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Abstract: A generalized form of Landauer’s bound on the dissipative cost of classical information
processing in quantum-mechanical systems is proved using a new approach. This approach sidesteps
some prominent objections to standard proofs of Landauer’s bound—broadly interpreted here as a
nonzero lower bound on the amount of energy that is irreversibly transferred from a physical system
to its environment for each bit of information that is lost from the system—while establishing a far
more general result. Specializations of our generalized Landauer bound for ideal and non-ideal
information processing operations, including but not limited to the simplified forms for erasure and
logical operations most familiar from the literature, are presented and discussed. These bounds, taken
together, enable reconsideration of the links between logical reversibility, physical reversibility, and
conditioning of operations in contexts that include but are far more general than the thermodynamic
model systems that are most widely invoked in discussions of Landauer’s Principle. Because of
the strategy used to prove the generalized bounds and these specializations, this work may help to
illuminate and resolve some longstanding controversies related to dissipation in computation.

Keywords: Landauer’s Principle; physics of information and computation; irreversibility

1. Introduction

Landauer’s Principle (LP) posits a fundamental link between information and the
physical systems that bear and process it. Since its introduction in 1961 [1], this qualitative
principle and its quantitative expression as the Landauer Bound (LB) or Landauer Limit
(LL) have been refined, restated, formalized and interpreted in a variety of ways 1. While
some hew more closely to Landauer’s original argument than others, virtually all recastings
of (the “energetic form” of) LP express the same essential claim: that the loss of information
from a physical system in contact with a thermal environment at temperature T necessarily
dissipates at least kBT ln(2) of energy into that environment for each bit of information
lost from the system, where kB is Boltzmann’s constant. Formally, this is expressed as
the inequality

∆E ≥ kBT ln(2)Ier

where ∆E is the amount of dissipated energy and Ier is the amount of information erased.
This is the Landauer Bound (LB).

As simple and straightforward as it may appear, the Landauer bound is open to
a wider variety of interpretations than one might expect. This, together with the fact
that it is often unclear which interpretation a given author is adopting or defending,
has contributed to a controversy over the validity of LP that has persisted for decades 2.

1 The literature on Landauer’s Principle is vast, the original paper [1] having been cited well over six thousand
times at this writing. For general background on Landauer’s Principle, including a sampling of historical and
contemporary perspectives, see Refs. [2–4] and references therein.

2 Five examples of exchanges from the literature, spanning more than three decades, are collected in Ref. [5] (as
Refs. [4]–[25] of that work).
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These interpretive ambiguities and controversies have multiple sources, four of which are
particularly relevant to the present work. First, while the mathematical expression of any
physical relationship is obviously ambiguous without clear and precise definition of all
relevant physical quantities, processes, and assumptions, the literature on LP is varied in
how clearly, precisely, and completely authors declare, specify, and justify their choices.
There are more options than might meet the eye—for the dissipated energy E and erased
information Ier, for entropy and other important intermediate quantities that arise in proofs
and demonstrations of the LB, and for the very notion of erasure and definition of an erasure
operation. Second, various authors consider LP in different physical settings. Many studies
provide concrete demonstrations of LP for historically familiar model systems—particularly
the one-molecule gas in a partitioned cylinder (the Szilard engine) or its quantum analog
in the form of the double potential well—and on standard physical relations that apply
to those models. While such demonstrations are appealing in their concreteness, they
are insufficient to establish LP as a general and necessary consequence of physical law.
Third, some authors implicitly interpret the LB—an inequality—to be a claim that the
kBT ln(2) of environmental heating per erased bit is an achievable lower limit while others
regard it simply as an inviolable lower bound that carries no claim of achievability, and the
intention is not always clear. Fourth and finally, methodological objections have been
leveled at various proofs, demonstrations, and arguments in support of LP. If sustained,
these objections would invalidate LP or, as Norton [6] has put it, leave us “without a cogent
justification of Landauer’s Principle”.

As long as controversy over LP persists, its status—and the essential connection it
provides between information and physics—will remain unresolved. This will further
continue to infect debates over related issues like Maxwell’s Demon [2,4] and reversible
computing 3. This state of affairs motivates pursuit of clear and precise proofs of the LB
that can establish it as a direct, transparent, and general consequence of physical law and
that address or sidestep objections and concerns that have hindered its resolution and
broad acceptance.

In this work, we offer such a proof. We prove a very general form of the LB—drawing
from little more than lawful quantum dynamics and established entropic inequalities—and
show how it can be specialized to a variety of ideal and non-ideal classical information
processing operations implemented in closed quantum systems interacting with thermal
environments. (Here we will say that a classical information-processing operation is ideal
if and only if the physical states that encode all distinct computational inputs are perfectly
distinguishable from one another and that the same is true of the physical states that
encode all computational outputs.) Because of the way in which the dissipated energy is
defined in our “generalized Landauer bound” (GLB), and because of the way in which the
lower bound on this dissipated energy is proved, common objections to existing proofs
of LB are sidestepped. These include prominent objections related to the construction of
ensembles and the combining or equating of physical and information-theoretic entropies.
It also provides insight into the link between logical and physical reversibility in physical
implementations of information processing operations.

