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Abstract: Prediction of missing links is an important part of many applications, such as friends’
recommendations on social media, reduction of economic cost of protein functional modular mining,
and implementation of accurate recommendations in the shopping platform. However, the existing
algorithms for predicting missing links fall short in the accuracy and the efficiency. To ameliorate
these, we propose a simplified quantum walk model whose Hilbert space dimension is only twice
the number of nodes in a complex network. This property facilitates simultaneous consideration of
the self-loop of each node and the common neighbour information between arbitrary pair of nodes.
These effects decrease the negative effect generated by the interference effect in quantum walks
while also recording the similarity between nodes and its neighbours. Consequently, the observed
probability after the two-step walk is utilised to represent the score of each link as a missing link,
by which extensive computations are omitted. Using the AUC index as a performance metric, the
proposed model records the highest average accuracy in the prediction of missing links compared
to 14 competing algorithms in nine real complex networks. Furthermore, experiments using the
precision index show that our proposed model ranks in the first echelon in predicting missing links.
These performances indicate the potential of our simplified quantum walk model for applications in
network alignment and functional modular mining of protein–protein networks.

Keywords: quantum walk; cyberphysical systems; complex networks; missing link prediction;
Grover diffusion operator

1. Introduction

Prediction of missing links, also known as link prediction, is focused on predicting
missing (deleted) links or existence of possible links in future. For example, in some social
media platforms, the network considers the existence of multiple common friends between
a user and some strangers as justification to expand one’s circle of friends. Such a scenario
is caused by effects generated by application of link prediction. In such application, the
similarities between nodes are the main reference in link prediction [1,2]. In algorithms for
predicting missing links for personalised recommendation [3,4], network alignment [1],
broad learning [2,5], and exploration of functional modularity of protein–protein net-
works [6], temporal and resource costs are conserved. Meanwhile, in complex networks,
missing link prediction can be classified into three categories: similarity-based algorithms,
structural characteristics of network-based likelihood analysis algorithms (models), and
algorithms with heuristic information.

In similarity-based algorithms for link prediction, Common Neighbour (CN) is the
most intuitional information that records the number of common neighbours between
two nodes in a complex network [7]. Using CN, many algorithms (also called indices)
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such as Jaccard index [8], Salton index [9], Sorenson index [10], etc. [2,11,12] have been
designed and improved. Despite the effectiveness and simplicity of these indices, their
accuracy is lean due to sensitive to structural characteristics of the network. To improve
accuracy in prediction of missing links, path-based similarity algorithms and random walk-
based similarity algorithms were put forward, where the length of path-based algorithms
that are known to affect the prediction accuracy [13,14] are considered. Moreover, it is
considered that the accuracy of local random walk-based algorithms is also sensitive to
walk steps [14–16]. Consequently, in various types of networks, the prediction accuracy
utilising path-based and random walk-based algorithms are deemed unstable.

By contrast, structural characteristics of network-based likelihood analysis algorithms
(models) have exhibited high accuracy in link prediction where Bayesian analysis and
network characteristics are utilised simultaneously, such as the hierarchical structure
model [17], stochastic block model [18], and loop model [19]. However, these likelihood
analysis-based algorithms lack practicality in link prediction due to excessive time com-
plexity. Accordingly, heuristic information attached to an existing conventional algorithm
has been considered as an innovative direction to improve existing models. For instance,
since the links between similar nodes are preferentially existent in the same community,
community detection is used to increase the scores of links located in the same community
and improve accuracy [20]. Furthermore, since demand associated with deciding nonex-
istent links is one major reason for the low accuracy of the algorithms, k-shell is utilised
to determine if there is an existent link in the original network to improve accuracy of
prediction [21]. However, considering the heuristic algorithms that use community infor-
mation as an instance, the number of detected communities and a network with or without
obvious community structure will affect the performance of an algorithm. Consequently,
prediction accuracy of existing algorithms with heuristic information is further affected by
structural characteristics of various types of networks.

