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Abstract: Convolutional neural networks have long dominated semantic segmentation of very-high-
resolution (VHR) remote sensing (RS) images. However, restricted by the fixed receptive field of
convolution operation, convolution-based models cannot directly obtain contextual information.
Meanwhile, Swin Transformer possesses great potential in modeling long-range dependencies. Nev-
ertheless, Swin Transformer breaks images into patches that are single-dimension sequences without
considering the position loss problem inside patches. Therefore, Inspired by Swin Transformer and
Unet, we propose SUD-Net (Swin transformer-based Unet-like with Dynamic attention pyramid
head Network), a new U-shaped architecture composed of Swin Transformer blocks and convolution
layers simultaneously through a dual encoder and an upsampling decoder with a Dynamic Attention
Pyramid Head (DAPH) attached to the backbone. First, we propose a dual encoder structure com-
bining Swin Transformer blocks and reslayers in reverse order to complement global semantics with
detailed representations. Second, aiming at the spatial loss problem inside each patch, we design a
Multi-Path Fusion Model (MPFM) with specially devised Patch Attention (PA) to encode position
information of patches and adaptively fuse features of different scales through attention mechanisms.
Third, a Dynamic Attention Pyramid Head is constructed with deformable convolution to dynami-
cally aggregate effective and important semantic information. SUD-Net achieves exceptional results
on ISPRS Potsdam and Vaihingen datasets with 92.51%mF1, 86.4%mIoU, 92.98%OA, 89.49%mF1,
81.26%mIoU, and 90.95%OA, respectively.

Keywords: swin transformer; remote sensing; semantic segmentation; dynamic attention pyramid
head

1. Introduction

Propelled by the rapid development of remote sensing and sensor technology, large
amounts of very-high-resolution remote sensing data have been obtained, which are still
growing considerably. Delving into these fine-resolution remote sensing images, which
contain rich spatial information and detailed features, is of great importance. Semantic
segmentation, i.e., pixel-wise classification, is a fundamental task in exploiting RS images,
which has received widespread attention. The essential goal of semantic segmentation
is to identify the semantic category of every pixel in the RS image. However, enormous
challenges reside in the complex background information, high resolution, various spectral
information, and target structure variation. Currently, RS image semantic segmentation
has been utilized in many real-world applications, such as urban planning [1], agricultural
production [2], environmental protection [3], natural disaster damage assessment [4],
mineral mining [5], marine exploration [6], and building extraction [7].

In recent years, deep learning, especially convolutional neural network, has been
the mainstream method for semantic segmentation of remotely sensed images [8–10].
Compared with traditional segmentation methods based on machine learning, such as
support vector machine [11] and random forest [12], CNN-based methods can capture

Entropy 2022, 24, 1619. https://doi.org/10.3390/e24111619 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111619
https://doi.org/10.3390/e24111619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0843-9320
https://orcid.org/0000-0001-5057-8431
https://doi.org/10.3390/e24111619
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111619?type=check_update&version=2


Entropy 2022, 24, 1619 2 of 17

more fine-grained local information. The Fully Convolutional Network (FCN) [13] is the
ground-breaking network to effectively achieve satisfying segmentation results in an end-
to-end manner. FCN was completely composed of convolution layers, replacing the original
fully connected layers. However, the segmentation results were restricted by the over-
simplified design of the decoder, resulting in coarse-resolution segmentation. Consequently,
U-Net [14] was proposed with two symmetric branches of equal complexity and elegance,
which consists of an encoder-named contracting path for extracting hierarchical features
and a decoder-named expanding path for restoring spatial resolution. Subsequently, the
encoder-decoder framework has established its status as the standard architecture for
semantic segmentation of RS images by exhibiting exceptional results. However, due to the
locality of the convolution operation, it is genuinely challenging to acquire a global context
without increasing the network’s depth to gain a larger perceptive field. To solve this
problem, existing literature intends to apply multi-scale fusion strategies to convolutional
neural networks.

PSPNet [15] aggregated different-region-based based context through the Pyramid Pool-
ing Module (PPM) while Deeplabv3 [16] augmented the Atrous Spatial Pyramid Pooling
module (ASPP), both for the purpose of multi-scale context acquisition. DeeplabV3+ [17]
followed the encoder-decoder architecture by adding an effective decoder module based
on DeeplabV3 and applied depthwise separable convolution [18] to the Atrous Spatial
Pyramid Pooling module. Zhang et al. [19] also adopted an encoder-decoder framework
using the strip pool method to segment farmland vacancy from RS images. UperNet [20]
further exploited the Pyramid Pooling Module to obtain a global context by utilizing fea-
tures of different scales and achieved unified scene parsing. Liu et al. [21] proposed an
end-to-end self-cascaded network which aggregated multi-scale contexts captured on the
output of a CNN encoder in a self-cascaded manner. In addition, the attention mechanism
is also a popular option for capturing contextual dependencies. DA-Net [22] designed
parallel channel attention and position attention for the purpose of rich global informa-
tion. Li et al. [23] introduced a cascaded residual attention mechanism to enhance road
extraction from RS images. Nevertheless, instead of encoding global context directly, the
aforementioned methods accumulated contextual information from local features acquired
by convolution layers. As a consequence, obtaining accurate contextual information from
RS images is still in demand.