The paper is organized as follows. In Section 2, we introduce and precisely characterize
the very general physical setting in which we obtain our GLB and define the “trial-averaged”
energy quantity to which this bound pertains. We then present our GLB, define all associ-
ated quantities and processes, and discuss its application to the physical implementation of
arbitrary M-input to N-output (M-to-N) information processing operations in scenarios
where M initial input states of a system are overwritten by N final output states of that
system. Such scenarios accommodate the model systems and processes that are almost
ubiquitously employed in studies of Landauer’s Principle, such as Szilard engines, coupled
potential-well arrays, and field-coupled logic implementations (e.g., [9]), which interact

3 There is an extensive literature on reversible computing, going back to the inaugural work of Bennett [7].
Contemporary understandings of the physical basis for reversible computing are discussed in detail in Ref. [8].
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with thermal environments and exchange heat and work with their surroundings as they
process information 4. Next, we specialize the GLB to ideal and non-ideal Landauer erasure
(i.e., “erasure-by-reset”) processes (M > N = 1), including the simplified forms familiar
from the literature that apply under standard assumptions about the erasure scenario and
protocol. We then specialize the GLB to logically irreversible (M > N > 1) and logically
reversible (M = N ≥ 1) information processing operations. In Section 3, we then present
our proof the GLB. This proof substantially generalizes an approach employed in Ref. [5]
to lower bound the dissipative cost of ideal Landauer erasure processes only. Finally,
in Section 4, we summarize our work and highlight the features that distinguish it from
other studies of Landauer’s Principle and that can help to resolve associated controversies.

2. Generalized Landauer Bound and Applications
2.1. Setup

We consider a family of M individual physical processes

ρ̂Si ⊗ ρ̂Eth → ρ̂SE
′

i i = 0, 1, . . . M− 1

on a globally closed system-environment composite SE , each of which begins with the
system S in one of the M initial states ρ̂Si and the environment E in the thermal state

ρ̂Eth = exp{−ĤE/kBT}.

Here ĤE is the environment Hamiltonian, kB is Boltzmann’s constant, and T is the temper-
ature. The symbol ρ̂ generically denotes quantum mechanical density operators, with su-
perscripts used to label density operators representing states of the global composite SE
and local (reduced) subsystem states of (i.e., of S or E ). Unprimed and primed superscript
labels on density operators denote initial states (at time t = 0) and final states (at time
t = top), respectively.

Consistent with Schrodinger evolution of globally closed composite systems, the initial
and final states of SE are, for the i-th process, related as

Ûi(ρ̂
S
i ⊗ ρ̂Eth)Û

†
i = ρ̂SE

′
i (1)

where Ûi is the unitary operator

Ûi = T
{

exp
[
− i

h̄

∫ top

0
ĤSEi (t)dt

]}
. (2)

Here, ĤSEi (t) is the global Hamiltonian for the i-th process and T denotes the Dyson
time-ordering operator. We specifically consider global Hamiltonians of the form

ĤSEi (t) =
(

ĤS + ĤE + ĤSEint + VSi (t)
)

(3)

where ĤS and ĤE are the system and environment self-Hamiltonians—defined on fixed
Hilbert (state) spaces of S and E , respectively, —ĤSEint is the system-environment interaction
Hamiltonian, and VSi (t) is a finite time-dependent potential energy applied to the system
for the i-th process (i.e., for the initial system state ρ̂Si ). We have allowed, pending later

4 Such scenarios do not, however, accommodate systems like standard CMOS implementations of logic gates,
in which physical encodings of the logical inputs persist in part of the system as the output states are generated
and rendered in another part—i.e., in which the inputs are not physically overwritten by the outputs—and the
outputs persist only as long as the inputs are retained. This does not suggest that there is no “Landauer cost”
to information processing in standard CMOS; it is just to say that formal proof of Landauer’s bound in such a
setting would require modification of the present formalism (not to mention inclusion of additional features
such as external particle sources and sinks). Along with these additional formal complexities, any such proof
would face the very same fundamental issues that arise—and that we seek to illuminate—within the simpler
scenarios considered in this paper and in most studies of Landauer’s Principle.
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specialization, that each of the M independent processes is guided by application of a
different time-dependent process potential VSi (t) to system S , so the differences in the Ûi
for the different processes stem exclusively from differences in the M processes potentials.

This is a very general description of a set of M independent processes resulting from
lawful Schrodinger evolution of a closed quantum system interacting with a(n initially)
thermal bath at temperature T, with each process 5 characterized by its own initial system
state ρ̂Si and applied potential VSi (t) that takes the initial system state ρ̂Si to a final state
ρ̂S
′

i = TrE [ρ̂SE
′

i ]. No assumptions have been made at this point about the mutual distin-
guishability of the initial states or of the final states of the M processes. Nor have any
assumptions been made about the forms of any of the initial system states, final system
states, or final environment states of these processes.

Looking ahead to specialization of this description to various information processing
operations, we will take the initial and final states of M processes to be physically encoded
inputs and outputs of M-input-to-N-output classical information processing operations
implemented in S via those M physical processes. Our ultimate focus will be lower bounds
on the amount of energy transferred to the environment in ideal and imperfect erasure
operations and in logical operations.

Returning to the general description, from which these specialized results will be
obtained, we write the change in the environment energy for the i-th process as

∆〈EEi 〉 = 〈EE
′

i 〉 − 〈EEi 〉 (4)

where 〈EEi 〉 and 〈EE ′i 〉 are the initial and final expected values of the environment energy,
respectively, as given by

〈EEi 〉 = TrE [ρ̂Eth ĤE ] ≡ 〈EEth〉

and
〈EE ′i 〉 = TrE [ρ̂E

′
i ĤE ] with ρ̂E

′
i = TrS [ρ̂SE

′
i ].

