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Abstract: Cryptocurrency markets have attracted many interest for global investors because of
their novelty, wide on-line availability, increasing capitalization, and potential profits. In the econo-
physics tradition, we show that many of the most available cryptocurrencies have return statistics
that do not follow Gaussian distributions, instead following heavy-tailed distributions. Entropy
measures are applied, showing that portfolio diversification is a reasonable practice for decreasing
return uncertainty.
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1. Introduction

Financial mathematics and financial economics are two scientific disciplines that
together are the backbone of modern financial theory. Both disciplines make extensive use of
their own models and theories from mathematics and traditional economics, and are aimed
mostly towards predictive analysis of markets. On the other hand, physics has historically
had an important influence on economic theory; the formalism of thermal equilibrium was
inspirational in the development of the theory of economic general equilibrium [1]. In
recent years, there has been a renewed interest in the view that economic phenomena share
many aspects of physical systems, and they are thus susceptible to being studied under the
science of complex systems [2–4] and statistical physics [5], giving rise to novel research
fields such as econophysics [6].

One of the first successful econophysical approaches was the discovery that stock
market fluctuations are not Gaussian, and instead are heavy-tailed. Mandelbrot came to
this conclusion when investigating cotton prices [7], followed later by Mantegna when
characterizing the Milan stock market [8]. This discovery forced a serious rethinking of the
view introduced by Louis Bachelier in the early 20th Century stating that price variations
are random and statistically independent [9]; while historically important, this view not
entirely appropriate. These prices are the outcome of the concurrent nonlinear action of
many economic agents [10], and as such the fluctuations are usually correlated, meaning
that the process is not a random Brownian walk at all. In this article, we explore fluctuations
in the cryptocurrency market and show that all of the most common coins analyzed fail
the Shapiro–Wilk normality test, and as such are best explained by heavy-tailed statistical
models; for further reference, see [11,12].

On the other hand, entropy is a fundamental key quantity in physics in both ther-
modynamics and information theory. It is related to disorder and diversity, and has been
previously used in finance, specifically in portfolio selection theory [13]. Acceptance
of entropy in economic theory has historically seen a degree of reticence, for instance,
that expressed by Paul Samuelson, an influential figure in 20th Century economics [14].
However, has gained wide acceptance lately [15,16], specially with the development of non-
equilibrium thermodynamics and complex systems theory [17–20]. It is well known that
portfolio diversification is a good strategy to minimize specific risks, and as such we explore
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the use of entropy in the cryptocurrency market as a measure of return uncertainty and risk
minimization [13,19,21]. It is worth mentioning that recent studies elsewhere have been in-
terested in exploring the use of entropy in the cryptocurrency markets, where heavy-tailed
distributions and multi-scaling phenomena have been identified as well [11,12].

When speaking of information theory, its most powerful tools are considered to be
information measures (MI); although the most famous MI is Shannon’s entropy, Fisher’s
information is worth mentioning. Shannon’s entropy measures missing information based
on the Probability Distribution Function (PDF). The counterpart of the Shannon entropy is
the Fisher information, which increases as the Shannon entropy decreases. Furthermore,
the Fisher information reflects the amount of positive information from the observer,
and depends on the PDF as its first derivatives. For this reason, the Fisher entropy is a
local measure, while the Shannon entropy is a global measure. There have been studies
elsewhere [22] showing that from the market point of view, minimizing risk is equivalent
to minimizing Fisher’s information; the present study provides empirical results that
contribute to these perspectives.

2. Methods, Data and Analysis

In this article, we use the historical daily prices of 18 cryptocurrencies as presented
in CryptoDataDowload [23] spanning at least 3 years. These are: Basic Attention Token
(BAT), Bitcoin Cash (BCH), Bitcoin (BTC), Dai (DAI), Eidoo (EDO), Eos (EOS), Ethereum
Classic (ETC), Ethereum (ETH), Metaverse ETP (ETP), Litecoin (LTC), Neo (NEO), OMG
Network (OMG), Tron (TRX), Stellar (XLM), Monero (XMR), Verge (XVG), Ripple (XRP),
and Zcash (ZEC) [24,25].