Based on the above analysis, the prediction accuracy for link prediction algorithms
needs further improvement. Recently, the superlative performance reported from the
use of quantum walks in complex network analysis has been harnessed for community
detection [22], identification of significant link [23] and node [24,25], and also in similarity
judgement between network graphs [26]. Exploring the reported advantages of quantum
walks, this study proposes a simplified quantum walk model to predict missing links in
complex networks. Our study makes two major contributions:

(i) Compared to existing quantum walk models on a complex network, the complexity
and the negative effects generated by the interference effect of quantum walk are
minimised in the proposed simplified quantum walk model. In contrast, since the con-
struction method entirely depends on direct product operation and restricts by strict
unitary evolution, other quantum walks on the complex network do not circumvent
these effects and cannot effectively develop the structural characteristics of networks.

(ii) The proposed model can be utilised for predicting the missing links of complex
networks, which has a high accuracy in two indices on link prediction, because the
common neighbour and similarity between nodes are effectively contained in the
evolution operator of the proposed model. Experimental validation of the proposed
model indicates that, despite limiting its walk to two steps, the proposed simplified
quantum walk model outperforms other random walk-based algorithms as well as
global similarity-based algorithms in the prediction of missing links.

The remainder of the study is organised as follows: in Section 2, the intrigues of
missing link prediction are introduced as a prelude to outlining our proposed simplified
quantum walk model on complex networks in latter parts of the same section. In Section 3,
the nine real complex networks and fourteen comparison algorithms used for our experi-
ments are described while outcomes of experiments on AUC and precision indexes are also
reported and discussed. Conclusions and future work are written in Section 4.
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2. Predicting Missing Links and the Proposed Simplified Quantum Walk Model

This section first describes the definition of a link prediction problem and its evaluation
criteria, and then introduces the proposed simplified quantum walk model.

2.1. Prediction of Missing Links in Complex Networks

Given an undirected complex network $ = (V, E), V represents the set of nodes and
E denotes the set of links, |V| = N and |E| = M. A simple undirected complex network
represented by a lactic aid molecular is depicted in Figure 1a, and its structural graph
is presented in Figure 1b. Moreover, in real life, social relationships among individuals,
purchase recording among various commodities, and interaction relation between proteins
can be abstracted as networks, which are similar to the form depicted in Figure 1b.

(a) (b) (c)
Figure 1. Illustration of complex network and link prediction. (a) structure of lactic aid; (b) molecular
graph of lactic aid; (c) illustration of link prediction.

In such a network $, assuming that set E is randomly divided into two components
ET and EP based on a probability η; then, set ET is utilised for storing training data and
EP is employed for recording missing links, which are links to be predicted (also called as
prediction set). Two sets obtained by dividing satisfy the relation |ET | = η|E|(η ∈ (0, 1)),
ET ∩ EP = ∅, and ET ∪ EP = E. Meanwhile, for a network G̃ composed of V and ET , i.e.,
G̃ = (V, ET), the purpose of link prediction is to predict links in EP by scoring all links using
some algorithm (model) where all links belong to a universal set EU , ET ⊆ EU and EP ⊆ EU .
In other words, when an algorithm is utilised for predicting missing links, it scores all
links in G̃ corresponding to a completed network, whether the link exists in G̃ or not. To
elucidate, suppose that an individual simultaneously has social accounts on the Twitter and
LinkedIn platforms, as described in Figure 1c, where solid lines between users represent
the existing friend relations, and the dashed line coloured by orange between users denotes
a possible link in future. It can then be surmised that the dashed line corresponds to a
missing link that can be predicted by computing the similarity between two users.

Moreover, since the similarity between two nodes is regarded as an inference to link
prediction [1], then the predicted result using an algorithm can be quantified by scoring to
similarity between nodes. Generally speaking, the common practice is to use one major
index and one minor index as a criterion to estimate the performance of an algorithm
(a model) [2]. In many instances, the area under the receiver operating characteristic
curve (AUC) is employed as a major index for evaluating accuracy of an algorithm in
link prediction, while the precision index is used as a minor index to further compare
performance in the prediction of missing links, especially when obtained AUC values using
various algorithms are approximate. In the AUC index, the links in a prediction set are
denoted as EP and those in (EU − E), (which denote nonexistent links in G̃), are randomly
and independently sampled multiple times and 1 is added to the AUC value if the score
of a link in EP is greater than score of a link in (EU − E). When two scores are equal, 0.5
is added to the AUC value, and the value is unchanged otherwise. Consequently, when
sample times are set to n, the AUC index is defined as

AUC =
n1 + 0.5n2

n
, (1)
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where n = n1 + n2. Additionally, the precision index is used to record the accurate forecast
ratio in top-L links, where it is assumed that l links are accurately predicted. Thence, the
precision index can be defined as

Pre =
l
L

, (2)

where L denotes the total number of links to be evaluated, L < M. In instances where
predicted outcomes of various algorithms correspond to the approximate in the AUC
index, the algorithm with the greater precision value is considered as a better choice in the
prediction of missing links.

