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Abstract: The influence of magnon bands on entanglement in the antiferromagnetic XXZ model on a
triangular lattice, which models the bilayer structure consisting of an antiferromagnetic insulator
and normal metal, is investigated. This effect was studied in ferromagnetic as well as antiferromag-
netic triangular lattices. Quantum entanglement measures given by the entanglement negativity
have been studied, where a magnon current is induced in the antiferromagnet due to interfacial
exchange coupling between localized spins in the antiferromagnet and itinerant electrons in a normal
metal. Moreover, quantum correlations in other frustrated models, namely the metal-insulation
antiferromagnetic bilayer model and the Heisenberg model with biquadratic and bicubic interactions,
are analyzed.
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1. Introduction

Recently, topologic phase transitions (TPT) have been an important subject in con-
densed matter physics because this class of phase transition cannot be described by the
theory of spontaneous symmetry breaking. Within this realism, the study of topological
electronic systems has been extended to topological magnon insulators, which are elemen-
tary excitations above a ground state in a magnetically ordered system present in magnetic
materials, where the band structure is expected to exhibit nontrivial topological proper-
ties [1–17]. Although magnons can exhibit the thermal Hall effect in contrast to electronic
systems, there are no quantized Hall plateaus because magnons obey Bose–Einstein statis-
tics. On the other hand, the study of quantum correlation, entanglement in quantum spin
systems, as well as quantum Hall systems has been a unified field that has recently grown
a lot. In this case, quantum information can be found by the study of the reduced density
matrix, whose entanglement spectrum and von Neumann entropy are well recognized
to contain key features. Furthermore, the solid-state proposals for quantum computation
include quantum Hall systems (QHs), where one of the features of many QHs studied for
quantum information processing is the scalability of their technology, which permits the
creation of a large number of qubits [18]. The purpose of the present paper is to study
quantum correlation using the entanglement negativity as a quantifier in important models
of quantum magnetism and condensed matter physics [19].

The half-integer and integer spin XXZ model with frustrating interactions: It is well known
that the XXZ model (anisotropic Heisenberg model) in lattice dimensions d = 1, 2 presents
very different ground-state proprieties that depend on spin value; the geometry of the lattice,
which includes different types of interactions with the lattice, namely the Dzyaloshinskii–
Moriya interaction (DM); single-ion anisotropy; spin-phonon coupling, etc. For instance,
it is well established that while the quantum integer spin one-dimensional XXZ model
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in the isotropic point presents a gap in the spectrum (Haldane’s gap) [20,21], the same
model with a half-integer spin is gapless due to the Lieb, Schultz, and Mattis theorem [22].
Moreover, elementary excitations are different for an integer and half-integer spin. In the
first case (integer spin), they are magnons, and in the second (half-integer spin), spinons.
As pointed out in Ref. [23], the interactions between magnons or spinons with defects in the
lattice and phonons have generated a number of intriguing features [24–29]. In addition,
the spin–lattice interaction’s magnetic systems for example, leads to modifications in the
spectrum of spin excitations [30–32] and to the formation of new phases, such as the
spin-Peierls dimerized phase. Thus, we investigated the effects of different quantum and
topological phase transitions induced by the spin-couplings, as well as the dimensionality
and geometry of the lattice on quantum correlation and entanglement in Refs. [33–46].
The presence of different types of coupling leads to the different quantum and topological
phases that are studied using analytical techniques, such as the nonlinear sigma model,
spin-wave theory, and SU(N) Schwinger bosons, which are adequate in treating each
case at low energy limits, as well as numerical techniques, such as the quantum Monte
Carlo method and the density matrix renormalization group (DMRG), and so on. The
quantum phase transition, which is induced by the Dzyaloshisnkii–Moriya interaction
and external magnetic fields, and its effect on entanglement, has been investigated in
one- and two-dimensional antiferromagnets in Refs. [34,35]. The effect of site dilution
in the anisotropic two-dimensional XY model in the large anisotropy phase has been
analyzed in Refs. [38,41]. Furthermore, the effect of quantum phase transition on quantum
correlation in different spin-frustrated models, such as in the honeycomb and triangular
lattices, has been analyzed in Refs. [36,40,43]. The effect of spin–phonon coupling on
quantum correlation in the XY model is analyzed in Ref. [44]. The influence of magnon-
band splitting and topological phase transitions, as well as the spin Nernst effect, has
been investigated in Refs. [33,35,45,46]. The entanglement in a bilinear biquadratic model
for iron-based superconductors has been studied in Refs. [34,35]. Here, we intend to
study quantum correlation and entanglement in three different models: First, we study
the quantum-frustrated spin model given by the triangular-lattice antiferromagnet with a
external magnetic field, which presents four different quantum phases and magnon bands
splitting that generates an effect in quantum entanglement. Next, we investigate quantum
correlations in the fermion system given by the metal-insulating antiferromagnet bilayer
model, in addition to quantum correlations in the two-dimensional Heisenberg model with
biquadratic and bicubic interactions. We use different measures of quantum correlation
and entanglement, which permits us to obtain the entanglement more easily in each case.

