA IBWOA

CEC03

Max 2.13 × 104 6.10 × 103 3.34 × 103 2.07 × 104 1.71 × 103

Min 6.01 × 103 3.20 × 102 3.82 × 102 4.43 × 103 3.33 × 102

Mena 1.47 × 104 9.05 × 102 1.34 × 103 1.20 × 104 6.54 × 102

Std 4.04 × 103 1.15 × 103 8.80 × 102 4.19 × 103 2.98 × 102

Rank 5 2 3 4 1

CEC04

Max 1.86 × 103 5.79 × 102 4.63 × 102 1.27 × 103 5.17 × 102

Min 4.71 × 102 4.02 × 102 4.03 × 102 4.22 × 102 4.00 × 102

Mena 1.06 × 103 4.43 × 102 4.12 × 102 5.80 × 102 4.08 × 102

Std 4.48 × 102 5.10 × 101 1.27 × 101 1.43 × 102 1.59 × 101

Rank 5 3 2 4 1

CEC05

Max 6.33 × 102 5.94 × 102 5.23 × 102 6.27 × 102 6.01 × 102

Min 5.47 × 102 5.19 × 102 5.06 × 102 5.17 × 102 5.21 × 102

Mena 5.93 × 102 5.54 × 102 5.12 × 102 5.57 × 102 5.54 × 102

Std 2.24 × 101 2.13 × 101 4.99 × 100 2.06 × 101 2.37 × 101

Rank 5 2 1 4 3

CEC06

Max 6.80 × 102 6.52 × 102 6.01 × 102 6.72 × 102 6.60 × 102

Min 6.24 × 102 6.12 × 102 6.00 × 102 6.13 × 102 6.02 × 102

Mena 6.52 × 102 6.31 × 102 6.00 × 102 6.43 × 102 6.25 × 102

Std 1.38 × 101 1.23 × 101 2.43 × 10−1 1.32 × 101 1.30 × 101

Rank 5 3 1 4 2

CEC08

Max 8.94 × 102 8.71 × 102 8.32 × 102 8.84 × 102 8.16 × 102

Min 8.29 × 102 8.18 × 102 8.06 × 102 8.21 × 102 8.11 × 102

Mena 8.66 × 102 8.40 × 102 8.14 × 102 8.56 × 102 8.13 × 102

Std 1.36 × 101 1.48 × 101 6.92 × 100 1.29 × 101 4.75 × 100

Rank 5 3 2 4 1
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Table 8. Cont.