We used the opening and closing prices of the cryptocurrencies, quoted in US Dollars
from 16 October 2018 to 31 December 2021, for a total of 1172 observations per cryp-
tocurrency, to calculate daily returns. First, the distributions of the daily returns of each
cryptocurrency were statistically characterized through normality tests and parametric
adjustments of heavy-tailed distributions. Subsequently, we performed an analysis in
which entropy functions were derived, similarly as in Dionisio et al. (2006), [13], Ormos
and Zibriezky (2014) [19], and Mahmoud and Naoui (2017) [26]. From the set of 18 cryp-
tocurrencies, the assets were randomly selected to compose investment portfolios, where
the only premise used was that the proportion invested in each asset was 1

N , with N being
the number of assets in the portfolio. In order to consistently compare entropy to standard
deviation, normal entropy was used, as it is a function of variance. It is important to men-
tion that the time period chosen in this study was arbitrary; while it includes fluctuations
due to the COVID-19 pandemic (see [11,27,28]), it certainly does not include recent events
that have influenced the behavior of the cryptocurrency markets, such as the war in Eastern
Europe and the increased economic rivalry between the USA and China.

In the following subsections, we review several useful concepts related to entropy func-
tions: the discrete entropy function, the continuous entropy function, entropy as a measure
of uncertainty, comparison between entropy and variance, and investment portfolios.

The appendices contain the methods used for the analysis of this article. Because
the Shannon entropy is only a function of the PDF for the continuous case, Appendix A.1
shows how the problem should be treated when the PDF is not known and only finite
experimental data are available. Appendix A.1.1 provides a complete solution for entropy
estimation by means of the equidistant histogram method. Appendix A.1.2 shows how the
PDF is found via the Kernel method. Appendix A.1.3 explains how the PDF is found via the
parametric method. Furthermore, Appendix A.1.4 explains the max log-likelihood method
that is mentioned throughout the article. Finally, Appendix A.2 shows the functional form
of the distributions used for the parametric fits.

2.1. Discrete Entropy Function

Let X be a discrete random variable, {A1, A2, A3, . . . An} be a set of possible events, and
the corresponding probabilities pX(xi) = Pr(X = Ai), with pX(xi) ≥ 0 and ∑n

i=1 pX(xi) = 1.
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The generalized discrete entropy function, or Rényi entropy [19,29], for the variable X is de-
fined as

Hα(X) =
1

1− α
log

(
n

∑
i=1

pX(xi)
α

)
(1)

where α is the order of the entropy and α ≥ 0. This order can be considered as a bias
parameter, where α ≤ 1 favors rare events and α ≥ 1 favors common events [30]. The base
of the logarithm is 2.

When α = 1, this indicates a special case of generalized entropy that assumes ergodic-
ity and independence, which the generalized case does not. However, substituting into (1)
results in division by zero. By means of L’Hôpital’s rule, it can be shown that when α tends
to 1, we have the Shannon entropy:

H1(X) = −
n

∑
i=1

pX(xi)log(pX(xi)) (2)

The Shannon entropy produces exponential equilibrium distributions, while general-
ized entropy produces power law distributions.

2.2. Continuous Entropy Function

Let X be a continuous random variable that takes values of R and let pX(x) be the
density function of the random variable. Continuous entropy is defined as

Hα(X) =
1

1− α
ln
∫

pX(x)α (3)

Note that the logarithm bases of (1) and (3) are different. Although the entropy
depends on the base, it can be shown that the value of the entropy changes only by a
constant coefficient for different bases.

When α = 1, we have the Shannon entropy for the continuous case

H1(X) = −
∫

pX(x)ln(pX(x))dx (4)

The properties of discrete and differential entropy are similar. The differences are that
the discrete entropy is invariant under variable changes and the continuous entropy is not
necessarily; furthermore, the continuous entropy can take negative values.