The paper is organized as follows: In Section 2, we discuss the XXZ model and its
different phases on a triangular lattice.In Section 3, we present our numerical results for
entanglement negativity as a function of T and anisotropy ∆. In Section 4, we analyze
quantum entanglement in the metal-insulting antiferromagnetic bilayer model, which is an
important model of spintronics. In Section 5, we study the effect of high-order terms used
as the bicubic and biquadratic terms on quantum correlation in the Heisenberg model. In
the last Section 6, we present our conclusions and final remarks.

2. XXZ Model on Triangular Lattice

The XXZ model on a triangular lattice with a magnetic field along the z axis is given
by the spin Hamiltonian

H = ∑
〈iα,jβ〉

[
JSiα · Sjβ + ∆Sz

iαSz
jβ

]
−∑

iα
HαSz

iα, (1)

where Siα is the spin operator localized at the αth sublattice of the ith unit cell in a triangular
lattice and ∆ > 0 indicates an anisotropic exchange coupling. The notation α, β = A, B, C
denotes the three sublattices in consideration, where 〈· · ·〉 denotes the summation over the
nearest-neighbor lattice sites. Moreover, the first term represents the magnetic exchange
interaction with J > 0 (antiferromagnet). The last term is an externally applied magnetic
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field.We consider the energy in J units (J = 1) and ω = h̄ = c = 1.The second term with
∆ > 0 indicates the anisotropy exchange, which is ∆ = 1 for the isotropic Heisenberg
model. We consider that Hα depends on the sublattice. For 0 < H < 3, the system is in the
Y phase, and for 3 < H < Hcl , the system is in the up-up-down phase (UUD). The phase
boundary between the UUD and V phases is given by Hcl =

3
2

[
1 + 2∆ +

√
1 + 12∆ + 4∆2

]
.

For Hcl < H < 9+ 2∆, the system is in the V phase and for H > 9+ 2∆, the system is in the
fully polarized phase (FP). If we make the magnetic field on the B sublattice as HB = H + ε
and ε� 1, the Y and V phases are replaced by distorted ones. The lattice considered with
the different phases are represented in Figure 1.

Figure 1. Representation of the triangular lattice for the model from Equation (1), with the three
sublattices denoted as A, B, and C. Below, we have the four different spin orientations on A, B, and
C sublattices.