Note that, because the composite SE is closed and the process potentials VSi (t) act
only on the system S , such changes in the energy of E result exclusively from exchange of
energy with S . The energy bounds we obtain are specifically lower bounds on the average

〈∆〈EEi 〉〉 =
M−1

∑
i=0

pi∆〈EEi 〉 (5)

of the (expected values of) environment energy changes for the M independent processes.
This corresponds to the kind of average one would straightforwardly obtain from measure-
ments of ∆〈EEi 〉 over large number of individual trials, a fraction pi of which begin with the
joint system prepared in the i-th initial state ρ̂Si ⊗ ρ̂Eth and evolve under applied potential
VSi (t). We emphasize this because proofs and demonstrations of Landauer-like bounds
generally lower bound the dissipation for a single process involving the “average state” of
the ensemble of M states, without explicitly recognizing that any individual trial evolves
only one of the M initial states (i.e., one of the “logical inputs”) and demonstrating that
use of such an average state to obtain dissipation bounds is a valid surrogate for averaging
dissipation over the M trials. Since we consider bounds on the “trial-averaged” change in
the environment energy 〈∆〈EEi 〉〉 in this work, the results presented here are immune to
concerns related to this practice. We present, discuss, and specialize our generalized bound
in the remainder of this section, and provide the associated proof in Section 3.

5 The transformation of the local state of S resulting from this process, which generally is not unitary (as
is evolution of the global state of SE ), is described by a quantum operation or completely positive trace
preserving map.
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2.2. The Generalized Landauer Bound

The central result of this work, from which all others follow as specializations, is
proof of a fundamental lower bound on the average environment energy increase 〈∆〈EEi 〉〉
over the M independent processes described above. Such a bound is obtained under two
different assumptions about the set of M time-dependent potentials VSi (t) associated with
these processes, the second of which is what we call the generalized Landauer bound.

The first bound—which we will call the “conditional energy bound”—makes no
assumption about the relationships between the M process potentials VSi (t). 6 The condi-
tional energy bound, proven in Section 3.1 as a stepping stone to proof of the unconditional
energy bound (the GLB), is simply as follows:

• Conditional Energy Bound: The energy change in the environment E , averaged over
the M processes, is lower bounded as

〈∆〈EEi 〉〉 ≥ −kBT ln(2)∑
i

pi∆SSi (6)

where
∆SSi = S(ρ̂S

′
i )− S(ρ̂Si ) (7)

is the increase in the von Neumann entropy—defined for any density operator ρ̂ as
S(ρ̂) ≡ −Tr[ρ̂ log2 ρ̂]—of system S for the i-th processes.

Without granting any thermodynamic significance to the von Neumann entropy, we
note that the “T∆S” form of this bound has a thermodynamic ring to it. Formally, it simply
says that, for each of the M processes, any reduction in the von Neumann entropy of a
system increases the energy of a thermal bath with which it is in contact by an amount
that is never smaller than the product of the system entropy decrease and the initial bath
temperature (with the kB ln(2) factor accommodating differences in “thermodynamic units”
and “information theoretic” units of entropy).

We can also observe both a similarity and a striking difference between the conditional
energy bound and Landauer’s lower bound on the energy cost of irreversible information
loss. The similarity is the presence of the signature kBT ln(2) proportionality constant
between energy and information in the LB. The striking difference, however, is the complete
absence from this bound of any quantity that could rightfully be interpreted as information
loss associated with an M-input information processing operation. 7 Finally, we note that
nothing in the conditional energy bound precludes restoration of any or all of the evolved
states ρ̂S

′
i of S to their initial states ρ̂Si by application of an appropriately chosen potential

to the system after time top, e.g., a time-reversed version of VSi (t). Note that this is the case
even if the M final states ρ̂S

′
i are not mutually distinguishable.

As shown below, however, an additional term in the energy bound—one that does
have information-theoretic significance and is directly identifiable with irreversible system-
to-environment energy flow—emerges under a one straightforward condition on the set of
M process potentials: that the same process potential VS (t) is unconditionally applied to
the system whatever the initial state (i.e., VSi (t) = VS (t) ∀i). This unconditional energy
bound—which we will call the “generalized Landauer bound” and prove in Section 3.2—is
as follows:

6 The adjective “conditional” recognizes that the process potential is conditioned upon the initial state, i.e., that
if the initial system state is ρ̂Si then the process potential is VSi (t).

7 The entropy differences ∆SSi that are averaged over in the bound (8) are changes in the self-entropies of
the M individual encoding states—not any entropic measure associated with information encoded in the
M-ary ensemble of states ρ̂Si . The individual ∆SSi can be positive, negative, or zero—as can their ensemble
average—whether information is gained, lost, or preserved in the process.
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• Generalized Landauer Bound: The energy change in the environment E , averaged
over the M processes, is lower bounded as

〈∆〈EEi 〉〉 ≥ −kBT ln(2)∆χS − kBT ln(2)∑
i

pi∆SSi (8)

where
∆χS = χS

′ − χS (9)

is the change in the Holevo information [10] for the ensemble of M system states—
defined as

χ = S

(
∑

i
pi ρ̂i

)
−∑

i
piS(ρ̂i) (10)

for any ensemble ε = {pi, ρ̂i} of density operators—and ∆SSi is the average self-
entropy change for the i-th process as defined in (7).

The unconditional energy bound (8) is identical to the conditional bound (6) apart
from the emergence of the term proportional to the change in Holevo information of the
ensemble of system states resulting from the operation. This term, which necessarily results
from the unconditional nature of the operation, does have information theoretic significance
in the present context. Specifically, the Holevo information of an ensemble of system states
is an established upper bound on the accessible information—the maximum amount of
classical information encoded in the ensemble that can be retrieved from physically possible
quantum measurements on S . The Holevo information for ensemble ε = {pi, ρ̂i} is upper
bounded as χ ≤ H({pi}), where H({pi}) = −∑i pi log2 pi is the Shannon entropy (or
Shannon “information”) [11] of probability mass function {pi}. Equality is achieved in
the upper bound when all of the states ρ̂i in the ensemble are mutually distinguishable,
i.e., when they have support on disjoint subspaces of the system’s state space.