2.3. Entropy as a Measure of Uncertainty

According to Shannon (1948) [31], an uncertainty measure H(pX(x1), pX(x2), . . . , pX(xn))
must satisfy the following:

1. H must be continuous on pX(xi), with i = 1, . . . , n.
2. If pX(xi) =

1
n , H must be monotone increasing as a function of n.

3. If an option is split into two successive options, the original H must be the weighted
sum of the individual values of H.

Shannon showed that a measure that satisfies all these properties is (2) multiplied by
any positive constant (the constant sets the unit of measure). Among the properties that
make it a good uncertainty choice are:

1. H(X) = 0 if and only if all but one of pX(xi) are zero.
2. When pX(xi) =

1
n , i.e., when the discrete probability distribution is constant, H(X) is

maximum and equal to log(n).
3. H(X, Y) ≤ H(X) + H(Y), where the equality holds if and only if X and Y are statisti-

cally independent, i.e., p(xi, yj) = p(xi)p(yj).
4. Any change towards the equalization of the probabilities pX(xi) increases H.
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5. H(X, Y) = H(X) + H(Y|X); thus, the uncertainty of the joint event (Y|X) is the
uncertainty of X plus the uncertainty of Y when X is known.

6. H(Y) ≥ H(Y|X), which implies that the uncertainty of Y is never increased by
knowledge of X, and decreases unless X and Y are independent, in which case it does
not change.

2.4. Comparison between Entropy and Variance

Ebrahimi et al. (1999) [32] showed that entropy can be related to higher order moments
of a distribution, and thus can offer a better characterization of pX(x), as it uses more
information about the probability distribution than the variance (which is only related to
the second moment of a probability distribution).

The entropy measures the disparity of the density pX(x) of the uniform distribution.
That is, it measures uncertainty in the sense of using pX(x) instead of the uniform distri-
bution [26], while the variance measures an average of distances from the mean of the
probability distribution. According to Ebrahimi et al. [32], both measures reflect concentra-
tion, although they use different metrics. The variance measures the concentration around
the mean and the entropy measures the density diffusion regardless of the location of the
concentration. Statistically speaking, entropy is not a mean-centered measure; it takes into
account the entire empirical distribution without concentrating on a specific moment. In
this way, the entire distribution of returns can be considered without focusing on one in
particular [33]. The discrete entropy is positive and invariant under transformations, while
the variance is not. In the continuous case, neither the entropy nor the variance are invariant
under one-to-one transformations [13,26]. According to Pele et al. (2017) [34], entropy is
strongly related to the tails of the distribution; this feature is important for distributions
with heavy-tails or with an infinite second-order moment, where the variance is obsolete.
Furthermore, the entropy can be estimated for any distribution without prior knowledge
of its functional form. The authors mentioned above found that heavy-tailed distributions
generate low entropy levels, while light-tailed distributions generate high entropy values.

2.5. Investment Portfolios

A portfolio or investment portfolio is simply a collection of assets. They are charac-
terized by the value invested in each asset. Let wi be the fraction invested in asset i with
i = 1, 2, . . . , n; the required constraint is that

n

∑
i=1

wi = 1 (5)

We define the return Ri of a common share i during a certain period as

Ri =
P1,i − P0,i

P0,i
(6)

where P0,i is the price of stock i at the beginning of the period and P1,i is the price of i at the
end of that period. This return is the historical return or ex post return, whereas the total
portfolio return is simply the weighted average of the expected returns of the individual
securities in the portfolio:

RT =
n

∑
i=1

wiRi (7)

The risk of investment portfolios can be divided into specific and systematic risk.
Systematic risk is inherent to market uncertainty, and is not diversifiable; usually, the
price of an asset is affected by factors such as inflation, economic growth or recession, and
fluctuations in the world financial markets. The specific or unsystematic risk corresponds
to the risk of an asset or a small group of assets due to its specific characteristics, and is
diversifiable. Forming portfolios can reduce specific or unsystematic risk.
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Entropy can provide similar information if we define the average mutual information
between two random variables X and Y, where one is the independent variable and the
other is the dependent variable, as follows:

I(X, Y) =
n

∑
i=1

m

∑
j=1

pX,Y(xi, yj)log

(
PX,Y(xi|yj)

PX(xi)PY(yj)

)
(8)

for the discrete case and

I(X, Y) =
∫

X

∫
Y

pX,Y(x, y)log
(

PX,Y(x|y)
PX(x)PY(y)

)
(9)

for the continuous case. This measure reflects the correlation between X and Y. Thus
H(X) = I(X, Y) + H(X|Y), where I(X, Y) can be compared to systematic risk, while
H(X|Y) can be compared to the specific risk.

In practice, standard risk measures such as CAPM beta or standard deviation are
calculated on daily or monthly returns. We follow this methodology here as well. Because
the returns of the values can take values of a continuous co-domain, we focus mainly on
the differential entropy.

The assumption that data and residuals follow a normal distribution is common
in both portfolio management and risk analysis. Therefore, in this context, in order to
parametrically estimate the entropy of a normal distribution (because information theory
measures cannot be directly compared to variance in metric terms), we use

NH(X) =
∫

pX(x)log(
√

2πσ)dx +
∫

pX(x)
(x− x̄)2

2σ2 dx = log
(√

2πeσ
)

(10)

To calculate the empirical differential entropy, it is only necessary to estimate the
Probability Distribution Function (PDF), for which there are essentially three methods:
histograms, kernels, and parametrically (see Appendix A for details).

3. Results

We present our findings in three parts. First, it is shown that the daily returns of
each cryptocurrency do not follow a normal distribution. Second, it is indicated that the
daily returns have heavy tails. Finally, the behavior of the empirical and normal entropy
is shown as a function of the number of assets in the portfolio. As far as we know, this
is the first time that such a large number of cryptocurrencies has been analyzed together;
however, see [11,12].

3.1. Normal Distribution and Q-Q Plots

Figure 1, made according to Equations (6) and (A5), shows as an example the histogram
of the probability distribution of the daily returns of Bitcoin considering the daily opening
and closing price. The blue curve shows the normal distribution with the variance and
mean calculated from the empirical data. The red line shows the Kernel density estimator;
the cross-validation method was used to determine the bandwidth and the Kernel that
maximize the total Log-Likelihood of the data in X [35]. Although there are alternative
principles, such as MaxEnt or FIM-minimization, for estimating the best PDF, log-likelihood
was used for simplicity. Among the kernels used were Gaussian, Epanechnikov, Tophat,
exponential, linear, and cosine. Bandwidth was optimized for values between 0 and 1. For
all cryptocurrencies, a significant deviation of the distribution calculated with Kernels was
found with respect to the normal distribution.

Quantiles are values that divide a probability distribution into equal intervals, with
each interval having the same fraction of the total population. Q-Q plots are commonly
used to visualize data and comparatively find the type of probability distribution to which
a random variable can belong, for example, whether they are Gaussian, uniform, Paretian,
exponential distributions, etc. To build a Q-Q plot, the quantiles of the base distribution, or



Entropy 2022, 24, 1583 6 of 15

the ”theoretical quantiles”, are plotted on the X axis, while the sample quantiles are plotted
on the Y axis. If both sets of quantiles come from the same distribution, then the points
form a more or less straight line.

Figure 1. (a) Histogram of the probability distribution of the return of Bitcoin. The normal curve is
shown in blue, associated with the dataset, with the curve estimated using the Kernel method in red.
(b) The log–log plot of the same data is depicted in the inset. Notice that the normal distribution tail
decays faster in comparison with the kernel, as expected.

Figure 2 shows the normal Q-Q plot of the empirical daily returns of Bitcoin. Across
all cryptocurrencies, the normal distribution was found to capture the middles of the data
well, but not the tails. In fact, the characteristic behavior of heavy-tailed distributions can
be clearly seen by the “S” shape on the graph. This means that compared to a normal
distribution there are more data located in the tail of the heavy-tailed distribution.