Linear spin-wave theory: In the linear spin-wave approach (LSW), we perform a local
rotation in the coordinate system at each sublattice at each lattice point, so that the mean-
field directions of the spins point along the local z axis

Sjα =

 cos θα 0 sin θα

0 1 0
− sin θα 0 cos θα

S̃jα. (2)

In the harmonic approximation, we perform the Holstein–Primakoff transformation

S̃+
jα ≈

√
2Sa†

jα

(
1−

a†
jαajα

2S

)
, S̃−jα ≈

√
2Sajα, S̃z

jα = S− a†
jαajα, (3)

where a†
jα(ajα) are creation (annihilation) boson operators. The Hamiltonian is written in

the momentum space as

H = E0 +
S
2 ∑

k

(
φ†(k) φ̄(−k)

)
H(k)

(
φ(k)

φ̄†(−k)

)
, (4)
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where E0 is the energy of the ground state in the mean-field approach and φ†(k) =(
a†

k,A, a†
k,B, a†

k,C

)
, where the tilde over φ means to transpose.H(k) is given by

H(k) =
(

A(k) B(k)
B∗(−k) A∗(−k)

)
, (5)

where

[A(k)]αα = Hα cos θα − ∑
α 6=β

[
3 cos(θα − θβ) + 3∆ cos θα cos θβ

]
,

[A(k)]αδ =
[
cos(θα − θβ) + ∆ sin θα sin θβ + 1

]
Γαβ(k),

[B(k)]αβ =
[
cos(θα − θβ) + ∆ sin θα sin θβ − 1

]
Γαβ(k)

[B(k)]αα = 0, (6)

where
Γαβ(k) = 2 cos(kx/2) cos

(√
3ky/2

)
. (7)

Due to time-reversal symmetry, we have A(k) = A∗(−k) and B(k) = B∗(−k). The Hamil-
tonian above can be diagonalized by a paraunitary Bogoliubov transformation, producing
a matrix Tk such that ωk = T †

kH(k)Tk, where T †
kH(k)Tk = diag(ω1,k, ω2,k, ω3,k, ω1,−k,

ω2,−k, ω3,−k), The magnon energy bands are given by the diagonalization problem of the
bosonic Hamiltonian Equation (4) [47]

det(H(k)−ωkI) = 0 (8)

or ∣∣∣∣ A(k)−ωkI B(k)
B∗(−k) A∗(−k)−ωkI

∣∣∣∣ = 0, (9)

in which I is an m-square unit matrix. Hence, we obtain

(A(k)−ωkI)(A∗(−k)−ωkI)−B(k)B∗(−k) = 0

ωk =
1
2
[(A(k) +A∗(−k)]

±
√
(A(k) +A∗(−k))2 − 4(A(k)A∗(−k)−B(k)B∗(−k))]. (10)

In a uniform magnetic field, the system is in the Y phase and the lowest magnon bands
touch each other at K and K′ points, generating massless Dirac-cone-like dispersions. The
mean-field ground state is at θ0,α=A = π, θ0,α=B = θ0,α=C = θ, where

θ = cos−1
(

3∆ + h + 3
3∆ + 6

)
(11)

is determined by minimizing the mean-field energy given by

EMF = 3S2 ∑
〈α,β〉

[(1 + ∆) cos θα cos θβ + sin θα sin θβ]

−∑
α

Hα cos θα, (12)

where the pair α, β means summation over the pairs (A, B), (B, C), and (C, A). θα is
determined by minimizing the mean-field energy EMF, which leads to different solutions
for θα, identifying the different phases nominated as Y, V, UUD, and FP [48]. For 0 < H < 3,
the system is in the Y phase, which we are mainly concerned with. Moreover, we focused
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on the antiferromagnetic region ∆ > 0, where there are four different phases in a uniform
magnetic field Hα = H.

3. Quantum Correlation and Entanglement Negativity

Quantum entanglement is the quantum mechanical property that Schrödinger singled
out many years ago as “the characteristic trait of quantum mechanics”; furthermore, it
has been analyzed many times in connection to Bell’s inequality [49,50]. A pure pair of
quantum systems is called entangled if it is unfactorable, and if conveyed, a mixed state
is entangled if it can not be represented as a mixture of factorable pure states. It is a well
known fact that quantum information theory can be used together with condensed matter
physics to characterize quantum phase transitions (QPT) that are related to the ground-state
energy of quantum many-particle systems. Thus, quantifying quantum correlations in
these many-body systems enhances condensed matter physics and quantum information
theory because they are a measure of quantum correlations or entanglements in a system
given by von Neumann entropy [51].