Meanwhile, transformer-based models have demonstrated great potential in modeling
long-range dependencies, which makes it easier to gain clear global information. DETR [24]
proposed an end-to-end framework by combining a common convolutional neural network
with transformer architecture. DETR took advantage of the global modeling capabilities
of the transformer to handle object detection as a set prediction problem via bipartite
matching. Vision transformer [25] directly applied the transformer in natural language
processing to computer vision without considering the innate characteristics of visual
signals. Correspondingly, vision transformer is only applicable for image classification
tasks. Therefore, to address the problems of distinct scale variations of targets and high
resolution of pixels in images, Swin Transformer [26] was proposed in a hierarchical
architecture to capture features of different scales, along with the Shifted Window Multi-
head Self-Attention (SW-MSA) mechanism to model globally. Therefore, Swin Transformer
became suitable for many downstream vision tasks, such as object detection and semantic
segmentation. Sun et al. [27] proposed HMRT semantic extraction network for remote
sensing images by obtaining a global receptive field using transformer encoding and
decoding. Wang et al. [28] introduced a bilateral awareness network which constituted a
dependency path and a texture path by combining Transformer and Convolution to fully
obtain long-range relationships and fine-grained details.

However, breaking images into patches to calculate attention ignores the intrinsic
spatial information inside patches as each patch is compressed into a 1-D sequence. Further-
more, with only the encoder stage of the Swin Transformer, the detailed spatial resolution
cannot be restored. Therefore, we propose a transformer-based encoder-decoder architec-
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ture adopting an Unet-liked shape called SUD-Net for RS images. SUD-Net constitutes a
new dual encoder with Swin Transformer blocks and reslayers in reverse order to comple-
ment contextual features with fine-grained details through layers of different hierarchical
semantic features. In addition, by adding a decoding path also composed of Swin Trans-
former blocks with upsampling layers in between, SUD-Net is capable of recovering sharper
edges and achieving remarkable results. Furthermore, we designed a Multi-Path Fusion
Module (MPFM) with Patch Attention (PA) to encode spatial information of patches and
fuse features of different scales between transformer layers and reslayers effectively. Finally,
we devised a Dynamic Attention Pyramid Head (DAPH) to attach to the end of SUD-Net,
which could refine the feature maps and aggregate contextual and local information flexibly
to better serve segmentation. In summary, our main contributions are as follows:

1. A new dual framework based on Swin Transformer Block and reslayers was con-
structed in reverse order. By obtaining coarse-grained resolution and fine-grained
resolution simultaneously, SUD-Net is capable of gathering global context and de-
tailed information effectively. Additionally, by adding a decoder composed of Swin
Transformer blocks to upsample feature maps extracted by the encoder, SUD-Net can
restore sharper edge maps and achieve satisfying segmentation results.

2. A Multi-Path Fusion Module is proposed between the reversed reslayers and trans-
former layers to adaptively fusion features containing different semantics. Patch
attention was incoporated into MPFM to retrieve spatial information loss inside each
patch and further fuse position information.

3. A Dynamic Attention Pyramid Head was designed to aggregate contextual and local
information effectively and refine feature maps obtained by the backbone, which can
further decode necessary high-level representations for segmentation.

4. SUD-Net achieves state-of-the-art results on the Potsdam dataset and comparatively
satisfying results on the Vaihingen dataset of 92.51%mF1, 86.4%mIoU, 92.98%OA,
89.49%mF1, 81.26%mIoU, and 90.95%OA, respectively.

2. Methods
2.1. Architecture

Since transformer-based models can acquire long-range dependencies and convolu-
tional neural networks can capture fine-grained local features, existing literature tends to
construct U-shaped architecture based on transformer blocks and convolutional neural
networks, which exhibit promising results on remote sensing datasets [29–32]. Inspired
by these, we propose a novel dual encoder of two branches: Swin Transformer blocks and
reslayers in reverse order, along with a decoder of only Swin Transformer blocks. The
overall architecture of our proposed SUD-Net is illustrated in Figure 1.

The encoder of SUD-Net consisted of two paths: the main encoder and the auxiliary
encoder. As for the auxiliary encoder, we used reslayers from ResNet34 [33] for its capability
of capturing local detailed feature representation. Specifically, the reslayer and Swin
Transformer block were fused by Multi-Path Fusion Module in reverse order. Therefore, by
reshaping the output feature maps of 4 stages from ResNet34, the feature representation
capability of our main encoder was enhanced and complemented by reslayers because
the fused layers had disparate semantic information. ResNet was widely adopted in
constructing deep neural networks as the backbone for various visual tasks, such as image
classification, object detection, semantic segmentation, and instance segmentation. ResNet
introduced residual connection and identity mapping to solve the problem of degradation
problem as the networks get deeper. Finally, the Swin Transformer block was the basic
component in the recently proposed Swin Transformer.
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Figure 1. The overall architecture of SUD-Net.