Fun PRO WOA GWO BWOA IBWOA

CEC011

Max 8.91 × 103 1.31 × 103 1.24 × 103 1.22 × 104 1.23 × 103

Min 1.15 × 103 1.11 × 103 1.10 × 103 1.20 × 103 1.10 × 103

Mena 1.93 × 103 1.18 × 103 1.13 × 103 2.32 × 103 1.12 × 103

Std 1.63 × 103 4.70 × 101 3.03 × 101 1.84 × 103 2.20 × 101

Rank 4 3 2 5 1

CEC016

Max 2.61 × 103 2.11 × 103 2.01 × 103 2.39 × 103 2.01 × 103

Min 1.76 × 103 1.61 × 103 1.60 × 103 1.73 × 103 1.60 × 103

Mena 2.09 × 103 1.84 × 103 1.68 × 103 2.05 × 103 1.66 × 103

Std 1.68 × 102 1.32 × 102 8.71 × 101 1.70 × 102 8.60 × 101

Rank 5 3 2 4 1

CEC017

Max 2.04 × 103 1.89 × 103 1.81 × 103 2.05 × 103 1.80 × 103

Min 1.76 × 103 1.74 × 103 1.72 × 103 1.74 × 103 1.72 × 103

Mena 1.88 × 103 1.79 × 103 1.75 × 103 1.84 × 103 1.74 × 103

Std 1.03 × 102 4.36 × 101 1.90 × 101 6.28 × 101 1.93 × 101

Rank 5 3 2 4 1

CEC020

Max 2.48 × 103 2.31 × 103 2.16 × 103 2.42 × 103 2.10 × 103

Min 2.06 × 103 2.03 × 103 2.01 × 103 2.05 × 103 2.02 × 103

Mena 2.21 × 103 2.17 × 103 2.05 × 103 2.22 × 103 2.04 × 103

Std 9.32 × 101 6.35 × 101 3.99 × 101 7.77 × 101 3.61 × 101

Rank 4 3 2 5 1

CEC021

Max 2.41 × 103 2.33 × 103 2.41 × 103 2.40 × 103 2.33 × 103

Min 2.22 × 103 2.20 × 103 2.20 × 103 2.23 × 103 2.20 × 103

Mena 2.36 × 103 2.29 × 103 2.32 × 103 2.35 × 103 2.28 × 103

Std 5.00 × 101 4.08 × 101 5.19 × 101 3.86 × 101 3.89 × 101

Rank 5 2 3 4 1

CEC023

Max 2.76 × 103 2.63 × 103 2.69 × 103 2.76 × 103 2.63 × 103

Min 2.64 × 103 2.61 × 103 2.62 × 103 2.62 × 103 2.60 × 103

Mena 2.69 × 103 2.62 × 103 2.65 × 103 2.67 × 103 2.61 × 103

Std 3.38 × 101 7.91 × 100 1.78 × 101 3.44 × 101 1.22 × 101

Rank 5 2 3 4 1

CEC024

Max 2.97 × 103 2.83 × 103 2.77 × 103 2.86 × 103 2.79 × 103

Min 2.77 × 103 2.51 × 103 2.70 × 103 2.61 × 103 2.50 × 103

Mena 2.84 × 103 2.74 × 103 2.74 × 103 2.78 × 103 2.69 × 103

Std 4.25 × 101 1.03 × 102 1.31 × 101 4.57 × 101 1.48 × 101

Rank 5 3 2 4 1

CEC025

Max 4.68 × 103 3.03 × 103 2.95 × 103 3.60 × 103 2.98 × 103

Min 3.03 × 103 2.90 × 103 2.90 × 103 2.94 × 103 2.90 × 103

Mena 3.70 × 103 2.95 × 103 2.94 × 103 3.07 × 103 2.93 × 103

Std 5.15 × 102 2.71 × 101 1.59 × 101 1.22 × 102 1.26 × 101

Rank 5 3 2 4 1

(The bold numbers in a table are the best results, which shown in each row of the table).

As shown in Table 8, the IBWOA ranked first in all the results of the optimization test
results for the CEC2017 functions, except for CEC05 and CEC06. The results of the optimiza-
tion test for the unimodal function CEC03 are all far from the theoretical optimum, whereas
the test results of the IBWOA are the best compared to the compared algorithms. The
results of the optimization test for hybrid and composite functions show that the IBWOA
performs more consistently and with higher accuracy. It shows that the performance of the
IBWOA is mainly related to the optimization process of hybrid and composition functions,
and the IBWOA has great potential in dealing with complex combinatorial problems.
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5. Practical Constrained Engineering Problems

The penalty function in [24] is selected as the nonlinear constraint condition. In this
section, the IBWOA is used to deal with six practical constrained engineering problems,
including welded beam design [2], tension spring design [2], three-bar truss design [5],
cantilever design [5], I-beam design [5] and tubular column design [5]. The dimensions
and constraints of the six constrained engineering problems are given in Table 9. Compare
IBWOA with various optimization algorithms for optimization testing. The population
number of each algorithm was set to 50, and the max iteration was set to 1000. Each
problem runs 30 times independently and the optimal values are recorded.

Table 9. CEPs information introduction.

Item Problems Dim Cons Iter

CEP1 Welded beam design 4 7 1000
CEP2 Tension spring design 3 4 1000
CEP3 Three-bar truss design 2 3 1000
CEP4 Cantilever beam design 5 1 1000
CEP5 Deflection of I-beam design 4 1 1000
CEP6 Tubular column design 2 6 1000

5.1. Welded Beam Design

The welded beam is designed with four main constraints and other lateral constraints.
The constraints include shear stress τ, beam bending stress σ, buckling load Pc, beam
deflection δ and other internal parameter constraints.