The von Neumann entropy (VN) of a quantum state ρ is defined by the formula
S ≡ −Tr(ρ log2 ρ), where we define 0 log2 0 ≡ 0 for the Shannon entropy [52,53]. Thus, we
can define the quantum version of the entropy by the relative entropy of µ to ν, which is
defined by S(µ||ν) ≡ Tr(µ log2 µ)− Tr(ν log2 ν), where the quantum relative entropy is
non-negative S(µ||ν) ≥ 0, with equality if and only if µ = ν. The VN entropy is a quantifier
of the entanglement between two different partitions of a system nominated as A and B.
The ground state |Ψ〉AB belongs to a Hilbert space composed of H = HA ⊗HB. Thus,
following Schmidt’s decomposition procedure, we can write |Ψ〉AB = ∑Ni=1 κi|ϕi〉A ⊗ |φi〉B,
where αi are the Schmidt’s coefficients, and N ≤ min(dimHA,HB). In the following, the
whole system is considered as a binary system, with the block ofN spinning as sub-system
A, and the rest of the chain spinning as sub-system B [18,54,55]. Thus, the VN entropy
between the two partitions is defined by SA = SB ≡ −∑Ni=1 κ2

i log2 κ2
i , where SA is the

entropy of the subsystem A and SA = S(ρA) ≡ −TrA(ρA log2 ρA).
In general, the system will thermalize when the Gibbs distribution ρ is given by

ρ ∝ e−βH, where the statistical ensemble describing the system for a long time is expected
to be the canonical ensemble, being the density matrix of the canonical ensemble given by
refs. [56–59].

ρ = e−∑k
ωk n̂k

Z , where Z is the partition function. Thus, the density entropy s(k) that
each mode contributes to thermodynamic entropy in the thermodynamic limit is given
by S/N 2 ≡

∫ π
−π

∫ π
−π s(k)d2k. Moreover, in the infinite time limit, the thermodynamic

entropy and the VN entropy have the same density, representing the contribution that each
mode has to the quantum entanglement. Consequently, in the large time limit, the results
of the VN entropy must be equal to classical thermodynamic entropy since the results of
spin-wave theory are accurate in this limit N → ∞; therefore, the identification between
the two kinds of entropies can be made [59].

Entanglement negativity: The entanglement negativity is the linear and partial transpose
where the trace norm is a convex and monotone function; however, it is not additive. Fur-
thermore, it presents a large deficiency, i.e., a failure in satisfying the discriminant property,
with the entanglement E(ρ) = 0 if and only if ρ is separable [60,61]. The entanglement
negativity [19,61,62] is given for a mixed state ρGE by

N(ρ) =
‖ρT

A‖1 − 1
2

, (13)

where ρT
A is the partial transpose of ρGE with respect to subsystem A, and ‖ · · · ‖1 is the

trace norm. The logarithmic negativity [63]

EN(ρ) = log2 ‖ρ
T
A‖1, (14)
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is used much more often as a measure of thermal entanglement for disjoint intervals. Conse-
quently, the negativity has been proven to be useful in detecting topological
orders [64,65], where one makes ρA = ρGE, which is the entanglement negativity given by

EN(ρ) = − log2

∥∥∥∥ e−β ∑k
ωk n̂k

Z

∥∥∥∥ = β ∑k ωkn̂k + log2 ∏k(1 + e−βωk).