For a given RS image X ∈ RH×W×3, SUD-Net fed it into both encoders, which had
4 feature extraction stages. For the main encoder, X was split into non-overlapping patches
with a dimension of 4× 4× 3 = 48 by Patch Partition. Following Patch Partition, we
applied a linear embedding layer to project the value of H

4 ×
W
4 × 48 to H

4 ×
W
4 × C1.

The Swin Transformer block would maintain the shape of feature maps. So in order
to obtain hierarchical feature maps, Patch Merging layers were designed to reduce the
number of tokens and double the channels. As a result, Patch Merging layers would
downsample the resolution fourfold. As for the decoder, we constructed a restoring path
using Swin Transformer blocks and upsampling layers. The proposed upsampling layers
had the opposite effect of expanding feature maps compared to Patch Merging. The
output of auxiliary encoder stages is defined as AEi, the main encoder is defined as MEi,
where i = 1, 2, 3, 4, and the decoder is defined as Di, where i = 1, 2, 3. The shape of
AEi is H

2i+1 × W
2i+1 × C22i−1, the shape of MEi is H

2i+1 × W
2i+1 × C12i−1, and the shape of

Di is H
25−i × W

25−i × C123−i. Since we intended to complement the output feature maps
of Swin Transformer blocks with ResNet in reverse order, we needed to reshape AEi to

H
2i+1 × W

2i+1 ×C12i−1 to match MEi. In particular, we devised a Multi-Path Fusion Module to
fuse AEi and MEi along with Patch Attention specifically designed for spatial information
loss inside patches instead of the initial element-wise addition. Furthermore, SUD-Net
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adopts skip connections to concatenate the encoder and decoder features before reducing
the channels using Bottleneck, which can be summarized as:

fsc(MEi+1, AEi+1, Di) = Bi(Concat( fmp f m,i(MEi+1, Ri(AE4−i)), Di)) (1)

where i = 1, 2, 3, Ri denotes Reshape operation explicitly described in Equation (6), fmp f m,i
represents Multi-Path Fusion Module expressed in Equation (9), Concat denotes Concate-
nation operation over channel dimension, and Bi is a Bottleneck block composed of 1× 1
convolution, Batch Normalization (BN) [34], and ReLU to halve the corresponding channels
of stacked feature maps. In the end, SUD-Net applied a Dynamic Attention Pyramid Head
to refine and aggregate feature maps adaptively to perform segmentation, producing the
final segmented map.

Since the blocks in the standard Transformer [35] and Vision Transformer perform
global Multi-Head Self-Attention (MSA), the computational complexity grows quadrati-
cally with respect to the number of tokens, causing great challenges in dense prediction
tasks where there are substantial tokens. As a consequence, Swin Transformer blocks adopt
a Window-Based Multi-Head Self-Attention (W-MSA) strategy and the computational
complexity becomes linear concerning the image size. However, if MSA is only computed
in non-overlapping windows, transformer architecture would no longer hold the ability
to model long-range dependencies. Subsequently, Swin Transformer blocks apply cross
window connection by shifting the window towards the bottom right direction by two
patches, which is called Shifted Window-Based Multi-Head Self-Attention (SW-MSA). In
this way, in the Swin Transformer blocks of later stages would be capable of perceiving a
large portion of the image. As shown in Figure 2, a Swin Transformer stage is composed
of two successive blocks: the first one performs W-MSA and the second one performs
SW-MSA.

Figure 2. Two successive Swin Transformer Blocks.

The computation details of Swin Transformer block are summarized as:

Yl = W −MSA(LN(Xl−1)) + Xl−1 (2)
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Xl = MLP(LN(Yl)) + Yl (3)

Yl+1 = SW −MSA(LN(Xl)) + Xl (4)

Xl+1 = MLP(LN(Yl+1)) + Yl+1 (5)

where Xl represents the output feature embedding of W-MSA, and Xl+1 denotes the output
feature embedding of SW-MSA.

2.2. Multi-Path Fusion Module

In order to efficiently complement the contextual information obtained by our main
encoder with fine-grained local details extracted by our auxiliary encoder, we devised a
Multi-Path Fusion Module with Patch Attention (PA), which can encode position informa-
tion of different patches. The detailed implementation of MPFM is shown in Figure 3.

Figure 3. Multi-Path Fusion Model.

