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Abstract: We derive the explicit differential form for the action of the generators of the SU(1, 1)
group on the corresponding s-parametrized symbols. This allows us to obtain evolution equations
for the phase-space functions on the upper sheet of the two-sheet hyperboloid and analyze their
semiclassical limits. Dynamics of quantum systems with SU(1, 1) symmetry governed by compact
and non-compact Hamiltonians are discussed in both quantum and semiclassical regimes.
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1. Introduction

Representing non-linear quantum dynamics as an evolution of phase-space distribu-
tions not only offers an appealing visualization of sophisticated processes but also provides
a convenient way to study the quantum–classical transition from the dynamical point of
view [1–3]. The starting point for such analysis is the Liouville-like equation of motion for
a quasidistribution Wρ(ζ), which is a one-to-one map [4–10], of the density matrix ρ̂ into a
function defined on the classical phase spaceM,

ρ̂⇔Wρ(ζ), ζ ∈ M.

The structure of the phase space is determined by the symmetry group G—a representation
that acts irreducibly in the Hilbert spaceH of the corresponding quantum system [11].

The evolution equation for Wρ(ζ) is obtained by mapping the Schrodinger equation
into the space of functions onM. To achieve this, a manageable expression for the star-
product [4,5,12–15], e.g., the composition map f̂ ρ̂ → W f (ζ) ∗Wρ(ζ), is required if f̂ is
an arbitrary operator acting in H. Unfortunately, the general form for the star-product
operation is known only for simplest groups as Heisenberg–Weyl [4,5], SU(2) [16–20]
and some generalizations [21]. However, the maps, commonly called the correspondence
rules (CR),

ĉjρ̂→ DL(ĉj)Wρ(ζ), ρ̂ĉj → DR(ĉj)Wρ(ζ), (1)

where ĉj are generators of the group G and DL,R(ĉj) are some differential operators, can
be obtained even for more sophisticated groups such as E(2) [22,23] and SU(3) [24].
Explicit expressions for DL,R(ĉj) (also known as Boop [25] operators or elements of D-
algebra [13–15,26,27]) are extremely useful as they allow us to obtain the phase-space
evolution equations in the case when the dynamics of the system are governed by a Hamil-
tonian/Lindbladian that is polynomial on the group generators.

The corresponding relations are easily found for the Glauber–Sudarshan P and Husimi
Q functions by using the standard coherent state machinery [26,28,29]. For arbitrary groups,
these P and Q functions can be considered as representatives that are dual to each other
of the s-parametrized quasidistributions W(s)

ρ (ζ) with s = 1 and s = −1, respectively. The

situation is more involved for the self-dual Wigner function [30–36], W(s=0)
ρ (ζ), which

cannot be defined and treated in the same way as W(±1)
ρ (ζ). It is precisely the evolution of

Entropy 2022, 24, 1580. https://doi.org/10.3390/e24111580 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111580
https://doi.org/10.3390/e24111580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3251-0721
https://orcid.org/0000-0001-8493-721X
https://doi.org/10.3390/e24111580
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111580?type=check_update&version=2


Entropy 2022, 24, 1580 2 of 14

the Wigner function that represents the main interest due to its sensitivity to the formation
of interference patterns and its specific behavior in the semiclassical limit [1–3,27,30–36].

In the present paper, we obtain the correspondence rules for quantum systems possess-
ing SU(1, 1) symmetry [37–47] and apply them for the analysis of phase-space dynamics
generated by some non-linear (polynomial) Hamiltonians. The classical phase-space in this
case is the upper sheet of the two-sheet hyperboloid. Thus, one can distinguish two types
of dynamics in such a non-compact manifold: (a) a quasi-periodic evolution, generated
by Hamiltonians with a discrete spectrum; and (b) a non-periodic evolution proper to
continuous-spectrum systems. We analyze both types of phase-space motion in particular
cases of quadratic on the group generators’ Hamiltonians. In addition, we discuss the semi-
classical limit of the correspondence rules, focusing on the peculiar dynamical properties
of the self-dual Wigner function.

In Section 1, we briefly overview the construction of quasidistribution functions for the
SU(1, 1) group. In Section 2, the correspondence rules for the Wigner function are obtained.
In Section 3, we apply the correspondence rules to deduce the evolution equations for some
quadratic on the group generators’ Hamiltonians; we find their exact solutions and analyze
the semiclassical limit in Section 4.