In Figure 2, we obtain the entanglement negativity as a function of T. We obtain a
divergence of EN(ρ) at T → 0 due to large increases in the quantum fluctuations near
T = 0; therefore, there is a loss of quantum information at this limit. The behavior at the
high T range is only qualitative due to the limitations of the spin-wave approach we used.
The inset of the figure shows the variation with ∆ for two magnon bands: ω+

k and ω−k . In
Figure 3, we display the behavior of the entanglement negativity as a function of ∆. We
obtain that the entanglement negativity is finite at the XY limit (∆ = 0), where the terms
of scattering between the quasiparticles given by the term Sz

i Sz
j are absent. We obtain an

increase of EN(ρ) with ∆ up to the isotropic limit ∆ = 1. The behavior of the quantum
correlations is determined by the behavior of energy bands that depend on the coupling
parameters of the model, which generates a large effect on entanglement negativity. The
mean-field ground-state solution of θγ can be expanded as θ ≈ θγ,0 + ∆γε, where the results
of this expansion are very near to the exact numerical method [48]. Consequently, the
results of EN(ρ) obtained with the spin-wave approach are near to the numerical results.
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Figure 2. Entanglement negativity EN(ρ) vs. T for different values of ∆ at H = 1.1 for the model
(Equation (1)). We obtain a small negative difference of the entanglement for the bands ω+

k and
ω−k (solution of Equation (9)). Furthermore, the entanglement negatively diverges at limit T → 0
due to large increases in the quantum fluctuations near T = 0, where a quantum phase transition
takes place.
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Figure 3. EN(ρ) as a function of ∆ for H = 1.1 for the model (Equation (1)). We find the negativity
entanglement is finite at XY limit (∆ = 0), increasing with ∆ up to isotropic limit ∆ = 1.

4. Metal-Insulting Antiferromagnet Bilayer Model

Antiferromagnetic insulators have generated interest as possible alternatives to fer-
romagnetic insulators as active components in spintronics [66–68]. A model of interest
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consists of a bilayer structure comprising an antiferromagnetic insulator on top of a normal
metal. Voltage bias is applied to the normal metal in order to produce an electron current
along the x axis. The electrons interact with the spins, leading to an induced magnon spin
current [68]. We consider the system illustrated in Figure 4 to be two-dimensional and
apply square lattice models. We start out from a tight-binding description of electrons
hopping between lattice sites in a normal metal. For the antiferromagnetic insulator, we
consider localized spins with easy-axis anisotropy, which interact with each other through
a nearest-neighbor exchange interaction and a next-nearest-neighbor interaction. For a
sufficiently small and isotropic Fermi surface in the normal metal, the Hamiltonian de-
scribing the electrons takes the form HN = ∑kσ εkσc†

kσckσ, where εkσ = tk2a2 − µ− σHe
and c†

k,σ is the operator for an electron with momentum k and spin σ =↑, ↓. t is the
electron-hopping amplitude, a is the lattice constant, µ is the chemical potential, and He is
a spin-splitting field.

Figure 4. Bilayer structure consisting of an antiferromagnetic insulator on top of a normal metal of
the model (Equation (15)). A voltage is applied to the normal metal in order to produce an electron
current along the x axis.

The Hamiltonian describing the magnons is given by

H = ∑
k
(ξk + hν)α

†
kαk + (ξk − hν)β†

kβk, (15)

where we consider the lattice spacing a = 1. The magnon spectrum is given by
ξk =

√
∆ + µ2k2, where ∆ is the gap in the spectrum. hν is a splitting of the magnon

modes through an external field. α†
k is the creation operator for a spin-down and β†

k is
the creation operator for a spin-up. The model is represented in Figure 4. In Figure 5,
we display the behavior of the entanglement negativity as a function of the external field
h and the gap of the magnon spectrum ∆, which generates a splitting of the magnon
modes, where we consider ∆ = hν = h. The aim is to verify the effect of splitting the
magnon modes introduced through an external field on quantum correlation. As we can
see, the quantum correlation increases with an increase in the magnon bands’ splitting. The
same behavior occurs with increases in the chemical potential µ, where the magnon bands’
splitting becomes higher. In addition, we discover that the entanglement negativity tends
toward a finite value for the model without a magnetic field and, hence, ∆ = 0.
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Figure 5. EN(ρ) for the model (Equation (15)), as a function of h (right-side) for a value of coupling µ

as µ = 0.9, and for a value of h = 1.0 held fixed (left-side).