First, given the input as AEi, MEi ∈ RH×W×C, as the reversed feature maps extracted
by reslayers from ResNet34 have a different shape with respect to corresponding Swin
layers, areshape operation is conducted on the output layers from 4 stages of AE. In our
default settings, the first two layers, i.e., AE1, AE2, needed to be respectively compressed to
1
4 and 1

2 of its original resolution while channels were increased to 8C1 and 4C1 from C2 and
2C2 correspondingly through a ConvBNReLU block. The last two layers, i.e., AE3, AE4,
were expanded to 4 times and 2 times its original resolution, respectively, and the channels
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were reduced to C1 and 2C1 from 8C2 and 4C2 accordingly using a TransBNReLU block.
The equation of our Reshape operation is presented as:

fR,i(AEi) =

{
ReLU(BN(Conv(AEi))) if i = 1, 2
ReLU(BN(Trans(AEi))) if i = 3, 4

(6)

where Trans means ConvTransposed2D operation.
Second, a weighted summation between reshaped AEi and MEi was performed,

followed by a ConvBNReLU block before three paths of attention mechanisms. As for
the left path, inspired by [36], we adopted Spatial Attention (SA), which was carried
out by depthwise convolution to generate a spatial-wise attention feature map. With
respect to the middle path, Channel Attention (CA) is applied through a collection of
global average pooling operation, whose aim is to produce a channel attention map, 1× 1
convolution for decreasing channels, ReLU6, 1× 1 convolution for increasing channels to
its original dimension and sigmoid activation function. Both attention paths were followed
by matrix multiplication operation. With regard to the right path, Patch Attention (PA)
was applied over depthwise convolution and the sigmoid activation function to obtain
spatial patch maps. Then, in order to acquire the position information inside patches,
the Position Attention Module (PAM) was conducted to introduce the patch position
relationships over local features by taking full advantage of reslayers back to the network.
The detailed structure of PAM is illustrated in Figure 4. Motivated by [22], PAM first
produced a spatial matrix and performed matrix multiplication between the original matrix
and the attention matrix. Then an element-wise matrix sum operation on the multiplied
result and the original maps was performed to acquire the eventual representations. Given
the fused layers as X ∈ RH×W×C, convolution layers were used to produce two feature
maps Y ∈ RH×W×C, Z ∈ RH×W×C, and W ∈ RH×W×C, which were later reshaped to
RN×C, where N = H×W. A matrix multiplication was then conducted between Y and CT ,
followed by a softmax layer to gain S ∈ RN×N :

sji =
exp(Yi · ZT

j )

∑N
i=1 exp(Yi · ZT

j )
(7)

where sji represents ith impact on jth position. We then performed a matrix multiplication
between W and ST and reshaped the result to RH×W×C. In the end, the result was multiplied
by a scale parameter α, which was followed by an element-wise summation with X, leading
to the final output U ∈ RH×W×C. The Equation for U is as follows:

Uj = α
i=1

∑
N
(sT

jiWi) + Xj (8)

where the default value for α is 0 and can continuously learn to assign more weight to
sT

jiWi [37]. Therefore, the aforementioned modules can be formulated as:

fmp f m,i(MEi, AEi) = Concat(SA(αMEi + βRi(AE4−i)), CA(αMEi + βRi(AE4−i)), PA(αMEi + βRi(AE4−i))) (9)

where i = 1, 2, 3, 4, α, and β denote adaptive weight assigned for MEi and AEi, respectively,
and Concat represents concatenation operation over channel dimension.

Third, all feature maps obtained from three attention paths were concatenated together
over the channel dimension, which caused the channels of output maps to triple. Therefore,
we designed a Bottleneck, the same as Bi in Equation (1), to reduce the channel dimen-
sion to its original size, followed by a DepthwiseConvBNReLU block. To avoid network
degeneration, a residual connection was added to the aforementioned module.

Finally, a reshape module composed of 3× 3 convolution, BN, and ReLU was intro-
duced to recover the channel to its corresponding input channel, and the output is denoted
as Ei.
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Figure 4. Position Attention Module.

2.3. Dynamic Attention Pyramid Head

Dynamic Attention Pyramid Head is introduced to further aggregate flexible spatial
contextual and local information from feature maps obtained by both paths simultaneously.
Inheriting the pyramid pooling design from PSPNet and adopting feature pyramid network
structure, DAPH exhibits excellent segmentation performance attaching to the end of our
backbone, whose structure is illustrated in Figure 5. Given the output of our encoder as
Ei, where i = 1, 2, 3, 4, the output of our decoder is Di, where i = 1, 2, 3. Since Ei and
Di represent the corresponding output feature maps from the bottom up, according to
Figure 5, the channels of Ei and Di can be denoted as C1i. In our default setting, C1 = 96,
which may change in our ablation study. First, we used a Channel Transformation (CT)
module to change the channels of all feature maps to C = 512. Second, an Element-Wise
Sum (E-W Sum) operation was performed on Ei and Di, correspondingly, after imposing
a Pyramid Pooling Module (PPM) from PSPNet on the last stage of our encoder, i.e.,
E4. Third, a Dynamic Attention Module was specifically devised to adaptively focus on
effective contextual and regional information, followed by a PAM. In addition, we rescaled
the result feature maps ( H

2i+1 × W
2i+i × C) to the shape of H/4×W/4× C, where i = 1, 2, 3, 4.

Furthermore, a Concatenation operation was performed over the channel dimension,
which was followed by a Bottleneck block to reduce the channel back to C. Finally, the
segmentation map of RS images was obtained through a simple 1× 1 convolution layer.