2. The SU(1, 1) Quasidistribution Functions
2.1. General Settings

Let us consider a quantum system with the SU(1, 1) dynamic symmetry group, living
in a Hilbert space H that carries an irrep labelled by the Bargman index k = 1

2 , 1, 3
2 , 2, ..,

corresponding to the positive discrete series. The group generators form the SU(1, 1)
algebra satisfying the following commutation relations:

[K̂1, K̂2] = −iK̂0, [K̂2, K̂0] = iK̂1, [K̂0, K̂1] = iK̂2. (2)

The Hilbert spaceH is spanned by the eigenstates of the K̂0 operator,

K̂0|k, k + m〉 = (k + m)|k, k + m〉 , m = 0, 1, . . . , (3)

where |k, k〉 is the lowest state of the representation, defined by K̂−|k, k〉 = 0, K̂± = K̂1± iK̂2.
The value of the Casimir operator

Ĉ = K̂2
0 − K̂2

1 − K̂2
2, (4)

is fixed to k(k− 1).
Orbits of the state |k, k〉 define a set of coherent states [28]

|n〉 = cosh−2k τ

2

∞

∑
m=0

[
Γ(m + 2k)
m!Γ(2k)

]1/2

e−iφm tanhm τ

2
|k, k + m〉 , (5)

labeled by the coordinates (τ, φ) of hyperbolic Bloch vectors in the upper sheet of the
two-sheet hyperboloid

n = (cosh τ, sinh τ cos φ, sinh τ sin φ)> , (6)

The states (5) resolve the identity according to

Î =
2k− 1

π

∫
d2 n|n〉〈n| , (7)

d2n =
1
4

sinh τdτdφ. (8)
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It is convenient to write the overlap of two coherent states in terms of the pseudo-scalar
product of the respective Bloch vectors as follows:

|〈n|n′〉|2 =

(
1 + n · n′

2

)−2k

, (9)

where
n · n′ = cosh τ cosh τ′ − cos(φ− φ′) sinh τ sinh τ′. (10)

This hyperboloid can be considered as a classical phase space corresponding to our quantum
system. Normalized functions f (n) ≡ f (τ, φ) on the hyperboloid can be expanded on the
basis of harmonic functions,

uλ
n(n) = (−1)n

Γ
(

1
2 + iλ

)
Γ
(

1
2 + iλ + n

)Pn
−1/2+iλ(cosh τ)einφ, (11)

as follows:

f (n) =
∞

∑
n=−∞

∫
dν(λ) fλnuλ

n(n), fλn =
∫

d2n f (n)u∗λn (n), (12)

dν(λ) = dλλ tanh(πλ) (13)

The harmonic functions (11) are eigenfunctions of the Laplace–Beltrami operator L2, which
is a differential realization of the Casimir operator (4),

L2uλ
n(n) = −

(
λ2 +

1
4

)
uλ

n(n), (14)

where
L2 = k̃2

0 − k̃2
1 − k̃2

2, (15)

with

k̃0 = −i∂φ, k̃1 = i sin φ∂τ + i cos φ coth τ∂φ, k̃2 = −i cos φ∂τ + i sin φ coth τ∂φ (16)

being differential realizations of the group generators (2). The vector field

k̃ =
(
k̃0, k̃1, k̃2

)
, [k̃,L2] = 0, (17)

and the Bloch vector n (6) are orthogonal to each other,

n0k̃0 + n1k̃1 + n2k̃2 = 0, (18)

and satisfy the commutation relations

[k̃ j, nl ] = iε jlmnm. (19)

2.2. s-Parametrized Quasidistribution Functions

The identity resolution (7) allows us to define P(n) = W(+1)(n) and Q(n) = W(−1)(n)
symbols of an operator f̂ in the standard form [42–44,48–55],

Q f (n) = 〈n| f̂ |n〉, (20)

f̂ =
2k− 1

π

∫
d2nPf (n)|n〉〈n|, (21)
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so that
Tr( f̂ $̂) =

2k− 1
π

∫
d2n Pf (n)Q$(n) . (22)

It was observed in [45] that all elements of the s-parametrized family of quasidistribution
functions W(s)(n) in the hyperbolic phase space are related to each other through a formal
application of a function of the Laplace operator (15),

W(s)
f (n) =

[
Φ(L2)

] s′−s
2 W(s′)

f (n),

where

Φ(L2) = − πL2

cos(π
√

1/4 + L2)

2k−2

∏
m=1

[
1− L2

m(m + 1)

]
. (23)

In particular, the self-dual Wigner symbol is obtained as a “half-way” relation between Q
and P symbols,

W f (n) = Φ1/2(L2)Pf (n) = Φ−1/2(L2)Q f (n) , (24)

Tr( f̂ $̂) =
2k− 1

π

∫
d2n W f (n)W$(n).