Two aspects of the “information term” −kBT ln(2)∆χS in the generalized Landauer
bound are of particular note. First, because Holevo information is nonincreasing under
quantum operations, this term is nonnegative. (Specifically, this term is zero if the operation
preserves Holevo information and is positive if Holevo information is lost from S .) Second,
if ∆χS is negative, so energy is transferred from system to environment under loss of Holevo
information from the system, this energy transfer is irreversible. Application of any new
time-dependent potential (or potentials) to the system after the conclusion of the operation
(i.e., after t = top) would amount to another quantum operation, and, since quantum
operations cannot increase Holevo information as mentioned above, there is no way to
“get the information back” in S that has been lost to E a result of the operation. This is to
say that the irreversible loss of Holevo information from a physical system is accompanied
by irreversible transfer of energy from the system to the surrounding environment (i.e.,
energy dissipation), which is the essential claim of Landauer’s Principle stated precisely
for scenarios that are substantially more general than those typically considered.

The fact that the proof of this unconditional bound (Section 3.2) differs from the
proof of the conditional bound (Section 3.1) only in the lack of conditioning of the process
potential on the inital state indicates that the physical origin of the energy cost of irreversible
information loss is related to this lack of conditioning. 8 This is consistent with widespread
identification of dissipation with a loss or erasure of “unknown data” or of information
“without a copy”, although such terminology can be taken to suggest that the impersonal
physical costs of physical processes depend on whether some sentient being knows the
data being processed or whether there happens to be a copy of this data sitting around
somewhere. Here we associate the energy cost of irreversible information loss with lack
of conditioning of the operation on the initial state—unconditional application of the

8 We note as an aside that, in conventional information processing devices, the primitive operations are
performed unconditionally. In the reversible computing paradigm, however, elementary operations are
performed conditionally.
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same potential VS (t) whatever the initial state rather than selective application of the
potential VSi (t) for the i-th initial state—which is intended to discourage such mysterious
connotations while otherwise being similar in spirit. A sentient being performing the
operation manually would have to “know” or have access to a “copy” of the initial state in
order to act conditionally—to select the appropriate potential VSi (t) for application—and
would otherwise be left with no option other than to act unconditionally. If the operation
were automated, as would be the case for some information processing device buried deep
within a functioning computing system, conditional operation of this device would require
a record of the initial state of S accessible to the mechanism that manipulates the device
potential (e.g., in memory) 9. Such “internal conditioning” can be achieved via systems
external to S that hold records of logical inputs and that interact continuously with S
throughout execution of operations and, where applicable, their reversal (e.g., [9,13]).

2.3. Specialization: Energy Bounds for Landauer Erasure and Logical Operations

We now specialize the generalized Landauer bound for deterministic M-to-N classical
information processing operations 10 implemented in S . By an M-to-N classical information
processing operation, we mean a surjective M-to-N mapping (M ≥ N)—injective for
M = N and non-injective for M > N—from M discrete input symbols xi ∈ {x0, x1, . . . , xM}
to N discrete output symbols yj ∈ {y0, y1, . . . , yN}. We take the initial and final states of
M processes to be physical encodings of inputs and outputs of S , with input xi encoded
by preparing S in state ρ̂i. Such operations generally include Landauer erasure (M > N
with N = 1), other logically irreversible operations (M > N with N > 1), and logically
reversible operations 11 (M = N).

To specialize the generalized Landauer bound for such operations, we note first that
for an M-to-N operation there are N subsets of the M inputs, each subset associated with
one of the N outputs. For the j-th of these subsets, every input xi in the subset maps into
the same output yj. Denoting the set of indices i that label inputs xi mapping into the j-th
output as i ∈ {i}j, and the final state of S that encodes output yj as ρ̂S

′
j , we can stipulate

the following for a set of M physical state transformations

ρ̂Si ⊗ ρ̂Eth → ρ̂SE
′

i i = 0, 1, . . . M− 1

regarded as a physical implementation of this operation:

TrE [ρ̂SE
′

i ] = ρ̂S
′

j for all i ∈ {i}j j = 0, 1, . . . N − 1.

This condition simply states that for all inputs xi that map into output yj, the initial physical
states ρ̂Si of S that encode these inputs are transformed into the same final state ρ̂S

′
j that

encodes output yj.

9 One may naturally wonder if this external copy could be avoided by including, at an initial stage of the
process, a measurement that would determine the inital state and then act accordingly. This does not solve
the problem, however, as the outcome of the measurement must be rendered in a physical system outside
of the device on which the measurement is performed, which constitutes creation of an external copy. (see
exchange between Norton [6] and Ladyman and Robertson [12] on this issue, and [5] for related remarks.)
This solution is problematic for other reasons as well, including possible lack of distinguishability of initial
states by any measurement for some ensembles and, in some quantum settings, unavoidable modification of
the initial states by the measurement process.

10 To be clear, M and N here are the respective numbers of distinct inputs and outputs to the information
processing operation—not the numbers of digits used to represent the inputs and outputs in any particular
number system. Consider, for example, the Boolean function implemented by a binary full adder, which
has a 3-bit input and a 2-bit output. For this operation, the number of distinct inputs (or input vectors) is
M = 23 = 8 and the number of distinct outputs (or output vectors) is N = 22 = 4. Note more generally that
N ≤ 4 for Boolean operations with 2-output bits, since some such operations—unlike the full adder—do not
generate outputs corresponding to all 22 = 4 possible combinations of two bit values.

11 Logically reversible operations include noiseless communication and memory.
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We now apply this condition to specialization of the generalized Landauer bound for
Landauer erasure and logical operations.