5. Two-Dimensional Heisenberg Model with Bilinear–Biquadratic–Bicubic Terms

The interest in spin Heisenberg models with spin S > 1/2 started many years ago,
with valence bond states serving as a toy model related to high-Tc superconductivity [69].
The AKLT model extended the notion of valence bond states to spins higher than 1/2. The
AKLT model for J2/J1 = 1/3 has J1 and J2 as both positive, and the ground state is exactly
solvable, which is defined as

HAKLT = ∑
〈i,j〉

Si · Sj +
1
3 ∑
〈i,j〉

(
Si · Sj

)2. (16)

The higher-order Heisenberg model for any spin-S can be written generically as

H = ∑
〈i,j〉

2S

∑
ν=1

Jν

(
Si · Sj

)ν. (17)

Thus, for the bilinear–biquadratic–bicubic model with S = 3/2, the higher-order Heisen-
berg Hamiltonian reads:

H3/2 = ∑
〈i,j〉

[
J1Si · Sj + J2

(
Si · Sj

)2
+ J3

(
Si · Sj

)3
]
. (18)

For S = 3/2, the diagonalization of this Hamiltonian for a two-site system gives four
energy levels [70]

E1 = −15
64

(16J1 − 60J2 + 225J3), Singlet (19)

E2 = −11
64

(16J1 − 44J2 + 121J3), Triplet (20)

E3 = − 3
64

(16J1 − 12J2 + 9J3), Quintuplet (21)

E4 =
9
64

(16J1 + 36J2 + 81J3), Singlet . (22)

Considering an offset energy, as in the case of an integer spin, where E′µ = Eµ + Eo f f ,
µ = 1, 2, 3, 4, Eo f f is an offset energy [70], and using Equation (19), the analytical expressions
for rations of exchange constants J2/J1 and J3/J1 in terms of E′µ for S = 3/2 are given in
Ref. [70] for two and three orbitals per site using exact diagonalization. The aim here is
to study the quantum correlation for the model (Equation (18)). We use a density matrix
renormalization group (DMRG), which is a powerful numerical technique that is adequate
for obtaining the ground-state energy for this model. For the model in Equation (18),
including the biquadratic term, the von Neumann entropy was studied in Refs. [34,35];
however, the calculation of the von Neumann entropy or entanglement negativity for
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this model, including the bicubic term, is a more difficult task and can be performed in a
future study.

5.1. Analysis by DMRG

DMRG is a well-known numerical technique suited to treating the one-dimensional
spin-1/2 Heisenberg model [71,72]. However, any finite two-dimensional lattice can
be mapped onto a one-dimensional lattice, where the sites of the lattice are numbered
and, therefore, long-range interactions are introduced. Because in mean field theories the
dynamics of the operators ~S(~r) are omitted, the variational principle assumes an expectation
value of the operator 〈~S(~r)〉, where we neglect the fluctuations and drop higher-order terms.

5.2. Concurrence

In general, the bipartite entanglement can be investigated using different quantifiers as
entanglement negativity, fidelity, concurrence, and von Neumann entropy. The concurrence
is a quantity that can be expressed in terms of correlation functions of entanglement
particles, where the examination of the bipartite entanglement in the considered model can
be performed. The concurrence of the density matrix of a pair of qubits 1 and 2 ρ12 is the
density matrix of either pure or mixed states and is defined by [73,74]

C = max{0, λ1 − λ2 − λ3 − λ4}, (23)

in which λ1, ..., λ4 are the square roots of the eigenvalues, in decreasing order, of the
operator R1,2 = ρ12(σy ⊗ σy)ρ∗1,2(σy ⊗ σy), and λ1 is the greatest square root of the four
eigenvalues of R1,2. This formula uses the “spin-flip” transformation, which is applicable to
the states of an arbitrary number of qubits [73,74]. For a state of two qubits ρ12, a nonzero
concurrence means that qubits 1 and 2 are correlated or entangled. The concurrence C = 0
corresponds to an unentangled state and C = 1 corresponds to a maximally entangled state.
For N qubits, we apply the above transformation to each individual qubit.