In practice, the application of the Φ(L2) operator is carried out by using the expansions
(12), e.g.,

Wρ(n) =
2
π

∫
d2n′

∫
dν(λ)Φ

1
2 (λ) P− 1

2+iλ(n
′ · n)Pρ(n′) (25)

2
π

∫
d2n′

∫
dν(λ)Φ−

1
2 (λ) P− 1

2+iλ(n
′ · n)Qρ(n′) , (26)

where P− 1
2+iλ(n

′ · n) is the conic function [56]; the function Φ(λ) is obtained from the

operator (23) by substituting L2 → −
(

λ2 + 1
4

)
in accordance with (14) and leading to

Φ(λ) =
(2k− 1)|Γ(2k− 1/2 + iλ)|2

Γ2(2k)
, (27)

where Γ(z) is the Gamma function.
This also allows us to compute symbols of polynomial functions of the group genera-

tors (2). For instance, taking into account the fact that

PKj(n) = (k− 1)nj, (28)

PK2
j
(n) =

(k− 1)(2k− 3)
2

n2
j ±

(k− 1)
2

, (29)

where the sign “+” is for j = 0 and the sign “−” is for j = 1, 2, one obtains

WKj(n) = (k− 1)Φ1/2(L2)nj =
√

k(k− 1)nj,

and similarly,

WK2
j
(n) =

√
k(2k + 1)(k− 1)(2k− 3)

3
n2

j ±
k(k− 1)

3
.
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3. Correspondence Rules
3.1. Correspondence Rules for Q and P Functions

The correspondence rules (1) for P and Q functions are immediately obtained by using
the basic properties of the coherent states (5). In particular, one has the following D algebra
operators [42,43]:

K̂jρ̂ → W(±1)
Kjρ

(n) = D(±1)
L (K̂j)W

(±1)
ρ (n), (30)

ρ̂K̂j → W(±1)
ρKj

(n) = D(±1)
R (K̂j)W

(±1)
ρ (n), j = 0, 1, 2, (31)

which are convenient to express in vector notation as

D(s)
L,R(K̂0) =

(
k− s + 1

2

)
n0 − s

i
2
(n o k̃)0 ±

1
2

k̃0, (32)

D(s)
L,R(K̂1,2) =

(
k− s + 1

2

)
n1,2 − s

i
2
(n o k̃)1,2 ∓

1
2

k̃1,2 s = ±1,

where nj and k̃ j are the components of the pseudo-Bloch vector (6) and the vector field (16),
respectively, and the deformed cross-product n o k̃ is defined as

n o k̃ =
(
n1k̃2 − n2k̃1, n0k̃2 + n2k̃0,−n0k̃1 − n1k̃0

)
, (33)

[k̃ j, (n o k̃)l ] = iε jlm(n o k̃)m. (34)

3.2. Correspondence Rules for the Wigner Function

Taking into account the relation (24), we observe that

WKjρ(n) = Φ1/2(L2)PKjρ(n) = D
(0)
L (K̂j)Wρ(n),

D(0)
L (K̂j) = Φ1/2(L2)D(+1)

L (K̂j)Φ
−1/2(L2).

In other words, the elements of the D algebra for the Wigner function and P functions
are related through a similarity transformation generated by the operator (23). This rep-
resentation is quite convenient since the vector field (16) is invariant under the action of
the Laplace–Beltrami operator (15). Transforming the components of the pseudo-Bloch
vector (6) and making use of the orthogonality relation (18), we arrive at the following form
of the CR for the Wigner function (see Appendix A):

D(0)
L,R(K̂j) =

1
2

{
nj A(L2)− i(n o k̃)jB(L2)± k̃ j

}
, (35)

where

A(L2) =
1
2ε

Ψ(L2)− ε

2
Ψ−1(L2), B(L2) = εΨ−1(L2), (36)

Ψ(L2) =

[
2− 4ε2(2L2 + 1) + 2

√
1− 4ε2(2L2 + 1) + 16ε4L4

]1/2
, (37)

and
ε = (2k− 1)−1. (38)
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4. Evolution Equations for the Wigner Function