Figure 5. Dynamic Attention Pyramid Head.

DAPH fully utilizes a top-down architecture with lateral connections from both en-
coder and decoder to fuse semantic information of all-level features. Ref. [38] raised the
problem that the empirical receptive field of a deep convolutional neural network is rela-
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tively inadequate, although the theoretical receptive field is presumably large. However,
by introducing the Swin Transformer block into deep neural networks, models can have
the capability to grasp the whole image as the stages move deeper. In order to further
aggregate global representations, a Pyramid Pooling Module is appended to the last output
layer of the encoder. Enlightened by [39], we attached a dynamic attention module as
a connecting neck before enlarging the resolution of result feature maps to adaptively
concentrate on effective semantics. Given the feature pyramid obtained by element-wise
addition operation as P ∈ RH×W×C×L, where L represents the level of obtained feature
pyramid, DA applies scale-aware attention to dynamically fuse features from different
levels to distil semantic significance:

f (P) = max(0, min(1, ( f (
1

HW × C ∑
HW,C

P) + 1)/2)) · P (10)

DA learns to concentrate on discriminative areas existing in spatial locations and affected by
feature levels by further imposing spatial-aware attention, which involves two steps. First,
DA adopts deformable convolution [40] to make the attention learning sparse. Second,
features across all the levels of clustering at the same spatial regions are aggregated, which
can be formulated as:

f (P) =
1
L

L

∑
l=1

K

∑
k=1

wl,k · P(l; pk + ∆pk; c) · ∆mk · P (11)

where K denotes the number of sparse sampling locations, pk + ∆pk represents a shifted
location by the self-learned spatial offset ∆pk to focus on a discriminative region, ∆mk
denotes a self-learned importance scalar at location ∆mk, and ∆pk can be learned from the
input feature from the median level of P.

3. Experiments and Results
3.1. Experimental Settings
3.1.1. Datasets Description and Preparation

In our experiments, we utilized the Potsdam and Vaihingen datasets, which were
extensively used in the semantic segmentation task of RS images to verify the effectiveness
of our proposed model: SUD-Net. Potsdam and Vaihingen datasets are benchmark datasets
of aerial remote sensing images, which are collected and released by the International
Society for Photogrammetry and Remote Sensing (ISPRS).

1. Potsdam Dataset
We employed the Potsdam dataset for the 2D Semantic Labeling Contest, which
contains 38 patches of 6000× 6000 pixels. The true Othophoto (TOP) generated from
a TOP mosiac in channel composition of RBG was used for training and testing. The
ids of training patches are: 2_10, 2_11, 2_12, 3_10, 3_11, 3_12, 4_10, 4_11, 4_12, 5_10,
5_11, 5_12, 6_7, 6_8, 6_9, 6_10, 6_11, 6_12, 7_7, 7_8, 7_9, 7_10, 7_11, 7_12, and the
rest patches are used for testing: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 5_14,
5_15, 6_13, 6_14, 6_15, 7_13. The Potsdam dataset involves six classes of Impervious
Surface, Building, Low Vegetation, Tree, Car, and Clutter. Since each patch is too
big to be fed into the network considering limited GPU memory, we followed the
common principle of dividing patches into smaller images. In our paper, each patch
was split into a resolution of 512× 512 with a stride of 256 in our default setting. As a
result, we had 3456 images for training and 2016 images for testing, whose sizes were
all 512× 512.

2. Vaihingen Dataset.
We employed the Vaihingen dataset for the 2D Semantic Labeling Contest, which
contains 33 high-resolution TOP image tiles of different sizes. Following the same
division principle, we split each image into 512× 512 with a stride of 256. There
are also six categories, the same as Potsdam. In our experiments, the utilized ids for
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training were 1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 26, 28, 30, 32, 34, 37, and the rest was for
testing.

Following [41–43], the “Clutter” Category was ignored when quantitative evaluation
was conducted on both datasets. As for data augmentation methods in the training stage,
resize, random crop, random flip with a probability of 0.5, and normalized operations
were adopted. Photometric distortion was also applied to an image sequentially, with a
probability of 0.5. In the testing stage, a multi-scale augmentation strategy, including resize,
random flip, and normalize, was adopted.

3.1.2. Implementation Details

In our experimental environment, we used NVIDIA Geforce RTX 3090 GPU for hard-
ware and Pytorch [44] framework for software. As for hyperparameter configuration,
we set batch size = 8, initial learning rate = 3× 10−4, and training iterations = 28 k. The
AdamW [45] optimizer, which is a variant of Adam [46] with decoupled weight decay (0.01
in default setting) and polynomial decay strategy for learning rate with 1500 iterations for
warmup was adopted. Each stage of SUD-Net consists of two successive Swin Transformer
blocks, including the decoder and the size of input images, and was fixed 512× 512 in
our default setting. Following most studies on semantic segmentation, cross-entropy loss,
which is appropriate for common segmentation scenarios. was employed to train the
SUD-Net.