2.2. Application of the Proposed Model in Link Prediction

Implementation of the proposed simplified quantum walk model on a complex net-
work is built on three parts: definition of Hilbert space and state vector on the complex
network, construction of evolution operator during the walking, and observation of simi-
larity between two nodes based on the evolved result.

2.2.1. Hilbert Space and State Vector on a Complex Network

To definite the Hilbert space of our model on a complex network, the number of
selectable walk directions of each node is required to be determined. Different from
existing quantum walks on regular graphs, the determination and compression of the
spatial dimensionality associated with the proposed model on complex networks is a
challenge because each node in complex networks has an irregular number of neighbours.
Considering a network G̃ = (V, ET) as defined in Section 2.1, and assuming that the
neighbours of node j are regarded as a whole (recorded as wN(j)), then, for such a node, only
two directions can be determined as paths of the walk, i.e., from node j to itself and from
node j to its neighbours wN(j), respectively. In wN(j), N(j) denotes the neighbours of node
j while notation wN(j) of merging the neighbours N(j) of node j as a whole is illustrated in
Figure 2a, where the range coloured in green expresses neighbours of node j that are treated
in unison, i.e., wN(j). Since for a node in network G̃, only two directions can be selected in
the process of walking and there are N nodes in network G̃; therefore, the dimensionality
D of the Hilbert space of our model on network G̃ is equal to twice the number of nodes
in network G̃, i.e., D = 2N. In contrast to existing studies on quantum walk models for
complex network, the total dimensionality of the Hilbert space is greatly decreased in our
proposed model. For example, for an identical network G̃, the dimensionality of Hilbert
space in Szegedy’s walk is equal to N2 [24,27], the dimensionality of Fourier quantum
walk and other quantum walk achieved by direct sum operation [22,28] is equal to twice
the number of links in G̃, i.e., 2|ET |. Consequently, less space consumption is expected
from the proposed quantum walk model, especially when G̃ belongs to a dense network.

Meanwhile, in quantum walks, the network on which particles walk is always viewed
as a quantum system, and the change of such a system is recorded and expressed by a
state vector. Since, as previously observed, the dimensionality of network system G̃ is
defined as 2N; then, the number of elements in state vector |ψ〉 is equal to 2N. As also
mentioned earlier, there are two possible directions during a walk we denote as |0〉 and
|1〉, respectively. Therefore, assuming that |ψ〉 is a superposition at initial time (t = 0),
expressed as

|ψ(0)〉 =
1

∑
c=0
|c〉 ⊗

N

∑
j=1

αj(0)|j〉, (3)

where |j〉 expresses the orthogonal basic of node j, c ∈ {0, 1}, and αj(0) represents proba-
bility amplitude of node j at initial time such that the initial probability amplitude can be
considered as equal superposition, then αj(0) = 1√

N
. Moreover, in other quantum walk

models, such as Fourier walk [22], the state vector at initial time is constructed by direct
sum operation of orthogonal basis of each node. By contrast, the computational form of
state vector in our model has lesser time complexity.
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(a) (b) (c)
Figure 2. Illustration of merging idea, traceback, and self-loop in quantum walks. (a) merging idea;
(b) traceback; (c) self-loop.

2.2.2. Construction of Evolution Operator in the Proposed Model

The construction of the evolution operator is a key step towards the prediction of
missing links in the proposed simplified quantum walk model. This corresponds to a
series of important steps in typical non-quantum algorithms. In the proposed model, the
evolution operator incorporates both common neighborhood and connectivity information
between nodes to ensure that each link of the network is predicted based on similarity
characteristics between nodes. Assuming that the adjacency matrix of network G̃ is A, Aj,k

denotes the connectivity of node j and node k; then, Aj,k is 0 if e(j, k) /∈ ET , and Aj,k is equal
to 1 if e(j, k) ∈ ET . Referring to form of the Grover diffusion operator [29], each element in
coin operator is defined as

GC
j,k = −Aj,k +

2
|Γ(j, k)| . (4)

In Equation (4), |Γ(j, k)| denotes the number of common neighbours between node j
and k in G̃ and according to it, the full coin operator GC can be realised. It is trivial that the
Grover coin presented in Equation (4) contains the similarity information and connectivity
between an arbitrary pair of nodes.