Applying the CR (35) to linear Hamiltonians, commonly appearing in the description
of non-degenerated parametric processes, with a realization in terms of boson operators,
K̂0 =

(
â† â + b̂† b̂ + 1

)
/2, K̂+ = â† b̂†, K̂− = âb̂, [57,58],

Ĥ =
2

∑
j=0

cjK̂j, (39)

we immediately obtain the equation of motion for the Wigner function [37],

i∂tWρ(n) =
(
c0k̃0 − c1k̃1 − c2k̃2

)
Wρ(n), (40)

where the first-order differential operators k̃ j are defined in (16).
In the case of quadratic Hamiltonians,

Ĥ = χK̂2
j , (41)

the evolution equations take the form

i∂tWρ(n) = ±χ
(

nj A(L2)− i(n× k̃)jB(L2)
)

k̃ jWρ(n), (42)

where the sign “+” is for j = 0 and the sign “−” is for j = 1, 2.
For instance, the equation of motion for the Hamiltonian describing Kerr-like nonlin-

earity [59],
Ĥ = χK̂2

0 (43)

in hyperbolic coordinates (τ, φ) is reduced to

∂tWρ(τ, φ) = −χ
(

cosh τA(L2) + sinh τ∂τ B(L2)
)

∂φWρ(τ, φ). (44)

Equation (42) admit exact solutions in the following form

Wρ(n|t) =
1

2π

∫
dν(λ)

∫
dn′Φ−1/2(λ)P−1/2+iλ(n · n′)Qρ(n′|t), (45)

in accordance with relations (24), where the corresponding Qρ(n|t) functions in the basis
of eigenfunctions of the k̃ j operators satisfy some first-order partial differential equations.
In Appendies B and B.1, we present explicit forms of Qρ(n|t) for quadratic Hamiltonians
possessing a discrete spectrum (43) and a continuous spectrum,

Ĥ = χK̂2
2, (46)

describing effective four-photon processes [60,61]. It is important to stress that Hamiltoni-
ans (43) and (46) are not unitary equivalent under SU(1, 1) transformations and describe
qualitatively different evolutions on the hyperboloid.

A comparison of the quantum and semiclassical dynamics is given in the next section.

5. Semiclassical Limit

The semiclassical expansion is usually performed over the inverse powers of some
physical parameter (the semiclassical parameter), which acquires a large value for a given
quantum system prepared in an appropriate initial state. From a mathematical perspective,
the semiclassical limit for systems with the SU(1, 1) symmetry corresponds to a large
Bargman index, as can be observed from Equation (35). Then, ε defined in Equation (38)
can be considered as a semiclassical expansion parameter whenever ε � 1. In physical
realizations, this corresponds to the inverse of the difference of excitations in two-mode
interaction Hamiltonians, the inverse coupling constant for the singular oscillator, etc. [28].
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It is easy to see that in the semiclassical limit, the operational function (37) behaves as

Ψ(L2) ' 2− ε2 (2L2 + 1)
2

, (47)

so that
A(L2) = ε−1 + O(ε), B(L2) = O(ε).

Thus, the zero-order approximation of the CR for the Wigner function (35) reads as,

D(0)
L,R(K̂j) =

1
2

(
ε−1nj ± k̃ j

)
+ O(ε), (48)

while for the Q and P functions, the CRs preserve their original structure (33).
In particular, the evolution Equation (42) is reduced to the Liouville form:

∂tWρ = −ε−1{WK2
j
, Wρ}P + O(ε), (49)

{ f , g}P =
1

sinh τ

(
∂φ f ∂τ g− ∂τ f ∂φg

)
(50)

Here, the leading term is a first-order differential operator describing the classical dynamics,
and the first-order corrections to the classical motion vanish. According to Equation (49),
every point of the Wigner function evolves along the corresponding classical trajectory
n(t) = (τ(t), φ(t)),

Wρ(n|t) = Wρ(n(t)), (51)

leading to a deformation of the initial distribution in the course of an anharmonic dynamics.
This, so-called Truncated Wigner Approximation [62–71] has been widely used in quantum
systems with different symmetries for the description of short-time dynamic effects.