The relation between the concurrence and internal energy U of the system is given by
C = 1/2 max[0,−U/(JN )− 1] for the antiferromagnetic system (AFM) and C = 1/2 max
[0, U/(3JN ) − 1] for the ferromagnetic system (FM) [58]. Thus, the entanglement is
uniquely determined by the partition function of the system |〈σz ⊗ σz〉| = Z−1|∑i e−βEi

〈i|σz ⊗ σz|i〉| ≤ Z−1|∑i e−βEi‖σz ⊗ σz|i〉‖ ≤ Z−1 ∑i e−βEi = 1, where we have −1 ≤
U/(3JN ) ≤ 1. For the AFM case, the increase in the temperature or internal energy will
generate a decreasing in the concurrence, and for a value such as −N J, the concurrence
will become zero. The temperature where the concurrence vanishes is called the threshold
temperature.

In Figure 6, we present the concurrence C as a function of J3 (J3 < 0) for different
values of J2 (J2 < 0) coupling using DMRG. The sign of biquadratic and bicubic strength
(J2 and J3) depends on the relation between the energies E1, E2, E3, and E4. We have

J2

J1
= 4

3
29E4−85E3+81E2−25E1

(81E4+115E3−351E2+155E1)
(24)

J3

J1
= 4

3
E4−5E3+9E2−5E1

(81E4+115E3−351E2+155E1)
, (25)

The calculations were performed for a lattice size of N = 192. We obtain a very small
variation in the results with different lattice sizes N = 64, 128, 192. Furthermore, we obtain
a strong influence in the strength of the bicubic term J3 on concurrence with the extinction
of C near to J3 ≈ 1.1. Thus, the analysis by DMRG in Figure 6 seems to confirm decreases
in the concurrence of C with the coupling J3.
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Figure 6. Concurrence C(ρ) vs. J3 (J3 < 0) for the model (Equation (18)) as a function of J3 obtained
by DMRG. We obtain a small change in the behavior for different values of J2. The calculations were
performed for a lattice size N = 192 sites.

6. Summary

In brief, we analyzed quantum correlation and entanglement in some low-dimensional
quantum spin models, which are very important in condensed matter physics theory. We
analyzed the triangular-lattice XXZ model with three sublattices denoted by A, B, and C,
where we focused on the antiferromagnetic region ∆ > 0 and four different phases present
in a uniform magnetic field Hγ = H. We focused on the Y phase for 0 < H < 3. The ground-
state phase diagram of this spin model is obtained in the classical limit S→ ∞ with four
different regions whose spin configurations are represented in Figure 2. Our results display
a divergence of quantum correlation T = 0 and a further strong effect of the anisotropy
∆ on entanglement, generating an increasing of EN(ρ) from the XY limit up to isotropic
limit. We analyzed the entanglement in a bilayer structure of an antiferromagnetic insulator
on top of a normal metal—an important model for spintronic devices. Furthermore, we
analyzed entanglement in the two-dimensional bicubic Heisenberg model, which is an
important generalization of the AKLT model with higher-order corrections given by the
bicubic term. For all models analyzed, we obtained strong entanglement variations with
the coupling parameters. In a general way, in quantum spin systems, either real fields
or complex fields generate a splitting of degenerate ground states, where the spins are
aligned along the direction of the external magnetic field. However, the eigenvalues and
eigenvectors of the real-spectrum system will not suffer many changes, with the external
magnetic field and the initial state displaying oscillating behaviors periodically among all
possible spin configurations.
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