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Abstract: Active learning is a technique for maximizing performance of machine learning with mini-
mal labeling effort and letting the machine automatically and adaptively select the most informative
data for labeling. Since the labels on records may contain sensitive information, privacy-preserving
mechanisms should be integrated into active learning. We propose a privacy-preservation scheme
for active learning using homomorphic encryption-based federated learning. Federated learning
provides distributed computation from multiple clients, and homomorphic encryption enhances the
privacy preservation of user data with a strong security level. The experimental result shows that the
proposed homomorphic encryption-based federated learning scheme can preserve privacy in active
learning while maintaining model accuracy. Furthermore, we also provide a Deep Leakage Gradient
comparison. The proposed scheme has no gradient leakage compared to the related schemes that
have more than 74% gradient leakage.

Keywords: privacy preserving; federated learning; active learning; homomorphic encryption

1. Introduction

The rapid expansion of big data has propelled the development of machine learning.
This tendency has presented conventional machine learning with substantial hurdles. Large
data are typically held on distributed devices by different firms, and it is becoming increas-
ingly difficult to learn a global model while resolving its associated privacy problems.

Obtaining sufficient labeled data for modeling purposes is one of the most challenging
aspects of a wide variety of learning tasks, since acquiring labeled data is typically costly
and requires human effort [1]. In many fields, there is an abundance of unlabeled data,
and labels can be attached to such data which requires an expensive cost by the expert
during the labeling process. It is possible to obtain labels in these instances, but it will be
prohibitively expensive for the consumer. As far as labels are concerned, it is crucial to note
that not all records are created equal.

Active learning (AL) is a technique for maximizing performance of machine learning
with minimal labeling effort. In particular, it seeks to minimize labeling costs without sacri-
ficing performance by selecting the most informative samples from an unlabeled dataset
and submitting them to an oracle, e.g., a human annotator for labeling [1]. Meanwhile, the
labels on records may contain sensitive information, and accessing them may incur a high
query cost, e.g., obtaining permission from the relevant entity. Since traditional methods of
active learning are failing to keep up with the times, privacy-preserving active learning has
been hailed as a promising new technique [2].

In order to overcome the difficulties in data collection containing sensitive private
information, federated learning (FL) was proposed by McMahan et al. [3]. FL allows the
collaborative training of a machine learning model across several decentralized devices
without data exchange. In FL, a centralized server delivers a global model to multiple
distributed devices, which return local model parameters to the centralized server after
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training. Using the locally trained model parameters from the distributed devices, the
centralized server updates the global model parameters and delivers updated global model
parameters to the distributed devices. This procedure is repeated until convergence is
obtained. FL has a benefit of limiting the disclosure of sensitive private data because it does
not require local data sharing.

The aim of federated active learning scheme proposed in [4,5] is to provide privacy
preservation for AL. This technique does not consider the data leakage from prameters,
e.g., gradient, which is exchanged between the server and client during FL training to
avoid data leakage. On the other hand, the use of homomorphic encryption enables a
computation to be performed directly on a ciphertext to produce an encrypted result that
is identical to the result calculated on the plaintext. A homomorphic encryption scheme
protects parameters effectively when transferring intermediate parameters throughout
the FL training process, and it has been widely used by numerous FL methods [6–8]. To
the best of our knowledge, a homomorphic encryption-based FL scheme is not applied to
provide privacy preservation for AL.

This paper studies and analyzes the privacy preservation of AL. We present a homo-
morphic encryption-based federated learning scheme to provide privacy preservation for
AL. In summary, the main contributions of this paper are as follows:

1. We propose FL scheme for AL with homomorphic encryption property to protect the
confidentiality of the sensitive data on AL.

2. We provide comparison and analysis of Deep Leakage Gradient (DLG) among the
proposed scheme and other related schemes.

The rest of the paper is organized as follows. Section 2 describes the existing literature
on privacy-preserving AL. Section 3 briefly explains the preliminary definition of active
learning, federated learning, and homomorphic encryption. Section 4 provides a detailed
description of the proposed scheme. The details of the datasets, experimental setup,
experimental results and discussion are provided in Section 5. Section 6 discusses the
vulnerability analysis of AL in FL, and finally Section 7 provides concluding remarks and
future research directions.

2. Related Work

In this section, we explain related studies on the privacy-preserving scheme for AL.
There are not many studies that comprehensively discussed the privacy-preserving AL.
Previous studies in [2] provide privacy preservation using k-anonymity and differential
privacy for AL, while the studies in [4,5,9] use a combination of FL and AL to achieve
privacy preservation in active learning.