5 0 5
Normal theoretical quantiles

5

0

5

Da
ily

 re
tu

rn
s q

ua
nt

ile
s

Figure 2. Normal Q-Q chart of daily Bitcoin performance. The theoretical normal quantiles are
plotted against the observed quantiles.

The Shapiro–Wilks test posits the null hypothesis that a sample comes from a normal
distribution. When applying this statistical test to the daily returns of all the cryptocurren-
cies studied, it was found that the p-value is at most on the order of 10−18. It is established
as common practice that if the p value is less than 0.05, the hypothesis that the sample
is normal should be rejected. In our case, the value of p is very small (indeed, almost
negligible) for all cryptocurrencies, which strongly indicates that the null hypothesis that
daily returns follow a normal distribution [36] should be rejected. Therefore, we accept the
alternative hypothesis that the returns do not present normality.
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3.2. Heavy-Tailed Distributions

Nadarajah et al. (2015) [37] made adjustments to the exchange rate of various fiat
currencies (money that is not backed by securities or physical assets such as gold, and is
instead backed by the government that issues it) using flexible distributions. They used
distributions such as Student’s t, skewed Student’s t, hyperbolic, generalized hyperbolic,
generalized lambda, Skew-T, and Gaussian inverse normal to analyse the data. According
to the previous section, we must limit ourselves to the study of distributions with long tails.
Osterrieder (2016) [24] performed heavy-tailed fits for different cryptocurrencies using
Student’s t-test, Generalized Student’s t, Hyperbolic, Generalized Hyperbolic, Gaussian
Inverse Normal, and Asymmetric Gamma variance distribution. In both studies, they found
that all the heavy-tailed distributions provided statistically similar results, although the
best fit was found with the generalized hyperbolic distribution. In addition, they concluded
that Student’s t-test is a good option considering its simplicity. Similarly, Briere et al.
(2017) [38] reached similar results when studying parametric adjustments to the returns of
the seven most traded cryptocurrencies of 2015. Therefore, we make adjustments here to the
daily returns with the Student’s t-distribution and the normal distribution for comparison,
although it is light-tailed.

Figure 3 shows the histogram of the probability distribution of Bitcoin’s daily perfor-
mance along with the adjustments of each distribution, meaning that the log-likelihood
is maximized. The log-likelihood value for each fit is shown in Table 1. Note that the log-
likelihood is always smaller for the normal distribution, while the heavy-tailed Student’s
t-distribution generates good fits.

Table 1. Log-likelihood of the fitted distributions.

Cryptocurrency Normal t-Student

BAT 1531 1667

BCH 1555 1815

BTC 2111 2250

DAI 4395 4871

EDO 1239 1518

EOS 1583 1794

ETC 1608 1861

ETH 1831 1915

ETP 1393 1594

LTC 2111 2250

NEO 1631 1740

OMG 1401 1570

TRX 1694 1829

XLM 1590 1808

XMR 1814 1947

XRP 1595 1884

XVG 1305 1396

ZEC 1637 1722
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Figure 3. (a) Histogram of the probability distribution of the return of Bitcoin with the adjustments
of a normal distribution and Student’s t. (b) The log–log plot of the same data is depicted in the inset.
Notice that the normal distribution tail decays faster in comparison with the Student’s t-distribution,
as expected.

3.3. Portfolio Entropy

A portfolio was generated by adding the 18 cryptocurrencies randomly. We began
by adding an asset to the portfolio, then its normal entropy and empirical entropy were
calculated using the histogram, Kernel, and parametric methods. Assets continued to be
added randomly until the 18 cryptocurrencies studied had all been added. Every time a
new asset was added to the portfolio, it was necessary to calculate the normal entropy and
the empirical entropy of the total return; i.e., every time an asset was added, the distribution
function of the total return was calculated again by means of the three methods presented.
Figure 4 shows the adjustments when performing the previous procedure, while Figure 5
shows the normal and empirical entropy against the number of assets in the portfolio.