2.3.1. Landauer Erasure

In a Landauer erasure operation, all input (initial) states are “reset” to the same output
(final) state. Thus, N = 1 for any M-input Landauer erasure operation: there is only one
“logical” output y0 and one output state (or “reset” state)

ρ̂S
′

0 ≡ ρ̂Sreset.

The immediate consequence of this for the generalized Landauer bound is that there is
no “ensemble” of output states. Rather, there is a single output state that obtains with
unit probability for all input states so χS

′
= 0. With this, we consider two Landauer

erasure scenarios.
First, we make no assumption about the distinguishability of the input states, allow-

ing that they may be imperfectly distinguishable. For this very general case, we have
the following:

• Landauer Bound for Erasure (General Encodings): The average energy change in
the environment E for an M-input Landauer erasure operation implemented in S ,
weighted by the relative frequencies pi with which the inputs xi are encoded, is lower
bounded as

〈∆〈EEi 〉〉 ≥ kBT ln(2)χS − kBT ln(2)∑
i

pi∆SSi (11)

where χS is the Holevo information of the input ensemble εS = {pi, ρ̂Si }.
Next, we assume that the input states ρ̂Si are mutually distinguishable, in which case

we have the following:

• Landauer Bound for Erasure (Distinguishable Encodings): The average energy
change in the environment E for an M-input Landauer erasure operation imple-
mented in S , weighted by the relative frequencies pi with which the inputs xi are
encoded, is lower bounded as

〈∆〈EEi 〉〉 ≥ kBT ln(2)H(X)− kBT ln(2)∑
i

pi∆SSi (12)

where H(X) is the Shannon entropy [11] of the (probability mass function {pi} of the)
input random variable X = {pi, xi}.
In both cases,

∆SSi = S(ρ̂Sreset)− S(ρ̂Si ) (13)

is the change in the von Neumann entropy of S for erasure of the i-th input.
Since χS ≤ H(X), with equality for mutually distinguishable ρ̂i, the second bound

holds for both general and distinguishable encodings. However, the bound for general
encodings is tighter when the input states are imperfectly distinguishable, and quantifies
the reduction in the lower bound on the physical cost of erasing the (smaller) amount of
information that is actually encoded in S when the states are imperfectly distinguishable.

Further specialization to more familiar forms follows immediately from a series of
three assumptions that are commonly made in the literature. The first assumption is that
the self-entropies of all input states and the reset state are the same (i.e., ∆SSi = 0 for all i),
in which case the second term vanishes and

〈∆〈EEi 〉〉 ≥ kBT ln(2)H(X).

The second is that M = 2, i.e., that a single binary digit is being erased, in which case
H(X) = H2(p0) where H2(p0) = −p0 log2 p0 − (1− p0) log2(1− p0) is the binary entropy
function. This leaves
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〈∆〈EEi 〉〉 ≥ kBT ln(2)H2(p0).

The third and final assumption is uniform encoding, so p0 = 1− p0 = 1
2 and

〈∆〈EEi 〉〉 ≥ kBT ln(2)

which translates directly to the oft quoted lower bound of kBT ln(2) on the energy cost
of erasing one bit. Recall that all of this is for unconditional erasure: the information
term in the generalized Landauer bound—and thus in all of the specialized bounds given
here—vanishes for conditional operations.

2.3.2. Logically Irreversible Operations

In M-to-N logical operations, M inputs map into N outputs such that, for every output
yj, the subset of inputs xi with indices i ∈ {i}j map into output yj. There are a number
possible scenarios for physical implementation of any such operation, each with an energy
cost bounded by its own specialization of the generalized Landauer bound. There are four
classes of these scenarios, corresponding to cases where either, both, or neither of the set of
M input states and the set of N output states are mutually distinguishable. Here we focus
on the simplest case, where both the set of input states ρ̂Si and the set of output states ρ̂S

′
j

are mutually distinguishable.
For this case, the ensemble εS

′
= {pi, ρ̂S

′
i } of evolved input states collapses to the

ensemble εS
′
= {qj, ρ̂S

′
j } of output states, where

qj = ∑
i∈{i}j

pi (14)

denotes the relative frequency of the j-th output. With this, and simplification of the Holevo
information to Shannon entropy for ensembles of mutually distinguishable input states
and mutually distinguishable output states, we have the following:

• Landauer Bound for Logical Operations (Distinguishable Encodings): The average
energy change in the environment E for an M-input, N-output logical operation
implemented in S , weighted by the relative frequencies pi with which the inputs xi
are encoded, is lower bounded as

〈∆〈EEi 〉〉 ≥ kBT ln(2)[H(X)− H(Y)]− kBT ln(2)∑
i

pi∆SSi (15)

where H(X) and H(Y) are the Shannon entropies of the input and output random
variables X = {pi, xi} and Y = {qj, yj}, respectively. Equivalently 12

〈∆〈EEi 〉〉 ≥ kBT ln(2)H(X|Y)− kBT ln(2)∑
i

pi∆SSi (16)

where H(X|Y) is the conditional entropy for the correlated random variables X and Y.

Here
∆SSi = S(ρ̂S

′
j )− S(ρ̂Si ) for all i ∈ {i}j (17)

is the change in the von Neumann entropy of S for transformation of the i-th input
state. More familiar forms of the bounds (15) and (16)—forms that include only the first

12 The conditional entropy H(X|Y), which is the Shannon information in X that is not in Y or the input in-
formation that is lost in the input-output mapping from X to Y, generally is not equal to the difference
H(X)− H(Y) between the Shannon entropies of correlated random variables X and Y. In general, they are
related as H(X|Y) = H(X, Y) − H(Y), where H(X, Y) is the joint entropy of X and Y. However, for the
mappings that describe the input-output relation for deterministic logical operations, H(X, Y) = H(X) so
H(X|Y) = H(X)− H(Y).
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(information) term on the right-hand side—emerge under the common assumption that all
input and output states have the same von Neumann entropy (so the second term vanishes).