3.1.3. Evaluation Metrics

Average F1 (mF1), Mean Intersection over Union (mIoU), and Overall Accuracy (OA)
were employed to evaluate the performance of our proposed model: SUD-Net. The three
evaluation metrics were calculated according to the Confusion Matrix. The accuracy of
each class was represented by the F1 score, which was a combination metric of Precision
and Recall. As for Overall Accuracy, it is the ratio of correctly predicted pixels to the total
number of pixels. All the calculation formulas are listed as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 = 2× Precision× Recall
Precision + Recall

(14)

IoU =
TP

TP + FP + FN
(15)

OA =
TP

TP + FP + TN + FN
(16)

where TP represents true positive, FP represents false positive, TN represents true negative,
and FN represents false negative. For a particular category, the F1 score is adopted to
evaluate a model’s performance. mIoU and mF1 is computed as the mean value of IoU
and F1 score among all categories, respectively.

3.2. Results
3.2.1. Comparison of SUD-Net and Other Networks

Extensive experiments were conducted on ISPRS Potsdam and Vaihingen Datasets
to compare the effectiveness of our proposed model and other state-of-the-art methods.
Comparison of different models on Potsdam Datasets was performed both quantitatively
and qualitatively. Quantitative results are displayed in Table 1. We compared our proposed
SUD-Net with ERFNet [47], PSPNet [15], Deeplabv3+ [16], UperNet [20], CCNet [48],
STransFuse [49], and STUnet [30]. As indicated in Table 1, our proposed SUD-Net surpassed
all other models, with remarkable results of 92.57%mF1, 86.4%mIoU, and 92.98%OA
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benefiting from the global context modeling capabilities and restoring the resolution quality
through its unique and elegant architecture.

ERFNet [47] adopts FCN as the decoder head while the next four models all adopt
ResNet50 as the backbone to extract multi-level features. As seen from Table 1, the afore-
mentioned models mainly composed of convolutional layers are only able to achieve
91.52%mF1, 84.63%mIoU, and 92.44%OA for best results. This validates the problem
raised by [38] that the receptive field of deep convolutional neural networks in practice is
inadequate, which leads to incompetent segmentation results. STransfuse [49] combines
Transformer blocks with CNN to model a global semantic relationship. Nevertheless,
without a proper decoder to expand the resolution of feature maps, STransfuse would
only achieve insufficient results of 82.08%mF1, 71.46%mIoU, and 86.71%OA. STUnet [30]
constructs a dual encoder structure of Swin Transformer and CNN in parallel, leading to
better performance compared with STransfuse. It is perfectly clear that SUD-Net attains
the highest F1 score in all categories (Numbers in bold font indicate the best results with
reference to the corresponding column). Compared to the previous models, SUD-Net
outperforms them by 1.05% mF1, 1.77%mIoU, and 1.01%OA with regard to corresponding
highest scores.

Table 1. Comparison of SUD-Net and other state-of-the-art networks on Potsdam dataset.

Model Imp. surf. Building Low veg. Tree Car mF1(%) mIOU(%) OA(%)

ERFNet
[47] 88.38 92.38 80.02 78.34 87.62 85.35 74.82 87.08

PSPNet
[15] 91.99 95.49 84.26 87.79 95.24 90.95 83.69 91.34

Deeplabv3+
[16] 91.21 95.43 85.46 87.47 94.47 90.81 83.39 90.86

Upernet
[20] 92.27 95.89 86.17 87.48 94.88 91.34 84.29 91.63

CCNet [48] 92.15 96.02 85.39 88.4 95.64 91.52 84.63 91.97
STransFuse

[49] 89.75 93.92 82.91 83.61 88.51 82.08 71.46 86.71

STUNet
[30] 79.19 86.63 67.89 66.37 79.77 86.13 75.97 -

SUD-
Net(Ours) 93.61 96.98 87.63 88.7 95.95 92.57 86.4 92.98

- means not reported in the original paper.

In order to further demonstrate the capability of our proposed SUD-Net to capture
important features in RS images, we compared the ability of different models to recog-
nize different categories of ground objects. Visualization results of other networks on
six randomly-selected images from Potsdam dataset for testing are shown in Figure 6.
According to Figure 6, it is clear that our proposed model produced finer segmentation
maps compared to previous methods. In the first row, ERFNet noticeably lacks the ability
to model long-range dependencies, which mistakenly recognizes “Clutter” as “Car” for the
first image. There are also several misclassifications in other areas. Furthermore, the output
segmentation map of ERFNet exhibits a serious mosiac effect. PSPNet with a Pyramid
Pooling Module is able to capture objects with different scales and Deeplabv3+ adopting
dilated convolution, which leads to a larger receptive field that can achieve better visual
segmentation results than ERFNet, as demonstrated in Figure 6. Upernet, obtaining global
context information by utilizing feature pyramid network and Pyramid Pooling Module
simultaneously, produces segmentation maps with sharper and clearer edges. CCNet with
criss-cross attention acquires full-image dependencies in a more efficient way, leading to a
minor increase of 0.18%mF1, 0.34%mIoU, and 0.14%OA compared to Upernet, which is in-
conspicuously indicated in the seventh column. Although Upernet succeeds in recognizing
some indistinct clutter in the third and fourth row, CCNet decreases the probabilities of
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miscategorizing objects, such as the last row over the top right tree region, according to the
ground truth. The aforementioned methods all encode contextual information in a mediate
fashion or aggregate global contexts over local feature representation. In contrast, SUD-Net
directly encodes global information using Transformer blocks and utilizes convolution
layers simultaneously to obtain sufficient representations. As demonstrated in Figure 6,
SUD-Net successfully categorizes most ground objects compared to previous methods.