Figure 4. (a,c,e,g) correspond to the adjustments of the probability distribution of the total daily
returns with n ∈ {3, 8, 13, 18} assets in the portfolio, respectively, with the kernel, parametric, and
histogram methods and the normal curve associated with the data. In (b,d,f,h), the same fits are
shown in log–log scale.
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Figure 5. Normal and empirical entropy against the number of assets in the portfolio. The decrease
in entropy as the number of assets in the portfolio increases verifies the diversification effect.

4. Discussion

The yields of the 18 cryptocurrencies were studied, with several of their statistical
properties shown in detail. For this, the daily returns were adjusted to different heavy-tailed
distributions such as the normal and Student’s t-distributions. Our results show that the
distributions of daily yields exhibit statistically significant leptokurtic return distributions
with heavy tails, as expected. In particular, Student’s t-distribution adequately describes
the data and is a good option considering its simplicity; it can be useful for financial risk
management, where it is necessary to calculate the value at risk (VaR) and the expected
deficit (ES). The aforementioned results are useful for investment purposes as well. As far
as we know, this is one of the few works to investigate the statistical properties of many
cryptocurrencies together, beyond just Bitcoin or Ethereum, although see [11,12] as well.

Entropy is used here as a measure of uncertainty in portfolio management. Figure 5
shows that the Shannon entropy behaves similarly, although not exactly the same, as
the variance, serving as a measure of risk and to verify the effect of diversification, both
of which tend to decrease when including assets in the portfolio. As the number of
assets in the portfolio increases, the possible number of states of the system, in this case
the portfolio, progressively increases as well, and the uncertainty about this portfolio
decreases according to the property H(X, Y) ≤ H(X) + H(Y). We should note that the
normal entropy always takes values greater than the empirical entropy in all cases, which
implies that the uncertainty is less than that which would be observed if the returns were
normally distributed.

In the study by Ormos and Zibriezky (2014) [19], it was found that the histogram
method for calculating the Shannon entropy was more efficient in terms of explanatory and
predictive power and exhibited simplicity compared to the Kernel method. We observe
that the fits of Figure 4 to the daily total return of the generated portfolios show that the
histogram method presents overfitting compared to the empirical data. The small “jumps”
observed in the tails with this method are evident in the log–log scaled plot. On the other
hand, the best fit is parametric, followed by KDE. In these last two cases, the log-likelihood
of the parametric method with Student’s t-distribution is always greater than that of the
Kernel Density Estimation (KDE) method, although the log-likelihood of both is always
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greater than that of the normal distribution. Regardless, diversification is verified with any
method. This corroborates and contributes to the empirical findings made by Dionisio et al.
(2006) [13], Ormos and Zibriezky (2014) [19], and Mahmoud and Naoui (2017) [26], all of
whom observed the diversification of the Shannon entropy, with the difference that these
authors verified it in classical assets and did not characterize their distributions. Our results
can be useful to investors, traders, and portfolio managers.

5. Conclusions

Based in our findings, we conclude that entropy observes the effect of diversification
and is a more general measure of uncertainty than the standard deviation. This is the case
for the following reasons. (i) It uses more information from the probability distribution, as
it uses moments of higher order while the deviation standard only uses the second moment.
(ii) It does not depend on any particular distribution, unlike the standard deviation, which
eliminates the error introduced by fitting a normal distribution to returns. This becomes
evident in non-symmetric distributions with additional non-normal moments. In this way,
entropy can capture the complexity of systems without the need for hypotheses that could
bias the results. (iii) Entropy is independent of the mean considering any distribution,
meaning that it satisfies the first-order conditions. (iv) Entropy meets the requirements
that good uncertainty measures must satisfy. (v) Entropy can be used for both metric and
non-metric data (quantitative and qualitative data, respectively). For this reason, it can be
used as a measure to complement traditional models, thanks to a mean and variance that
are more restrictive, when dealing with assumptions that tend not to be verified empirically.