A study in privacy-preserving active learning was proposed by Feyisetan et al. [2].
They describe a method for implementing active learning with quantitative assurances
that protects privacy. The authors suggest a framework for active learning that ensures
the confidentiality of queries made to an external oracle. They use random probabilistic
techniques to estimate if a query meets k-anonymity requirements. Then, after a query is
assumed to satisfy k-anonymity, only one of k queries is forwarded to n external annotators
to prevent the accumulation of privacy losses. In addition, a differential privacy technique
is used in the active learning environment to pick a subset of training samples to send
for annotation.

Ahn et al. proposed two approaches to preserve privacy in active learning: namely,
the separated active learning (S-AL) and federated active learning (F-AL) method [5]. In
S-AL, clients independently execute the AL prior to the FL. The m-th client uses the S-AL
algorithm to its unlabeled dataset. It may appear simple because the S-AL directly uses the
AL in the FL framework, including the annotation phase. In the F-AL, clients collaboratively
run the AL in a distributed optimization method to select the instances that FL deems
informative.

Another work related to federated learning and active learning was proposed by Goetz
et al. [4]. They introduce Active Federated Learning, in which clients are selected in each
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round not at random but with a probability based on the existing model and client data.
The scheme utilizes a value function that may be assessed on the user’s device and delivers
a value to the server. The value function indicates how useful the data on that user are
during each training round. Then, the server collects these evaluations and translates them
into selection probabilities for the subsequent training cohort. By applying a simple value
function related to the data loss suffered, the scheme can reduce the number of training
cycles necessary for the model to reach a particular level of accuracy.

The active federated learning scheme by Ahmed et al. [9] focuses on analyzing the
work of FL to benefit from unlabeled data, where the unlabeled data are available in each
participating client. The objective of the AL phase is to obtain and label training examples
from the local pool of unlabeled images. It is essential to note that the labeled training
is an iterative process in which the most relevant sample from the pool is retrieved at
each iteration. The maximum number of iterations is a crucial parameter, as after a certain
number of iterations, the relevance of the selected sample will begin to decrease and AL will
be forced to include irrelevant samples in the training set. They adopt an FL architecture
inspired by the Federated Averaging (FedAvg) algorithm [3] to construct a global model by
merging the stochastic gradient descent (SGD) of the local models.

3. Preliminary
3.1. Deep Active Learning

Existing research in deep learning assumes that labeled data are passive, either readily
available or arbitrarily chosen to be labeled by human experts. Active labeling in deep
learning seeks to obtain the greatest possible learning outcome with a restricted labeled
dataset, i.e., by selecting the most pertinent unlabeled data to be labeled. The goal is to train
the best classifier by selecting a subset of unlabeled data to be labeled, given a budget for
the number of examples to be classified. The first work on active learning for deep learning
(AL-DL) was proposed by Wang et al. [10]. AL-DL is a new active labeling approach for the
cost-effective selection of data to be labeled for deep learning. AL-DL selects data using one
of three metrics: least confidence, margin sampling, or entropy. The data selection strategy
is applied to deep learning networks that utilize stacked restricted Boltzmann machines
and stacked autoencoders.

The active labeling problem in deep learning is stated as follows. Given an unlabeled
sample set XU and a labeled sample set XL, the algorithm must label n samples from XU
and add them to XL in order to minimize the classification error of a deep learning model
fine-tuned by XL. The AL-DL algorithm is based on the principle of selecting samples that
are challenging to categorize by the present deep learning network. To evaluate uncertainty,
an entropy calculation is employed to pick the most uncertain unlabeled samples xi. This
algorithm produces n unlabeled samples to be labeled. AL-DL with entropy selects the
sample with the greatest entropy of class prediction information using Equation (1), where
hN

j is the activation value of the unit j in the top layer out of N deep learning layers.

xi = arg max
xi

−∑
j

p(hN
j |xi) log p(hN

j |xi) (1)

3.2. Federated Learning

In this subsection, we briefly describe the federated learning (FL) that has been pro-
posed in [3,11]. Multiple distributed devices with locally stored data train a machine
learning model utilizing FL without transferring locally stored data. Distributed devices
share only local model parameters produced by training a global learning model provided
by a centralized server with local data, enabling them to participate in the training process
without fear of data leaking. The centralized server aggregates locally learned model param-
eters to update the global model and distribute the updated global parameters to dispersed
servers or devices for retraining. Repeat this method until convergence is obtained.

The FL model consists of the following four algorithms:



Entropy 2022, 24, 1545 4 of 14

• Initialization takes an input of security parameter k, and it produces a global model
wG ∈ R as an output, where R is the set of real number.

• Local training takes the global model wG ∈ R, a local dataset D, and a positive integer
t as input, and it produces a local model wL ∈ R.

• Uploading takes the local model wL ∈ R and a positive integer t as input, and it
generates a vector vi

t ∈ RN as an output.
• Aggregation takes a set of vectors vi

t ∈ R and a positive integer t as input, and it
produces the global model wG ∈ R as output.