It is worth observing that the semiclassical parameter is inversely proportional to
the representation (Bargman) index, which is consistent with the semiclassical limit of the
Berezin–Toeplitz quantization approach [53–55]. However, its explicit form is different for
every s-parametrized quasidistribution W(s)

ρ (n). For instance, if follows from (33) that

QK2
0
∗Qρ =

(
D(−1)

L (K̂0)
)2

Qρ = QK2
0
Qρ +

(2k + 1)−1

sinh τ
∂τQK2

0
∂φQρ + O(k−2),

which implies that the appropriate semiclassical parameter for the Q function is (2k + 1)−1

instead of (2k− 1)−1 as for the Wigner function. In particular, the equations of motion for
the Q and P functions expanded in powers of ε = (2k− 1)−1 do not acquire the form (49)
in the semiclassical limit, since the first-order corrections to the Poisson brackets would be
of order O(1).

In the case of evolution generated by the Hamiltonian (43), the classical equations
of motion,

τ̇ = 0, φ̇ = −2kχ cosh τ, (52)

describe well only the initial deformation (squeezing) of the coherent state (5) up to times√
kχtsem . 1. The early stage of squeezing of the distribution is followed by the formation

of N-component Schrodinger cat states at χt = π/N, along with a typical interference
pattern, the description of which is beyond the semiclassical approximation. In Figure 1 we
plot the semiclassical (51) and quantum (45), (A14) evolution of the Wigner function of an
initial coherent state (5) under the action of the Hamiltonian (43).
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Figure 1. Snapshots of the Wigner function describing the evolution generated by the Hamiltonian
Ĥ = K̂2

0 at times t = 0, 0.2, π/3, π/2 for the initial state |τ = 1.5, φ = 0〉. The upper panel and lower
panels describe the semiclassical and quantum dynamics correspondingly.

The evolution generated by the Hamiltonian (46) is very different from that induced
by (43). The classical trajectories are obtained from

φ̇ = 2kχ sin2 φ cosh τ, (53)

τ̇ = −2kχ sinh τ sin φ cos φ, (54)

preserving the integral of motion E = k2(sinh τ sin φ)2. The initial coherent state |τ =
0, φ = 0〉 located at the origin of the hyperboloid suffers a deformation in the vicinity of the
minimum of the classical potential (mainly in the valley along the axis n2),

〈n|K̂2
2|n〉 ≈ k2 sinh2 τ sin2 φ, (55)

according to Equations (53) and (54) for χtsem . 1 at long time scales. In other words, the
quantum evolution of the initial distribution corresponding to the coherent state located at
the minimum of the potential (55) is well simulated by semiclassical dynamics. In Figure 2,
we plot the semiclassical (51) and quantum (45), (A29) evolution of the Wigner function of
an initial coherent state (5) located at τ = 0 under the action of the Hamiltonian (46).The
main difference between the semiclassical and the quantum evolutions of the Wigner
function is the appearance of small amplitude ripplings and a slight bending toward the
axis n1 in the latter. Observe that in this case, there is no emergence of the Schrodinger
cat states. It is worth noting that the long-time quantum evolution of distributions that
are not located initially at the origin of the hyperboloid may significantly differ from its
classical counterpart.
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Figure 2. Snapshots of the Wigner function describing the evolution generated by the Hamiltonian
Ĥ = K̂2

2 at times t = 0, 0.2, 1, 2 for the initial state |τ = 0, φ = 0〉. The upper panel and lower panels
describe the semiclassical and quantum dynamics correspondingly.

6. Conclusions

We have obtained the correspondence rules for the s-parametrized distributions in the
hyperbolic phase space. The relations (33) and (35) allow us to deduce the exact evolution
equations for polynomial Hamiltonians on the SU(1, 1) algebra generators. Those equations
can be solved in a systematic way for diagonal quadratic Hamiltonians (41).

The semiclassical limit corresponds to the large values of the Bargman index, which
labels the discrete irreducible representations of the SU(1, 1) group. The leading order term
of the semiclassical expansion of the evolution equation for the Wigner function is reduced
to the Poisson brackets on the hyperboloid. Surprisingly, the exact long-term non-harmonic
evolution of certain states generated by the continuous-spectrum Hamiltonian (46) is well
described in the semiclassical approximation (49). This contradicts our intuition of a
typical behavior of phase-space distributions, the evolution of which is governed by non-
linear (on the group generators) Hamiltonians, as occurs in case of the discrete-spectrum
Hamiltonian (43), where the emergence of the Schrodinger cat states cannot be explained
from the classical point of view.
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to the published version of the manuscript.
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Appendix A