The drawbacks of the potential use of entropy as a measure of uncertainty in portfolios
should be mentioned as well, one of them being that it is more complex compared to
the more common standard deviation. On the other hand, entropy does not take into
account the real values of the variables, meaning that care must be taken when using it
in risk analysis and portfolio selection. In addition, there is always statistical bias in data
measurements due to the degrees of freedom allowed in an experiment.

Although the present study does not address punctual prediction of the cryptocur-
rency market, it is illustrative to mention the relative success in this area of the use of
nonlinear physics methods to make substantive predictions, among others by the “Pre-
diction Company” founded by two pioneers of chaos theory in 1991 and associated with
the Santa Fe Institute. This is the case of Doyne Farmer and Norm Packard [39]. In one
of his best-known contributions [40], Farmer mentions the possibility of using “adaptive
dynamics” to make predictions in natural time series, which follows the principles of neural
networks, more currently known as known as “machine learning”. His study basically
consists of the use of systems that learn to classify patterns (output) from a time series
(input). The output would ideally be an investment strategy that would aim to maximize
profits and the input would be the immediate, ideally real-time, time series of market
behavior. Of course, there are recent applications of machine learning and other methods
to the prediction of the temporal behavior of cryptocurrencies [41,42].

For the temporal prediction of financial markets, today there are more than 5000 algo-
rithms created by various programmers who publish them in public software libraries [43].
Investors typically use several of these algorithms in combination, although the most popu-
lar are usually based on Average True Value (ATR), Relative Strength Index (RSI), Moving
Average Convergence/Divergence (MACD), and Exponential Moving Average (EMA) [43].
As can be seen, the use of moving averages is common, as they essentially help to reduce
noise or fluctuations in time intervals. Several authors [44,45] have coupled them with
regression analysis to form ARMA (autoregressive moving average) models, which in turn
are used together with skewed (non-normal) probability distribution functions because, as
we have already confirmed here, the PDFs of the financial markets and cryptocurrencies
are not normal. It is interesting to note that there are “forecasts” online that suggest the
right times, in real time, to sell or buy cryptocurrencies, and that these are mostly based on
moving average models [46].
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Finally, it is illustrative to mention that cryptocurrency markets have qualitative and
quantitative properties similar to traditional financial markets [44,45], which allows us to
speak of generic properties between the two, that is, aspects of universality typical of com-
plex systems. Studying the statistical behavior of cryptocurrency markets, a phenomenon
we have witnessed from its birthday while having at hand the whole arsenal of contempo-
rary mathematical tools, is a fantastic opportunity to understand the real-world dynamics
of a complex economical system, the interactions of the agents involved, and the emergent
collective properties that may influence our society. For example, in future cryptocurrency
markets, financial markets, e-commerce markets, and energy markets [28,47–50]). We hope
our contribution can be useful in understanding the statistical properties of contemporary
market and portfolio modeling.
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Appendix A

Appendix A.1. Probability Density Function Estimation (PDF)

Let x1, x2, . . . , xn be the observations of the continuous random variable X and let
Hα,n(X) be the sample estimate of Hα(X). The evaluation of the entropy is obtained by
estimating the density function. The probability density function pX(x) is approximated
by pX,n(x). Thus, the integral estimate of the entropy is

Hα,n(X) =
1

1− α
ln
∫

An
pX,n(x)αdx (A1)

where An = (min(x), max(x)). For this reason, one of the difficulties in determining
continuous entropy is that the underlying probability density function (or PDF) is unknown.
There are three methods to overcome this problem: histogram-based, kernel-based, and
parametric estimators [13,19].