Meanwhile, in terms of the shift operator, notations |0〉 and |1〉 often represent left
and right walk directions, whereas since neighbours of node j are considered as a whole
(as depicted in Figure 2a), the notations |0〉 and |1〉 in the proposed model denote walking
along the self-loop of current node j in the direction of node j. Consequently, the shift
operator in the proposed simplified model is defined as the accumulated sum of different
walk direction |c〉(c = 0, 1), for which the shift operator is defined as

S =
N

∑
j=1

(|0, j〉〈j, 0|+ 1√
|N(j)|

N(j)

∑
k=1
|1, j〉〈k, 1|), (5)

where N(j) indicates the nearest neighbour set of node j.
When G̃ is a certain graph, the shift operator calculated via Equation (5) can be

considered as a matrix composed of four block matrices with an N-dimension where
the two diagonal matrices are the identity matrix and the matrix containing adjacency
relation of network G̃, respectively. Other matrices are null matrices. In the shift operator
S, this identity matrix and the matrix with adjacency relation are retained as components
of the proposed simplified quantum walk model. This simple framework facilitates the
advantages enumerated in the sequel.

The first effect of an identity matrix is equivalent to adding a self-loop to each node
in G̃, while the effect of traceback generated by quantum superposition in a quantum
walk will be effectively decreased. Traceback connotes that a particle oscillates or jumps
repeatedly between the same pair of nodes. As exhibited in Figure 2b, for a quantum walk
with a four-step walk, a possible traceback scenario where the particle jumps between
node j and node k multiple times may occur. In this manner, this traceback will generate
extensive redundant information, and such redundant information will disturb judgement
regarding the accuracy of the observed probabilities in predicting the missing links.
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Since the traceback is caused by quantum superposition, it cannot be eliminated
by simply reducing the walk step. However, adoption of shift operator S presented in
Equation (5) can effectively decrease the highlighted negative effects of traceback. As
described in Figure 2c, a dangling node j has a unique walk direction if there is no self-loop
over j, but the possibility of a particle staying at node j will be increased if the dangling
node j has a self-loop because of a non-unique walk direction. This scenario occurs because
the oscillations between a pair of nodes will be relatively decreased. In this manner, the
shift operator S presented in Equation (5) can help curtail the negative effects generated
by traceback. Moreover, the mechanism of self-loop can refer to a three-state quantum
walk on one-dimensional lattice, where self-loop in the three-state quantum walks has been
established to increase the probability of particle remaining at the initial node [30–32].

In the meantime, since the evolution operator is a composite of coin operator and shift
operator, by combining Equation (5) and Equation (4), the evolution operator U of our
proposed model can be defined as

U = S · (GC ⊗ Î), (6)

where Î is a two-dimensional identity matrix that helps to maintain an identical dimension
between S and (GC ⊗ Î). When the proposed quantum walk model is a t-step walk, the
operator U is applied t times; hence, the evolution of network system G̃ after a t-step walk
is defined as

|ψ(t)〉 = Ut|ψ(0)〉, (7)

where |ψ(t)〉 represents the state vector of the proposed model at time t (also interpreted as
occurring evolution t times).

2.2.3. Observation of Similarity between Two Nodes

After some finite-step walk, the observed probabilities on network G̃ can be used
to estimate the similarity score of each link in EU . For an arbitrary link e(j, k) ∈ EU , its
score Pe(j,k) is equal to the possibility of e(j, k) being a missing link in network G̃. When
the evolution operator is applied t times, the observation of similarity on e(j, k) can be
interpreted as

Pe(j,k) = 〈 ĵ|U|ψ(t)〉 = 〈 ĵ|Ut|ψ(0)〉, (8)

where 〈 ĵ| is the conjugate transpose of | ĵ〉 and the evolution operator U takes up the
state defined earlier in Equation (6). Considering two walk directions: leftward state
|0〉 corresponding to walking along self-loop and rightward state |1〉 that corresponds
to walking toward neighbours of node j, then | ĵ〉 is defined in the form presented in
Equation (9).