Figure 6. Visualization results of different models on five images randomly selected from testing set
of Potsdam dataset.

3.2.2. Ablation Studies

Comprehensive ablation experiments were conducted on both Potsdam and Vaihingen
datasets, which include three aspects. According to our proposed architecture and modules,
we carried out five submodels by gradually adding our proposed modules. Exhaustive
experimental results are demonstrated in Table 2. The first one (a) denotes simply using
Swin-T as the backbone and FCN as the decode head without altering any other modules
or parameters for comparison. We constructed the second model (b) as our baseline
by building a U-shaped network consisting of a Swin Transformer and convolutional
layers simultaneously with FCN head, which yielded a performance gain of 1.13%mF1,
1.87%mIoU, and 0.18%OA respectively. Especially in the category “Car”, (b) dramatically
increases its F1 score by 6.38%. As for (c), MPFM is incorporated into (b) to adaptively fuse
features of different semantic information, bringing an increase of 0.36%mF1, 0.63%mIoU,
and 0.14%OA. In addition, DAPH is integrated into (c) by replacing the FCN head, which
can further improve the performance of our network by dynamically aggregating contextual
and local representations (d). DAPH brings a 1.17%mF1, 1.09%mIoU, and 0.48%OA
increase to the previous network. Finally, by incorporating all three modules into a complete
network, SUD-Net (e) achieves state-of-the-art results on the Potsdam dataset. As for the
effectiveness of our proposed model on Vaihingen dataset (Table 3), we will not further
elaborate as the results are similar to Potsdam. Above results and analyses prove our
proposed modules effective and efficient.



Entropy 2022, 24, 1619 13 of 17

Table 2. Ablation results of different modules on Potsdam dataset.

Model FCN-
Head

Swin-
Res34-
Unet

MPFM DAPH Imp.
surf. Building Low

veg. Tree Car mF1(%) mIOU(%) OA(%)

(a)
√

92.31 96.42 86.68 88.23 87.43 90.21 82.38 92.07
(b)

√ √
92.65 95.72 86.73 87.78 93.81 91.34 84.25 92.25

(c)
√ √ √

92.99 96.04 86.74 88.13 94.63 91.7 84.88 92.39
(d)

√ √
93.38 96.67 87.52 88.75 95.37 92.87 85.97 92.87

(e)
√ √ √

93.61 96.98 87.63 88.7 95.95 92.57 86.4 92.98

Table 3. Ablation results of different modules on Vaihingen dataset.

Model FCN-
Head

Swin-
Res34-
Unet

MPFM DAPH Imp.
surf. Building Low

veg. Tree Car mF1(%) mIOU(%) OA(%)

(a)
√

90.7 94.99 82.28 88.41 67.18 84.71 74.63 89.56
(b)

√ √
91.99 95.27 81.63 88.32 84.77 88.4 79.55 90.06

(c)
√ √ √

92.14 95.25 82.98 88.78 84.18 88.67 79.95 90.42
(d)

√ √
92.29 95.55 83.21 89.09 86.35 89.3 80.94 90.73

(e)
√ √ √

92.89 95.73 83.51 88.96 86.36 89.49 81.26 90.95

Visualization results on Potsdam and Vaihingen datasets of our proposed modules
are shown in Figure 7. As illustrated in Figure 7, in the first row, after adopting Swin
Transformer blocks, (b) can capture long-range dependencies by separating three blocks
of clutter instead of attached together and the edges of objects become more clear and
fine-grained. Applying MPFM to (b) and (c) can focus on detailed regions and eliminate
falsely classified small objects. In addition, the DAPH-integrated model is capable of
correctly classifying most ground objects after aggregating effective information using our
proposed head. Especially on the top left, (d) fully distinguishes “Clutter” from “Tree”. In
the last step of integrating all proposed architecture and modules, SUD-Net successfully
categorizes all ground objects and produces a segmentation map with higher accuracy with
a few disparities from ground truth. However, for the misclassified objects, for instance,
the left region of the building, colored blue, is categorized as clutter due to the confusing
roof with a complex surface. With regard to the red spot over the “Tree” region in the right
bottom corner, there is actually clutter over the “Tree”, although with severe occlusion,
whose color is evidently different from the “Tree” in the RS image. As a consequence,
our model exhibits exceptional results according to above results and analyses. Since
there exists some missed labels in the ground truth, SUD-Net hardly misclassifies objects
according to the actual image.