Its mathematical model of the welded beam design [2] can be formulated as:
Minimize: f (x1, x1, x1, x1) = f (h, l, t, b) = 1.10471x2

1x2 + 0.04811x3x4(14 + x2)
Subject to:

g1(X) =
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′ )2 − τmax ≤ 0,

g2(X) = 6PL
x2

3x4
− σmax ≤ 0,

g3(X) = x1 − x4 ≤ 0,

g4(X) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0,

g5(X) = 0.125− x1 ≤ 0,

g6(X) = 4PL3

Ex2
3x4
− δmax ≤ 0,

g7(X) = P− 4.013Ex2
3x4

6L2

(
1− x3

2L

√
E

4G

)
≤ 0,

where x1, x2, x3 and x4 denote the four basic properties of the welded beam: the weld
width h and the width d, length l and thickness b of the beam, respectively. Their range of
variation is: 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2.

τ′ = P√
2x1x2

, τ′′ = MR
J , M = P

(
L + x2

2
)
, P = 6000lb,

J = 2
√

2x1x2

[
x2

2
4 +

(
x1+x3

2

)2
]

, R =

√
x2

2
4 +

(
x1+x3

2

)2
,

L = 14in, E = 30× 106psi, G = 12× 106psi,

τmax = 13, 600psi, σmax = 30, 000psi, δmax = 0.25in.

The best solutions for the BWOA, IBWOA, RO [24], CPSO [24], GWO [2], WOA [4],
SSA [25]and HFBOA [26] regarding the design of welded beams are given in Table 10.
The optimal value of IBWOA is 1.706809, which means that the total cost of the welded
beam design is minimized when x1, x2, x3 and x4 are set to 0.204300, 3.273201, 9.104938 and
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0.205632, respectively. As can be seen from Table 10, the IBWOA obtained the best result in
the optimization test among all the compared algorithms.

Table 10. Best results of welded beam design.

Algorithm x1 x2 x3 x4 Optimal

RO 0.20368 3.52846 9.00423 0.20724 1.73534
CPSO 0.202369 3.544214 9.048210 0.205723 1.73148
GWO 0.205676 3.478377 9.036810 0.205778 1.726240
WOA 0.205396 3.484293 9.037426 0.206276 1.730499
SSA 0.2057 3.4714 9.0366 0.2057 1.72491

HFBOA 0.205607 3.473369 9.036766 0.205730 1.725080
BWOA 0.183106 3.696771 9.086768 0.206471 1.734269
IBWOA 0.204300 3.273201 9.104938 0.205632 1.706809

(The bold numbers in a table are the best results, which are shown in each row of the table).

5.2. Tension/Compression Spring Design

Tension/compression spring design [2]. Its objective is to minimize its mass while
satisfying certain constraints.

Its mathematical model can be formulated as follows:
Minimize: f (x1, x2, x3) = f (d, D, N) = (x3 + 2)x2

1x2
Subject to:

g1(x) = 1− x3
2x3

71785x4
1
≤ 0,

g2(x) = 4x2
2−x1x2

12566(x1x3
2+x4

2)
+ 1

5108x2
2
≤ 0,

g3(x) = 1− 140.45x2
x2

1x3
≤ 0,

g4(x) = x1+x2
1.5 ≤ 0.

where x1, x2, and x3 represent the spring coil diameter d, spring coil diameter D and the
number of windings P, respectively. Their range of variation: 0.25 ≤ x1 ≤ 1.3, 0.05 ≤ x2 ≤ 2.0,
2 ≤ x3 ≤ 15.

The optimal solutions obtained for the BWOA, IBWOA, PSO [21], GWO [2], WOA [4],
GSA [27]and HFBOA [26] regarding the design of tension/compression springs are given
in Table 11. The optimal value of the IBWOA is 0.012666, which means that the total cost
of the tension/compression spring is minimized when x1, x2 and x3 are set as 0.051889,
0.361544 and 11.011088, respectively. As can be seen from Table 11, the results of the IBWOA
are better than previous studies, except for the GWO algorithm and HFBOA.

Table 11. Best results of tension/compression springs.

Algorithm x1 x2 x3 Optimal

PSO 0.015728 0.357644 11.244543 0.0126747
GWO 0.05169 0.356737 11.28885 0.012666
WOA 0.051207 0.345215 12.004032 0.0126763
GSA 0.050276 0.323680 13.525410 0.0127022

HFBOA 0.051841 0.360377 11.078153 0.012666
BWOA 0.050811 0.335966 12.620450 0.0126818
IBWOA 0.051889 0.361544 11.011088 0.012666

(The bold numbers in a table are the best results, which are shown in each row of the table).