| ĵ〉 = |Γ(j, k)|
|ET |

1

∑
c=0
|j〉 ⊗ |c〉, (9)

where |Γ(j,k)|
|ET | represents the ratio of the number of common neighbours between j and

k to number of links in testing set ET (i.e., the number of links in G̃), and |j〉 denotes
the orthogonal basis of node j. We note that, since for node j, the structural information
of neighbours is contained in Equation (9), the orthogonal basis of node k need not be
calculated again in Equation (8). The computed result of all links in EU in Equation (8) is
then recorded as a similarity matrix, where each element is obtained by Pe(j,k). Our walk
step is set at 2, which attenuates the negative effects generated by traceback while retaining
the quantum superposition in quantum walk.

Combining the above designs and analysis, we obtain insight into the architecture
of the proposed simplified quantum walk model, as presented in Figure 3. Consequently,
compared to other quantum walk models for complex networks, our model differs in
the following ways: (i) It avoids the constraint where an accumulated sum of observed
probabilities of all nodes must equal to 1. This makes the observed result closes to the
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similarity expected between nodes, and more benefit structural characteristics will be
captured by our proposed model. In fact, this property connotes the simplicity attributed
to the proposed model. (ii) In other quantum walks on complex networks (e.g., the Fourier
walk [22]), since a self-loop is equivalent to setting the diagonal element of the adjacency
matrix as 1 and a node may have hundreds of neighbours in a complex network, it will
cause the effect of a self-loop to be very weak. By contrast, in the evolution operator of our
proposed model, the self-loop is denoted as an independent identity matrix, which can
enhance the effect of particle staying at itself, i.e., relatively weakening the negative effect
generated by traceback. (iii) Additionally, compared to existing quantum walk models,
the proposed model decreased space complexity (total dimensionality of Hilbert space).
Furthermore, based on the rule analysed in Section 2.2.2, the coding of the proposed model
will consume less time, where key elements responsible are not available in other quantum
walk models.

Figure 3. Architecture of the proposed simplified quantum walk model.

3. Prediction of Missing Links Using the Proposed Model

The experiments reported and discussed in this section were on nine complex net-
works; these networks cover multiple real-life seniors, including social relationships be-
tween members of a club, neural network of a human brain, co-occurrence relation of
different nouns (words) in a novel, email interchanges among various individuals, air
routes between US airports, and metabolic interaction between proteins and proteins. Key
statistical characteristics of these complex networks are enumerated in Table 1, where
N and M represent the amount of nodes and links, 〈k〉 and d are the average degree of
networks and diameter of the networks, while c and ρ denote the clustering coefficient of
network and associativity coefficient of the networks, respectively.

Table 1. Statistical characteristics of complex networks.

Networks N M 〈k〉 dmax d c ρ

Karate [33] 34 78 4.588 17 5 0.256 −0.475
Brain [33] 91 1989 43.714 248 3 1.304 −0.343

Adjnoun [34] 112 425 7.589 49 5 0.190 −0.129
Em1 [33] 167 3251 38.934 139 5 0.685 −0.295
Eco [33] 259 2942 19.560 108 6 0.395 0.018

USAir [33] 332 2126 12.807 139 6 0.749 −0.207
IceFire [35] 796 2823 81.982 122 9 0.209 −0.115
Em2 [33] 1133 5451 9.622 71 8 0.254 0.078
Yeast [36] 1870 2277 2.435 56 19 0.055 −0.161
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Furthermore, our proposed performance analysis is based on comparisons between
the proposed model and fourteen algorithms on the selected complex networks. The
fourteen algorithms include those on local neighbours-based algorithms [7–12], local or
global paths-based algorithms [37,38], and random walk-based algorithms [15,16,39]. We
note here that it has been observed that, in random walk-based algorithms, Neighbour
Contribution (NC) offers significant advantage over traditional algorithms [15]. In the
reported experiments, the walk step of such algorithms is preset to 3. The mathematical
description of the fourteen algorithms is highlighted in Table 2, wherein dj represents
degree of node j, A denotes the adjacency matrix of network G̃, I is an identity matrix, l+j,k
expresses an element in the Laplace matrix of network G̃, and dmax is equivalent to the
maximum degree in G̃.

Table 2. Overview of algorithms used in comparisons.