In this Appendix, we apply the similarity transformation generated by the differ-
ential operator (23) to the components of the pseudo-Bloch vector (6), i.e., we compute
Φ1/2(L2)njΦ

−1/2(L2), j = 0, 1, 2.
We outline the procedure on the example of n0 = cosh τ. Applying

Φ1/2(L2) cosh τΦ−1/2(L2) to the harmonic function (11), and making use of the recurrence
relation for the associated Legendre polynomials
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cosh τPn
ν (cosh τ) =

ν− n + 1
2ν + 1

Pn
ν+1(cosh τ) +

ν + n
2ν + 1

Pn
ν−1(cosh τ), (A1)

we get

Φ1/2(L2) cosh τΦ−1/2(L2)uλ
n(n) =

Φ−1/2(λ)

2iλ

(−1)nΓ
(

1
2 + iλ

)
Γ
(

1
2 + iλ + n

) einφ ×

×
[(

1
2
+ iλ− n

)
Φ(λ− i)Pn

1
2+iλ(cosh τ)−

(
1
2
− iλ− n

)
Φ(λ + i)Pn

− 3
2+iλ(cosh τ)

]
,

where Φ(λ) is defined in (27). Now, expressing the associated Legendre functions that
appear in the above expression in terms of the conic function Pn

1
2+iλ

(cosh τ), by means of

the relations

Pn
1
2+iλ(cosh τ) =

1
1
2 + iλ− n

[(
1
2
+ iλ

)
cosh τ + sinh τ∂τ

]
Pn
− 1

2+iλ(cosh τ), (A2)

Pn
− 3

2+iλ(cosh τ) =
1

− 1
2 + iλ + n

[(
−1

2
+ iλ

)
cosh τ − sinh τ∂τ

]
Pn
− 1

2+iλ(cosh τ), (A3)

we arrive at the following transformation rule:

Φ1/2(L2) cosh τΦ−1/2(L2)uλ
n(n) = [a(λ) cosh τ + b(λ) sinh τ∂τ ]uλ

n(n) (A4)

where

a(λ) =
Φ−1/2(λ)

2iλ

[(
1
2
+ iλ

)
Φ1/2(λ− i) +

(
−1

2
+ iλ

)
Φ1/2(λ + i)

]
, (A5)

b(λ) =
Φ−1/2(λ)

2iλ

[
Φ1/2(λ− i)−Φ1/2(λ + i)

]
. (A6)

The product Φ−1/2(λ)Φ1/2(λ± i) can be conveniently rewritten as

Φ−1/2(λ)Φ1/2(λ− i) =
ϕ 1

2+iλ

1− ε(1/2 + iλ)
,

Φ−1/2(λ)Φ1/2(λ + i) =
ϕ− 1

2+iλ

1 + ε(−1/2 + iλ)
,

ϕ 1
2+iλ =

√
1− ε2(1/2 + iλ),

where ε = (2k − 1)−1. Observing that sinh τ∂τ = i(n o k̃)0, we represent the required
transformation in the vector form

Φ1/2(L2)n0Φ−1/2(L2) = a(λ)n0 + ib(λ)(n o k̃)0, (A7)

where

a(ν) =
1

2ν + 1

[
(ν + 1)ϕν+1

1− ε(ν + 1)
+

νϕν

1 + εν

]
, b(ν) =

1
2ν + 1

[
ϕν+1

1− ε(ν + 1)
+

ϕν

1 + εν

]
(A8)

In a very similar way, one obtains

Φ1/2(L2)njΦ
−1/2(L2) = a(λ)nj + ib(λ)(n o k̃)j. (A9)

The transformation of i(n o k̃)j can be simplified by making use of the orthogonality
relation (18), obtaining
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Φ1/2(L2)i(n o k̃)jΦ
−1/2(L2) = i[a(λ)− b(λ)](n o k̃)j −

(
λ2 +

1
4

)
b(λ)nj. (A10)

Combining (A9) and (A10) in the correspondence rule for the P-function (33),

Φ1/2(L2)

[
(k− 1)nj −

i
2
(n o k̃)j

]
Φ−1/2(L2)uλ

n(n) =

1
2

{[
2(k− 1)a(λ) +

(
λ2 +

1
4

)
b(λ)

]
nj + i[(2k− 1)b(λ)− a(λ)](n o k̃)j

}
uλ

n(n) =

1
2

{
nj

[
1
2ε

Ψ(L2)− ε

2
Ψ−1(L2)

]
− iε(n o k̃)jΨ−1(L2)

}
uλ

n(n) (A11)

and introducing (36) and (37), we finally arrive at expression (35).