5.3. Three-Bar Truss Design

The three-bar truss design [5] problem minimizes the volume while satisfying the
stress constraints on each side of the truss member.

Its mathematical model can be formulated as follows:
Minimize: f (x1, x2) = f (A1, A2) =

(
2
√

2A1 + A2
)
· l
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Subject to:

g1 =
√

2x1+x2√
2x2

1+2x1x2
P− σ ≤ 0

g1 = x2√
2x2

1+2x1x2
P− σ ≤ 0

g1 = 1
x1+
√

2x2
P− σ ≤ 0

where l is the length of the rod truss, and x1 and x2 denote the cross-sectional area of the
long rod truss and short rod truss, respectively. Their range of variation: 0 ≤ x1, x2 ≤ 1.

l = 100 cm,P = 2 kN/cm2, σ = 2 kN/cm2.

The optimal solutions obtained of IBWOA, BWOA, CS [5], SSA [25], HHO [28],
MBA [29] and HFBOA [26] regarding the design of the three-bar truss are given in Table 12.
The optimal value of the IBWOA is 263.46343425, which means that the total cost of three-
bar truss design is minimized when A1 and A2 are set as 0.786027200 and 0.407114772,
respectively. As can be seen from Table 12, the IBWOA obtained the best result for the
optimization test among all the algorithms compared.

Table 12. Best results of three-bar truss design.

Algorithm x1 x2 Optimal

CS 0.78867 0.40902 263.9716
SSA 0.788665414 0.408275784 263.8958434

HHO 0.788662816 0.408283133 263.8958434
MBA 0.788565 0.4085597 263.8958522

HFBOA 0.78869137 0.408202602 263.895867
BWOA 0.786199557 0.406694123 263.46345931
IBWOA 0.786027200 0.407114772 263.46343425

(The bold numbers in a table are the best results, which are shown in each row of the table).

5.4. Cantilever Beam Design

The variables of the cantilever beam design [5] are the height or width of the different
beam elements. Their thicknesses are kept fixed in the problem.

The mathematical model can be formulated as follows:
Minimize: f (x1, x2, x3, x4, x5) = 0.0624(x1 + x2 + x3 + x4 + x5)
Subject to:

g1 =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0

where x1, x2, x3, x4 and x5 denote the height or width of different beam elements, respec-
tively. Their range of variation: 0.01 ≤ xi ≤ 100, i = 1, 2, 3, 4, 5.

The optimal solutions obtained for the BWOA, IBWOA, CS [5], SSA [25], SOS [30],
MMA [31] and HFBOA [26] regarding the cantilever beam design are given in Table 13. The
optimal value of the IBWOA is 1.307284, i.e., when x1, x2, x3, x4 and x5 are set as 6.044796,
4.805171, 4.431811, 3.471760 and 2.196531, and the total cost of the cantilever beam is
minimized. As can be seen from Table 13, the IBWOA obtained the best result for the
optimization test among all the algorithms compared.
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Table 13. Best results of cantilever beam design.

Algorithm x1 x2 x3 x4 x5 Optimal

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SSA 6.015134526 5.309304676 4.495006716 3.5014262863 2.1527879080 1.3399563910
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
HFBOA 6.016838 5.313519 4.495334 3.495149 2.152926 1.339963
BWOA 6.193426 4.793626 4.143571 3.548273 2.397132 1.315144
IBWOA 6.044796 4.805171 4.431811 3.471760 2.196531 1.307284

(The bold numbers in a table are the best results, which are shown in each row of the table).

5.5. I-Beam Design

I-beam design [5], minimal vertical deflection by optimizing length b, height h and
both thicknesses tw, t f .