Algorithm (Indices) Mathematical Expression

Common Neighbours [7] (CN) sCN
j,k = |N(j) ∩ N(k)|

Salton Index [9] sSalton
j,k = |N(j)∩N(k)|√

dj ·dk

Jaccard Index [8] sJaccard
j,k = |N(j)∩N(k)|

|N(j)∪N(k)|
Sorenson Index [10] sSrenson

j,k = 2|N(j)∩N(k)|
dj+dk

Hub Promoted Index [36] (HPI) sHPI
j,k = |N(j)∩N(k)|

min(dj ,dk)

Hub Depresses Index [37] (HDI) sHDI
j,k = |N(j)∩N(k)|

max(dj ,dk)

Preferential Attachment [11] (PA) sPA
j,k = dj · dk

Admic-Adar [12] (AA) sAA
j,k = ∑z∈N(j)∩N(k)

1
log(kz)

Resource Allocation [37] (RA) sRA
j,k = ∑z∈N(j)∩N(k)

1
kz

Local Path [37] (LP) SLP = A2 + αA3

Katz [38] SKatz = (I − αA)−1 − I
Average commute time [16] (ACT) SACT = A2 + αA3

Random walk similarity by cosine [39] (Cos+) SACT
j,k = 1

l+jj +l+kk−2l+jk

Neighbour Contribution [15] (NC) sNC
j,k (3) = ∑3

l=2(
∑z∈N(j)

dz
dmax

2M π
(l)
jk +

∑z∈N(k)
dz

dmax
2M π

(l)
kj )

3.1. Performance Analysis Using the AUC Index for Different Values of η

The sample times for n in Equation (1) are set to 672,400 in this experiment. This
choice is motivated by observations that AUC has a guaranteed absolute error within the
range of 10−3. For different values of η presented in Section 2.1, the evaluated values of
AUC using various algorithms may change, since η represents the different size of training
set ET . In this experiment, η has default values of 0.9 and 0.8 for outcomes reported in
Figure 4 and Figure 5, respectively. In these figures, each block denotes the AUC value
using an algorithm on a complex network, where the highest AUC value in a network is
marked with a red triangle, and the higher AUC values imply the better performance in
the prediction of missing links.
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Figure 4. Outcomes of AUC index using various algorithms for η = 0.9.

Figure 5. Outcomes of AUC index using various algorithms for η = 0.8.

As reported in Figure 4, on seven networks (i.e., Karate, Brain, Adjnoun, Em1, IceFire,
Yeast, and Eco networks), the proposed model has the highest AUC values. As shown in
Figure 5, on six networks (i.e., Karate, Brain, Adjnoun, Em1, IceFire, and Yeast networks),
our model has the best performance according to AUC values. Concretely speaking, when
our proposed model compared with different algorithms for link prediction, the following
conclusions can be inferred. (i) Compared to the local neighbour-based algorithms (i.e.,
CN, Salton, Jaccard, Sorenson, HPI, and HDI), we note that, despite these competing
algorithms sharing attributes of common neighbour information between arbitrary pair of
nodes, like our proposed model, their performances do not match those recorded for our
simplified quantum walk model using the AUC index. As a local path-based algorithm,
the walk distance of the LP algorithm is equal to three, which is still no match for our
proposed model (as presented in Figures 4 and 5), whose walk step is only set at two. (ii)
With regard to global algorithms, i.e., path-based (Katz) and random walk-based (ACT
and Cos+) algorithms, the proposed simplified quantum walk model still records the
highest accuracy on the whole, with the Katz algorithm better than our model in the
Em2 network, as presented in Figure 5. (iii) Similarly, compared to the local random
walk-based algorithm (i.e., NC), the performance by our model and the NC algorithm
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using the AUC index deserve special mention. Whereas NC outperforms the majority of
the other competing algorithms, it only betters our proposed model in the Em2 network,
as referenced with Figure 5. (iv) Additionally, even though the RA algorithm can be
considered as a competitive method for all the comparison algorithms, its performance
does not measure up with the proposed simplified model on the whole. Furthermore, when
the performances between RA algorithm and our proposed model on the USAir network
are considered, as shown in Figure 4, their AUC values are very approximate (i.e., 0.9423
and 0.9356).

To sum up, experiments based on the AUC index reported in this subsection indicate
better performance for our proposed model in the prediction of missing links. Meanwhile,
since there is randomness in the AUC value, further analysis of these outcomes using the
precision index should be considered as reported in the next section.