Appendix B

Taking into account the expressions for the elements of the D-algebra (30)–(33), we
immediately obtain the evolution equation for the Qρ(n) function generated by the Hamil-
tonian (43):

∂tQρ(n) =− χ(2k cosh τ + sinh τ∂τ)∂φQρ(n). (A12)

The explicit expression for Q(n|t) in case of an initial coherent state (5) |n0〉 can be easily
obtained by a direct computation as follows:

Qρ(n|t) = |〈n0|e−iχK̂2
0 |n0〉|2 (A13)

= cosh−2k τ

2
cosh−2k τ0

2

∣∣∣∑
m

γm(tanh
τ

2
tanh

τ0

2
)mei(φ−φ0)m−it(m+k)2

∣∣∣2, (A14)

γm =
Γ(m + 2k)
m!Γ(2k)

,

since K̂0 is diagonal in the basis (3). However, it is instructive to solve Equation (A12) in a
systematic way. The expansion coefficients of Q(n|t) in Fourier series (eigenfunctions of
the k̃0 operator)

Qρ(n|t) =
∞

∑
n=−∞

cn(τ|t)einφ, (A15)

satisfy the following first-order differential equation:

∂tcn + in sinh τ∂τcn = −in 2k cosh τcn, (A16)

where the initial condition according to (9) is

cn(τ|0) =
1

2π

∫ 2π

0
dφe−inφ

(
1 + n · n0

2

)−2k
(A17)

= cosh−2k τ

2
cosh−2k τ0

2
e−iφ0n ∑

m
γmγm−n(tanh

τ

2
tanh

τ0

2
)2m−n, (A18)

which can be also represented as

cn(τ|0) = 22k(−1)ne−iφ0n Γ(2k)
Γ(2k− n)

(cosh τ + cosh τ0)
−2kPn

−2k

(
1 + cosh τ cosh τ0

cosh τ + cosh τ0

)
,

where Pn
−2k(x) is the Legendre function of the first kind [56].

Then, the solution of (A16) has the form
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cn(τ|t) =
1

sinh2k τ
sinh2k

(
τn(t)

)
cn(0, τn(t)), (A19)

τn(t) = 2arctanh(e−int tanh τ/2). (A20)

Substituting (A19) into (A15), we return after simple algebra to the expression (A14).

Appendix B.1

The evolution equation for the Qρ(n) function generated by the Hamiltonian (46) is

i∂tQρ(n) = −(2kn2 + i(n× k̃)2)k̃2Qρ(n). (A21)

In the canonical variables X = (x, y)

y = ln(cosh τ + sinh τ cos φ), x = sinh τ sin φ,

{y, x}P = 1,

with {., .}P being the Poisson brackets defined in (50), and Equation (A21) acquires the form

∂tQρ(X) = (2kx + (x2 + 1)∂x + x∂y)∂yQρ(X). (A22)

The expansion coefficients in the Fourier integral

Qρ(X|t) =
∫

dαeiαycα(x|t) (A23)

satisfy the equation

∂tcα + iα(x2 + 1)∂xcα = −iαx(−2k + iα)cα, (A24)

where cα(x|0) corresponds to the initial coherent state |τ = 0, φ = 0〉, with

Qρ(τ, φ|0) =
(

1 + cosh τ

2

)−2k
,

are

cα(x|0) =
22k

2π

∫
dye−iαy

(
1
2

e−y(1 + e2y + x2) + 1
)−2k

(A25)

= 22k+1e−iαA+πα (−1)k

(4x2)k
Γ(2k− iα)

Γ(2α)
Qiα

2k−1(−i/x), (A26)

where Qiα
2k−1(−i/x) is the Legendre function of the second kind [56] and tanh A = x2(x2 + 2

)−1.
The solution of Equation (A24) takes the form

cα(x|t) = (1 + x2)k+iα/2(1 + tan2 χα(t))−k−iα/2cα(tan χα(t)|0), (A27)

χα(t) = arctan(x) + iαt, (A28)

leading finally to the following expression for the evolved Q function in variables (x, y):

Qρ(X|t) =
∫

dαeiαy(1 + x2)k+iα/2(1 + tan2 χα(t))−k−iα/2cα(tan χα(t)|0). (A29)
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