3. Trial-Averaging Proof of the GLB

We now prove the generalized Landauer bound (8)—the lower bound on the average
energy change 〈∆〈EEi 〉〉 of the environment over the M processes for unconditionally
applied process potentials. The energy bound (6) for conditional process potentials is
obtained along the way. The proof generalizes the approach taken in [5], which considered
ideal Landauer erasure processes only 13.

3.1. Proof of the Conditional Energy Bound

We lower bound the trial-averaged environment energy increase

〈∆〈EEi 〉〉 = ∑
i

pi∆〈EEi 〉 = ∑
i

pi

(
〈EE ′i 〉 − 〈EEi 〉

)
by lower bounding the individual 〈∆Ei〉, noting that

∆〈EEi 〉 = 〈EE
′

i 〉 − 〈EEth〉 (18)

for all M processes since each process begins with the environment in a thermal state. Here
〈EEth〉 = TrE [ρ̂EthĤE ] is the energy of the environment when it is in a thermal state.

For the i-th process the environmental energy change is lower bounded as

∆〈EEi 〉 ≥ kBT ln(2)∆SEi (19)

by Partovi’s inequality [14], which applies precisely to the scenario at hand: a quantum
system initially in a thermal state—here our environment E—that undergoes a change
in entropy.

To lower bound the environmental entropy change ∆SEi for the i-th process, we make
use of the fact that SE is a closed composite that undergoes unitary Schrodinger evolution
from an initial state ρSEi = ρSi ⊗ ρ̂Eth to final state ρ̂SE

′
i = Ûi ρ̂

SE
i Û†

i . Since von Neumann
entropy is conserved under unitary evolution, we have

S(ρ̂SE
′

i ) = S(ρ̂SEi ).

For the initial state of SE , we have

S(ρ̂SEi ) = S(ρSi ⊗ ρ̂Eth) = S(ρ̂Si ) + S(ρ̂Eth)

by the additivity of von Neumann entropy for separable joint states of bipartite composite
systems. For the final state of SE , we have

S(ρ̂SE
′

i ) ≤ S(ρ̂S
′

i ) + S(ρ̂E
′

i )

by the subadditivity of von Neumann entropy for general joint states of such systems.
The above three relations together yield

S(ρ̂S
′

i ) + S(ρ̂E
′

i ) ≥ S(ρ̂Si ) + S(ρ̂Eth)

13 Note that in Ref. [5] there are mathematical typesetting errors in Equations (9), (11) and (12), in the unnumbered
equation before Equation (4) and the unnumbered equation between Equation (11) and Equation (12), and the
inline equation appearing immediately after Equation (12). These typos, which did not effect the results of
that work, have been corrected in all analogous expressions appearing in this work. The author thanks Sam
Fletcher for bringing these errors to his attention.
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or
S(ρ̂E

′
i )− S(ρ̂Eth) ≥ −[S(ρ̂

S ′
i )− S(ρ̂Si )].

Recognizing this final expression as the relationship ∆SEi ≥ −∆SSi between the entropy
changes of the system and environment, and substituting into (19), we have for the i-
th process

∆〈EEi 〉 ≥ −kBT ln(2)∆SSi . (20)

With this, the average environmental energy change over the M processes is lower bounded as

〈∆〈EEi 〉〉 = ∑
i

pi∆〈EEi 〉 ≥ −kBT ln(2)∑
i

pi∆SSi

which is the conditional energy bound (6).

3.2. Proof of the GLB (or Unconditional Energy Bound)

Now, to lower bound 〈∆〈EEi 〉〉 for unconditional operations, we first expand the
average environment energy out as

〈∆〈EEi 〉〉 = ∑
i

pi∆〈EEi 〉 =
{

∑
i

piTrE [ρ̂E
′

i ĤE ]

}
− 〈EEth〉

=

{
∑

i
piTrE

[
TrS [ρ̂SE

′
i ]ĤE

]}
− 〈EEth〉

=

{
∑

i
piTrE

[
TrS [Ûi ρ̂

SE
i Û†

i ]Ĥ
E
]}
− 〈EEth〉. (21)

Applying the linearity of the partial trace operation twice—first for the partial trace over E
and then for the partial trace over S—Equation (21) becomes

〈∆〈EEi 〉〉 = TrE

[
∑

i
piTrS [Ûi ρ̂

SE
i Û†

i ]Ĥ
E
]
− 〈EEth〉

and then

〈∆〈EEi 〉〉 = TrE

[
TrS

[
∑

i
pi

(
Ûi ρ̂
SE
i Û†

i

)
ĤE
]]
− 〈EEth〉. (22)

Now, to specialize this for unconditional operations, we require that all of the M state
transformations are achieved via applicaiton of the same time-dependent process potential
VS (t) to S and thus the same unitary operation Û to SE :

ρ̂SE
′

i = Û(ρSi ⊗ ρ̂Eth)Û
†. (23)

Substituting Ûi → Û for all i in Equation (22) accordingly yields

〈∆〈EEi 〉〉 = TrE

[
TrS

[
∑

i
pi

(
Ûρ̂SEi Û†

)]
ĤE
]
− 〈EEth〉. (24)

Because the time-evolution operator is now independent of the pre-erasure state, the linear-
ity of unitary similarity transformations can be applied to obtain

〈∆〈EEi 〉〉 = TrE

[
TrS

[
Û

(
∑

i
pi ρ̂
SE
i

)
Û†

]
ĤE
]
− 〈EEth〉. (25)