3.2. Experiment on Precision Index under Various η

Precision index is employed to further probe the performance of the proposed model
in prediction of missing links for various algorithms, especially when their AUC values are
approximately equal. In this experiment, the total number of links to be evaluated (i.e., L)
defined in Equation (2) is preset as 1

3 |ET |. The outcomes of the precision index are described
in Figure 6, where higher values indicate better performance in link prediction. Figure 6a,b
present outcomes for training probability parameter η set at 0.9 and 0.8, respectively.

The conclusions of this experiment are still analysed based on classifications of the
comparison algorithms. (i) Despite CN records, the highest result in common neighbour-
based algorithms, the precision results of other common neighbour-based algorithms are
also good. However, our model approximately matches this best performance exhibited by
the CN in the IceFire network and Eco network, as depicted in Figure 6a. This phenomenon
implies that the common neighbour information is inherent to our proposed simplified
quantum walk model, which is an important attribute in accurate prediction of missing
links. (ii) Compared to global algorithms, the path-based algorithm (i.e., Katz) and random
walk-based algorithms (i.e., ACT and Cos+), irrespective of the network used, our proposed
simplified model outperforms the Katz and Cos+ algorithms in terms of a precision index.
However, as reported in Figure 6a, we note that, even though the performance using the
ACT algorithm is superior to the proposed model in Brain, Em1, and USAir networks, the
proposed model records a better overall average performance. (iii) Similarly, as a random
walk-based algorithm, NC slightly outperforms our proposed model in the Yeast network.
By contrast, the proposed model is better than NC in other arbitrary networks, irrespective
of the value of training probability parameter η. (iv) As mentioned earlier, the precision
index is useful when probing the accuracy of different algorithms in the prediction of
missing links. Considering the Eco network presented in Figure 5, we deduced that the RA
algorithm has the highest AUC value (0.9633), while our proposal is a close second with an
AUC value of 0.9121. However, as described in Figure 6b, the precision using our proposed
model is better than what was recorded for the RA algorithm in the Eco network.

Looking at the two experimental scenarios that have been reported (AUC and precision
indexes), it can be concluded that the precision result of the proposed model ranks in the
top echelon of the comparison algorithms considered throughout the experiments, and our
proposed model can predict the missing links in a complex network with high accuracy.
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(a) (b)
Figure 6. Experimental result on precision index using different algorithms. (a) precision results of
various algorithms when η = 0.9; (b) precision results using various algorithms when η = 0.8.

4. Conclusions and Future Work

A simplified quantum walk model on a complex network was proposed to predict
missing links. The proposed model reduced the negative effect generated by traceback
by adding a self-loop to each node and presetting the walk step to two. Furthermore, the
observed probability at the end of the evolution operation is utilised to indicate the score
of a missing link. Experiments to validate the efficacy of the proposed model indicated
that it has better average performance in terms of the AUC than 14 competing algorithms.
Furthermore, the precision index was used to probe outcomes with similarity results.
Analysis of these outcomes suggested that the proposed model was better in missing link
prediction than its competitors. These outcomes suggested promising results when the
proposed model was deployed in different recommender systems.

There are many challenging issues based on this study. Firstly, the outcomes of the
observed results between two nodes can be regarded as a similarity index between the
nodes. It is a criterion in community detection of complex networks. Therefore, the
proposed simplified quantum walk model can be employed to detect communities within
a complex network. For example, since merging a pair of nodes with the highest similarity
score as an independent community, then repeating such a procedure and aggregating these
independent communities according to modularity function can result in a partitioning of
the community detection, which is subsequently used in the proposed simplified model
to obtain the similarity score. Secondly, by assuming that the hierarchy (importance) of
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missing links located in a network could influence the accuracy of an algorithm in link
prediction; then, on the one hand, the accuracy using an algorithm may be very sensitive
to the hierarchy (importance) of deleted links in the original network, while, on the other
hand, the similarity information also contains the important details about links in a complex
network (e.g., the significance and similarity of nodes can be simultaneously expressed
through degree centrality). Consequently, to obtain a higher accuracy using the proposed
model in link prediction, relations between the missing links and the accuracy of algorithms
need to be further explored. Thirdly, since statistical complex networks were used in this
study, their expressed information is incomplete, which makes prediction of missing links
in the temporal (dynamic) complex networks a natural extension of the study since it is
more practical.
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