As for the specific design of skip connections, we conducted experiments on two
different skip connections: (a) Pixel-wise Addition (PA) and (b) Map-wise Concatenation
(MC). In this experiment, reslayers-incorporated dual encoder-decoder architecture with
an FCN head was adopted as our baseline. The results are indicated in Table 4, which
demonstrates the effectiveness of map-wise concatenation.

Table 4. Ablation results of different skip connections on Potsdam dataset.

Skip Connections mF1(%) mIOU(%) OA(%)

PA 91.11 84.07 92.09
MC 91.34 84.25 92.25
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Figure 7. Visualization results of proposed modules on Potsdam and Vaihingen datasets.
(a) FCN-head_Swin-t. (b) FCN-head_Swin-Res34-Unet. (c) FCN-head_Swin-Res34-Unet_Mpfm.
(d) Daph_Swin-Res34-Unet. (e) Daph_Swin-Res34-Unet_Mpfm.

Models tend to be influenced by the input resolution of RS images [29] considering
that different input image sizes have various impacts on the final performance in Swin
Transformer. Therefore, comparative experiments on the Potsdam dataset are based on our
proposed U-shaped encoder-decoder architecture. By utilizing input sizes of 128× 128,
256× 256, and 512× 512, models are trained and evaluated following the same experimental
settings. As indicated in Table 5, increasing the input resolution of RS images results in
performance gains of 3.4%mF1, 5.6%mIoU, and 3.35%OA, respectively, from 128× 128 to
512× 512. At the same time, the GFLOPs representing computation complexity is also
increasing. Considering the rich spatial information contained in RS images, we chose to
adopt a larger resolution 512× 512 in our default setting in order to accomplish satisfying
results.

Table 5. Ablation results of input resolution on Potsdam dataset.

Image Size mF1(%) mIOU(%) OA(%) GFLOPs

128× 128 87.94 78.65 88.9 9.55
256× 256 90.33 82.55 91.22 37.08
512× 512 91.34 84.25 92.25 143.68
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Based on the original Swin Transformer, we also conducted ablation experiments
about Swin variants on the Potsdam dataset. In this section, U-shaped encoder-decoder
architecture was also applied to evaluate the impact of different model sizes. Following
the configuration in Swin Transformer with small modifications specifically altered for
U-shaped design, the detailed architecture specifications of Swin-Unet-T, Swin-Unet-S, and
Swin-Unet-B are listed as follows:

• Swin-Unet-T: Ci = 768, 384, 192, 96, Si = 2, 2, 2, 2, 2, 2, 2, Hi = 3, 6, 12, 24, 24, 12, 6
• Swin-Unet-S: Ci = 768, 384, 192, 96, Si = 2, 2, 18, 2, 2, 4, 2, Hi = 3, 6, 12, 24, 24, 12, 6
• Swin-Unet-B: Ci = 1024, 512, 256, 128, Si = 2, 2, 18, 2, 2, 4, 2, Hi = 4, 8, 16, 32, 32, 16, 8

where Ci denotes the channel dimension of the output feature pyramid acquired by the
backbone, Si is the number of Swin Transformer blocks in each stage, and Si defines
the number of heads computed within self-attention. The results of our ablation study
concerning the Swin variants are demonstrated in Table 6. It is clear that by increasing
the capacity of models, we can achieve better performance. However, the parameters of
models also grow dramatically, which leads to more computational resources.

Table 6. Ablation results of different Swin variants on Potsdam dataset.

Swin Variants mF1(%) mIOU(%) OA(%) Params(M)

Swin-Unet-T 91.34 84.25 92.25 74.68
Swin-Unet-S 92.55 86.35 93.16 106.66
Swin-Unet-B 92.57 86.38 93.09 165.70

4. Conclusions

In this paper, we propose a novel dual branch encoder-decoder architecture consisting
of Swin Transformer blocks and reslayers with a Dynamic Attention Pyramid Head called
SUD-Net. Incorporating reslayers from Res34 into our encoder path in a reversed fashion
complements the extracted global representations with fine-grained features. Targeted at
the spatial loss problem inside patches, Multi-Path Fusion Module with Patch Attention
was devised to recover position information and further fuse features of different scales
adaptively. Furthermore, a Dynamic Attention Pyramid Head was constructed to append to
the output of all stages from both the encoder and decoder. Experiments on ISPRS Potsdam
and Vaihingen datasets verify the effectiveness of our proposed SUD-Net, which delivers
satisfying segmentation results of 92.57%mF1, 86.4%mIoU, and 92.98%OA. Meanwhile,
after observing the real RS images, ground truth may show a few missing or incorrect labels.
However, SUD-Net still produces authentic and accurate segmentation maps according
to visualization results. In the future, we will consider reducing the parameters of our
proposed model and constructing a more lightweight model that can function at real-time
speed. Furthermore, multi-modal data of RS images should also be taken into account to
enhance segmentation performance.
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