The key observation at this point is that, for initial states of the form ρ̂SEi = ρ̂Si ⊗ ρ̂Eth,
Equation (25) can be written as
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〈∆〈EEi 〉〉 = TrE
[

TrS [Û
(

ρ̂S ⊗ ρ̂Eth

)
Û†]ĤE

]
− 〈EEth〉 (26)

where
ρ̂S = ∑

i
pi ρ̂
S
i . (27)

This is to say that, for unconditional operations, the environmental energy increase obtained
via the straightforward average (5) over the M individual processes is equivalent to the
energy increase of the environment for the single process

ρ̂S ⊗ ρ̂Eth → ρ̂SE
′

(28)

with the initial state of S described by the “surrogate” density operator ρ̂S given by (27) (for
which TrE [ρ̂SE

′
] = ρ̂S

′
= ∑i pi ρ̂

S ′
i ). Because of this mathematical equivalence, the desired

unconditional erasure bound can be obtained by lower bounding the environment energy
increase via Partovi’s inequality for the “surrogate” state transformation (28), which yields

〈∆〈EE 〉〉 ≥ −kBT ln(2)
[
S(ρ̂S

′
)− S(ρ̂S )

]
. (29)

It follows from the definition (10) of the Holevo information that

S(ρ̂S ) = S

(
∑

i
pi ρ̂
S
i

)
= χS + ∑

i
piS(ρ̂Si ) (30)

S(ρ̂S
′
) = S

(
∑

i
pi ρ̂
S ′
i

)
= χS

′
+ ∑

i
piS(ρ̂S

′
i ) (31)

which finally yields

〈∆〈EEi 〉〉 ≥ −kBT ln(2)∆χS − kBT ln(2)∑
i

pi∆SSi .

This is the generalized Landauer bound (8).
Several aspects of this proof warrant emphasis. First, nothing in the proof is tied

to features of any particular model system belonging to the general class of systems
considered here. The states used to encode logical inputs and outputs in any such system
can be described by density operators and assigned a von Neumann entropy, whatever the
structure and composition of the system and the specifics of the encoding scheme. Second,
while the initial environment state is assumed to be in a thermal state with an assignable
temperature T, no such “equilibrium” assumption is made for the environment state at
any other time or for the system state at any time. Nor is there any kind of quasi-static
assumption made about the processes that evolve the interacting system-environment
composite. Third, nothing in the proof addresses or ensures the achievability of the GLB,
so it is to be regarded as bound whose violation is precluded by physical law but whose
achievability is not guaranteed or even addressed by the proof. 14

Fourth and finally, we emphasize that our proof of the GLB assumes that the state
space of the system S remains unchanged throughout the duration of every one of the M
processes. This is to say that all regions of the same system state space are accessible to
the state of S at all times for all relevant processes, even when one or more of the process
potentials VSi (t) is such that occupation of some state subspaces is exceedingly unlikely at
some times for some process potentials and initial states.

We mention this final point because a prominent objection to classical thermody-
namic proofs of LP, due to Norton [6,15], stems from the construction and use of “illicit

14 Hence our terminological preference for “Landauer bound” over “Landauer limit” in this work. While they
are used interchangeably, the latter seems more likely to carry a connotation of achievability.



Entropy 2022, 24, 1568 13 of 15

ensembles”—ensembles of states that are treated as canonical ensembles even though they
are constructed from states defined on state spaces that are inaccessible to one another.
This “mutual inaccessibility” is a consequence of the assumed impenetrability of partitions
and pistons whose systematic insertion, displacement, and removal is stipulated in the
idealized processes and classical systems used most widely in analyses of LP. The impene-
trable partitions and leakproof pistons of these classical analyses are material analogs of
infinitely high (and thus nonphysical) potential barriers. Because we consider only finite
process potentials VSi (t) in our proofs, and thus rule out the presence of any infinitely
high potential barriers that could render state subspaces mutually inaccessible, concerns
associated with the invocation of illicit ensembles do not apply to our proofs. Rather, our
proofs uphold Landauer’s bound in very general quantum settings where the various
physical states that encode information—even if arbitrarily well confined to state subspaces
by arbitrarily high (but finite) potential barriers 15—retain access to the full system state
space on which they are collectively defined. Thus, even if proofs of Landauer’s bound
that invoke illicit ensembles are dubious, the absence of such nonphysical idealizations
from our proofs rules out the possibility that Landauer’s bound is somehow an artifact
of such idealizations. Rather, our proofs support the status of Landauer’s bound as a
straightforward lower bound on the unavoidable dissipative cost of implementing logically
irreversible operations via unconditional physical operations.

4. Summary

In this work, we have proved a generalized Landauer’s bound (GLB) using an ap-
proach that sidesteps many objections to existing proofs and demonstrations of Landauer’s
Principle. In Section 1, we briefly discussed the ongoing controversy surrounding Lan-
dauer’s Principle as well as the sources and implications of this controversy. In Section 2,
we described the very general physical setting to which the GLB applies and defined all rel-
evant quantities, presented and discussed the GLB, and demonstrated specialization of the
GLB to Landauer erasure of information encoded in distinguishable and indistinguishable
states of a physical system and to ideal logically irreversible and reversible information
processing operations. Along the way, we showed how the connection between logical
and physical reversibility of erasure and logical operations is rooted in the conditioning of
those operations—or lack thereof—on the states of the system that encode logical inputs
and outputs. Then, in Section 3, we presented our proof of the GLB in detail and remarked
on features of this proof that are germane to its interpretation and its immunity to some
common objections.