Appendix A.1.1. Histogram

Let bn = (max(x), min(x)) be the range of the sample values; we divide the range into
k bins of equal width where the cuts are made at the points tj. The width of each bin is
h = bn

k = tj+1 − tj. The density function is estimated by

pXn(x) =
vj

nh
(A2)

if x ∈ (tj, tj+1), with vj being the number of points that land in the jth bin. From (4) and (A1),

H1,n(X) =
1
n

k

∑
j=1

vjln
( vj

nh

)
(A3)

https://www.cryptodatadownload.com
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The hyperparameter of this method is the number of bins, k. There are several
methods to choose this parameter; for example Scott’s (1979) [51] normal reference rule, the
Freedman–Diaconis (1981) [52] rule, the square root rule, etc. In particular, the Freedman–
Diaconis rule is quite robust and usually provides good results in practice. The method
consists of minimizing the integral of the squared difference between the histogram and
the density of the theoretical distribution. The bandwidth in this method is provided by

h = 2 · IQR(x) · n−1/3 (A4)

where n is the number of observations and IQR(x) is the interquartile range of the dataset.
In this way, the optimal number of containers is chosen as

k =
bn · n1/3

2 · IQR(x)
(A5)

Appendix A.1.2. Kernel Density Estimation

Let x1, . . . ., xn be a sample of independent and identically distributed random vari-
ables; then, an estimator of the distribution function is

pXn(x) =
1

nh

n

∑
i=1

∫ x

−∞
K
(

u− xi
h

)
du (A6)

where K is the kernel function and h is the bandwidth parameter. The function K must
be a real function such that K(x) ≥ 0, K(x) = K(−x) for all x in R, int∞

−∞K(x)dx = 1,
and

∫ ∞
−∞ xK(x)dx = 0. The uniform convergence to the theoretical distribution has been

studied regardless of the form of the kernel used [34]. The hyperparameters are the Kernel
and the bandwidth; the choice of Kernel determines how the influence of each observation
is distributed.

Appendix A.1.3. Parametric Density Estimation

The set of probability distributions in a sample space indexed by a set Θ (parameter
space) is denoted as P . For each θ ∈ Θ, there is a Pθ member of P which is a distribution.
Statistical models can be written as

P = {Pθ |θ ∈ θ} (A7)

These models are parametric if Θ ⊆ Rk with k ≥∈ Z+, otherwise we would have a
non-parametric model like the estimators of kernels, in which case, the model consists
of continuous distributions. Parametric methods assume that the particular shape of the
probability distribution function is known and only its parameters need to be estimated; in
the case of a normal distribution, only its mean and variance need to be estimated.

Appendix A.1.4. Maximum Likelihood Estimate

Consider a set (x1, x2, . . . , xn) of i.i.d. Because they are identically distributed, they
must have the same probability function f (X|θ). The likelihood of the data having the
parameter θ is

L(θ) = Πn
i=1 f (xi|θ) (A8)

For different θ, the probability of the data having those parameters is different. In
maximum likelihood estimation (MLE), the goal is to find the parameters θ that maximize
the likelihood function L. The MLE assumes that (the arguments of the maximum, or
argmax, are those points in the domain of a function at which it is maximized):

θ̂ = arg max
θ

(L(θ)) (A9)
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The log-likelihood function is usually used:

LL(θ) = log(L(θ)) = logΠn
i=1 f (xi|θ) = ∑

i=1
nlog f (xi|θ) (A10)

Because the logarithm is monotonically increasing, in practice the MLE works with

θ̂ = arg max
θ

(LL(θ)) (A11)

For this work, the histogram, Kernel, and parametric methods were used to determine
the PDFs while always using the Freedman–Diaconis rule. In the last two cases, the
probability density functions were calculated by maximum likelihood estimation (MLE).

Appendix A.2. Parametric Distributions Used

Normal distribution

pX(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

(A12)

for −∞ ≤ x ≤ ∞, −∞ ≤ µ ≤ ∞ and σ ≥ 0.
Non-standardized Student’s t-distribution

pX(x) =
K(ν)

σ

[
1 +

(x− µ)2

σ2ν

]−(1+ν)2/2

(A13)

for −∞ ≤ x ≤ ∞, −∞ ≤ µ ≤ ∞ and σ ≥ 0 u ν ≥ 0, where K(ν) =
√

νB(ν/2, 1/2) and B is
the beta function, defined by

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt (A14)
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