Its mathematical model can be formulated as follows:

Minimize: f (x1, x2, x3, x4) = f
(

b, h, tw, t f

)
= 5000

x3(x2−2x4)
3

12 +
x1x3

4
6 +2x1x4

(
x2−x4

2

)2

Subject to:
g1 = 2x1x3 + x3(x2 − 2x4)− 300 ≤ 0

where x1, x2, x3 and x4 vary in range: 10 ≤ x1 ≤ 50, 10 ≤ x2 ≤ 80, 0.9 ≤ x3 ≤ 5, 0.9 ≤ x4 ≤ 5.
The optimal solutions obtained for the BWOA, IBWOA and CS [5], SOS [30] and CSA [32]

regarding the design of I-beams are given in Table 14. The optimal value of the IBWOA
is 0.0066260616, when x1, x2, x3 and x4 are set as 49.9996, 79.99996414, 1.7644811413, and
4.9999979901, and the total cost of I-beam is minimized. As can be seen from Table 14, the
IBWOA obtained the best result for the optimization test among all the algorithms compared.

Table 14. Best results of I-beam design.

Algorithm x1 x2 x3 x4 Optimal

CS 50 80 0.9 2.321675 0.0130747
SOS 50 80 0.9 2.32179 0.0130741
CSA 49.9999 80 0.9 2.3216715 0.013074119

BWOA 49.9997 79.99787506 1.7591118802 4.9999723672 0.0066278072
IBWOA 49.9996 79.99996414 1.7644811413 4.9999979901 0.0066260616

(The bold numbers in a table are the best results, which are shown in each row of the table).

5.6. Tubular Column Design

The goal of the tubular column design [5] is using a minimal cost to obtain a homoge-
neous column.

Its mathematical model can be formulated as follows:
Minimize: f (x1, x2) = f (d, t) = 9.8x1x2 + 2x1
Subject to:

g1 = P
πx1x2σy

− 1 ≤ 0

g2 = 8PL2

π3Ex1x2(x2
1+x2

2)
− 1 ≤ 0

g3 = 2.0
x1
− 1 ≤ 0

g4 = x1
14 − 1 ≤ 0

g5 = 0.2
x2
− 1 ≤ 0

g6 = x2
0.8 − 1 ≤ 0

where x1, x2 denote the average diameter of the column respectively. P is the compressive
load, σy is the yield stress, E is the modulus of elasticity, ρ is the density and L is the length
of the designed column.
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Their range of variation: 2 ≤ x1 ≤ 14, 0.2 ≤ x2 ≤ 0.8, P = 2500 kgf, σy = 500 kgf/cm2,
E = 0.85× 106 kgf/cm2, L = 250 cm, ρ = 0.0025 kgf/cm3.

The optimal solutions obtained for the BWOA, IBWOA, CS [5], CSA [32], KH [33] and
HFBOA [26] regarding the design of tubular columns are given in Table 15. The optimal
value of IBWOA is 26.49633224, which means that the total cost of the tubular column
design is the lowest when x1 and x2 are set as 5.4521171299 and 0.291734575, respectively.
As can be seen from Table 15, IBWOA obtained the best result for the optimization test
among all the algorithms compared.

Table 15. Best results of tubular column design.

Algorithm x1 x2 Optimal

CS 5.45139 0.29196 26.53217
CSA 5.451163397 0.291965509 26.531364472
KH 5.451278 0.291957 26.5314

HFBOA 5.451157 0.291966 26.499503
BWOA 5.462764455 0.291005616 26.518147206
IBWOA 5.4521171299 0.291734575 26.49633224

(The bold numbers in a table are the best results, which are shown in each row of the table).

6. Conclusions

This paper first verifies the reasonableness and effectiveness of each improvement
strategy through experiments. Then, the experimental results on success rate show the
success rate of the proposed algorithm reaches 100% and its stability is the best when
optimizing 13 benchmark test functions. Moreover, compared to other listed algorithms,
the proposed algorithm performs best in terms of convergence speed, search accuracy,
and robustness. The optimization results for a part of CEC2017 test functions show that
the proposed algorithm performs best in the optimization of hybrid and composition
functions. It means that the proposed algorithm has great potential in dealing with complex
combinatorial problems. Finally, the proposed algorithm is successfully applied to solve six
practical constrained engineering problems. The results are better than the listed advanced
algorithms. It shows that the proposed algorithm has excellent optimization ability and
scalability. However, the proposed algorithm increases the time complexity and the average
running time is relatively long. The algorithm still has some room for improvement.

In future work, we will focus on the following tasks:

• We will prove the convergence and stability of the proposed IWBOA theoretically.
• We will apply the IBWOA to solve the wind power prediction problem.
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