The contributions of this work, beyond the GLB itself, are threefold:
The first contribution is our proof the GLB, which sidesteps most 16 of the prominent

objections to standard proofs and demonstrations of Landauer’s bound while producing
an even more general result. Because our bound applies to the “trial-averaged” energy
change of the environment, it is immune to what is perhaps the most prominent objec-
tion to most proofs of LP: the controversial but nearly ubiquitous presumption that the
entropies of ensembles of physical input states—ensembles that mix the input probabilities
statistically characterizing the input source with the probabilities appearing in statistical
descriptions of the physical input states themselves—can be regarded as ordinary physical

15 Effective confinement of physical states to designated state subspaces is essential for reliable encoding of
information in system states, but absolute confinement for all time is not required for reliable processing of
encoded information. Rather, reliable information processing requires barriers high enough to confine system
states to designated subspaces with exceedingly high probability over timescales that matter for the processing
and intermediate retention of information. Indeed, the reliable encoding and retention of information in
conventional computing devices is achieved via confinement of electrons to selected spatial regions (and thus
state subspaces) by barriers that are penetrable—but that are “sufficiently impenetrable”.

16 Note that this paper does not address concerns related to the neglect of thermal fluctuations in proofs of
Landauer’s Principle—another prominent point of contention—as the extent to which such concerns impact
the present approach is unclear. A recent summary of such concerns, and a statistical mechanical treatment of
Landauer’s Principle that aims to address them, can be found in [16].
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entropies for the purposes of determining energy dissipation bounds. Our proof sidesteps
this objection, upholding the GLB without making any such presumption. Significantly,
bounds identical or equivalent to the GLB have been obtained using approaches that are
based upon this presumption 17 or have otherwise appeared in the literature. 18 This
vindicates the use of such approaches for obtaining energy dissipation bounds. Any related
objections to proofs or demonstrations of LP that claim equivalence of thermodynamic
entropy and information-theoretic entropy are similarly sidestepped in our proof: von
Neumann entropies are used throughout the proof without presuming that they have any
thermodynamic significance or using any relations that would require that they do have
thermodynamic significance. Nor do we require that these entropies have any information-
theoretic significance. The information measures that appear in our bounds—the Holevo
information and the Shannon entropy—emerge naturally in the proof; they are not inserted
“by hand” or presupposed to be in any way equivalent to this or that physical entropy.

The second contribution is clarification of connections between logical reversibility,
physical reversibility, and conditioning. Recall that the conditional energy bound (6) in-
cludes only a single term: the (weighted) average of the system entropy changes for the
M processes. Nothing ensures—but nothing precludes—the possibility that each of the M
completed processes can be reversed by additional processes without irreversibly changing
the environment energy. This is the case even for conditional erasure-by-reset and other
logically irreversible information processing operations, since there is no information loss
contribution in the conditional energy bound. Recall also that the unconditional energy
bound (8)—the GLB—includes the conditional energy bound as one term and a term pro-
portional to the information loss as well. Since the information-loss term, which is always
nonnegative, is directly traceable to absence of conditioning, this identifies irreversible en-
vironmental heating with lack of conditioning of the processes that constitute an operation.
However, since the information loss term vanishes for unconditional operations that do not
lose information, our proofs of the conditional and unconditional energy bounds—taken
together—point more specifically to the combination of information loss and lack of condi-
tioning as the source of the irreversible system-to-environment energy transfer reflected
in Landauer’s Principle. Indeed, while capturing the recognized connections between
logical reversibility, physical reversibility, and conditioning of operations—i.e., the physical
irreversibility of logically irreversible operations implemented unconditionally and the
physical reversibility of logically reversible operations implemented conditionally—our
results leave room for additional options. First, because they are not informationally lossy,
the reversible physical implementation of M-to-M logically reversible operations via uncon-
ditional physical operations is not ruled out by our results. Second, even though they are
informationally lossy, reversible physical implementation of M-to-N logically irreversible
operations via conditional physical processes is not ruled out. Thus, our results leave room
for physically reversible implementation of logically reversible and logically irreversible
operations that are appropriately conditioned, since the dissipative information loss term
is—for different reasons in the respective cases—absent from the applicable bounds.

The third contribution is the demonstration that variants of Landauer’s bound for
erasure and logical operations—some obtained previously 19—all follow as specializations
of the GLB and are thus unified here under a single framework. Specializing the GLB as

17 These include the “referential approach”—see Equation (18) of [17] (with Equation (20) of that work) and
Equation (18) of [18] (with Equations (1) and (6) of that work)—which is this author’s preferred approach to
obtaining dissipation bounds in information processing scenarios for reasons described in Refs. [18,19].

18 For example, a bound identical in form to Equation (29) of this work—which is equivalent to the GLB—appears
(and is tightened) in [20].

19 For example, the bound (12) for erasure with distinguishable encoding states appeared as Equation (34) in
Ref. [17], and the bound (16) for ideal logical operations appeared as Equation (68) in Ref. [21] (appropriately
specialized to ideal operations with efficacy measures fL and FL fixed at unity) and as Equation (11) in Ref. [5].
However, in these cases and all others of which we are aware—with the exception of [5] (the precursor to
this work)—the now controversial use of surrogate density operators to represent ensembles of states in the
determination of dissipation bounds was employed and presumed to be valid.
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required to treat erasure and logical operations—but no further—yields dissipation bounds
for these operations that are considerably more general that the forms most familiar from
the literature, allowing that the physical system states encoding different logical inputs may
occur with different probabilities, may be imperfectly distinguishable from one another,
and may have self-entropies that differ both from one another and from the self-entropies
of the physical system states that encode logical outputs. Specializing these bounds further
yields the more familiar forms, which typically apply for uniform input distributions,
mutually distinguishable input states, and input and output or reset states with identical
self-entropies.
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