3.3. Homomorphic Encryption

A homomorphic encryption scheme has a pair of algorithms with Enc function and
Dec function and the following attributes:

• Enc function with a plaintext input m ∈ ZN outputs a ciphertext c ∈ C, where a
ciphertext space C is homomorphic to the plaintext space ZN under Enc, i.e., m1, m2 ∈
ZN , Enc(m1 + m2) = Enc(m1) + Enc(m2) and/or m1, m2 ∈ ZN ,
Enc(m1m2) = Enc(m1)Enc(m2), and identity element of ZN maps to identity element
of C;

• Dec function with a ciphertext input c ∈ C outputs a plaintext m ∈ ZN , where the
plaintext space ZN and the ciphertext space C are homomorphic under Dec;

• Enc and Dec functions are computationally efficient and satisfy Dec(Enc(m)) = m.

There are two forms of homomorphic encryption: additively homomorphic and
multiplicatively homomorphic. Additively homomorphic encryption has a pair of Enc and
Dec functions, where m1, m2 ∈ ZN , c1 = Enc(m1), c2 = Enc(m2), c3 = c1 + c2, and we
have Dec(c3) = m1 + m2. Multiplicatively homomorphic encryption has a pair of Enc and
Dec functions, where m1, m2 ∈ ZN , c1 = Enc(m1), c2 = Enc(m2), c3 = c1c2, and we have
Dec(c3) = m1m2.

Fully homomorphic encryption (FHE) [12] refers to a homomorphic encryption tech-
nique that works for any circuit with arithmetic and logical operations which can be
efficiently evaluated through ciphertext. This atribute enables the privacy-preserving pro-
cessing of sensitive data, which is a very important and currently unsatisfied demand in
computing applications. Due to the performance restrictions of computer architectures,
FHE techniques are not nearly ready for deployment in practical applications. Applications
based on current FHE systems, which need efficient implementations of computation-
ally expensive mathematical operations, are typically orders of magnitude slower than
traditional software applications that operate on plaintext data.

Partially homomorphic encryption is a homomorphic encryption in which homomor-
phism is only partially supported, i.e., the encryption scheme is homomorphic for some
operations but not for the other.

Somewhat homomorphic encryption is a subtype of FHE in which homomorphism is
supported only for a restricted circuit, i.e., the encryption scheme is homomorphic for all
operations but works only for circuits with a restricted number of operations.

A BFV homomorphic encryption scheme proposed by Fan and Vercauteren [13] ex-
tends Brakerski’s encryption technique [14] from learning with errors (LWE) to ring LWE
(RLWE). The RLWE problem is merely a ring-based variant of the LWE problem. The BFV
works with the following processes:

• Key generation algorithm takes the security parameter k as input and produces a
public key pk and a secret key sk as output.

• Encryption algorithm takes a plaintext m, a public key pk, and a randomness r as
input, and it produces a ciphertext c as output.

• Decryption algorithm takes a ciphertext c and a secret key sk as input, and it produces
a plaintext m as output.
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4. Proposed Scheme

In this section, we provide a detailed explanation of the privacy-preserving scheme
for AL using homomorphic encryption-based FL. Figure 1 shows the proposed scheme
with one server and n multiple clients. For the first round, the server sends the initial
encrypted weight of a global model to all clients; then, clients will decrypt the weight of
the global model and execute the AL training process. After completing the active learning
process, clients encrypt their weight model and then share it with the server. In the second
and next round, the server aggregates encrypted weight model from clients and sends the
aggregated weight model back to clients.

Figure 1. Proposed scheme of homomorphic encryption-based federated active learning with one
server and multiple clients.

Figure 2 describes the active learning query process of the proposed scheme using one
server and one client. The server executes global model training using labeled data (U) and
updates the global model (weight aggregation) using the client encrypted model as shown
in Algorithm 1. Then, the client performs active learning queries to predict unlabeled
instances (UI) using the decrypted global model with an input of unlabeled sample set (U)
as shown in Algorithm 2. If the prediction process doesn not meet the stop criteria.

Algorithm 1 describes the procedure of global model training with labeled data
samples and the calculation of the average encrypted weight of global model aggre-
gation. In the first process, the server trains the initial global model h. f it(L) using la-
beled data samples and encrypts the layer.weight of the global model using public_key
by Encpub_key(layer.weighhts), only for the first time. The encrypted weight of the global
model is shared to all clients.

In the second process, the server aggregates all the encrypted weight of local model
[W]all ; then, it updates the weight of global model [W]aggr using the client’s encrypted
weight of the local model. The average weight of the encrypted model is calculated by
BFV homomorphic encryption using Equation (2), where n is the total number of clients
{c1, c2, . . . , cn}, ⊗ is multiplicative homomorphic encryption, ⊕ is additive homomorphic
encryption and Enc_Model_Weightcn is encrypted model weights of client n computed by
Encpub_key(layer.weighhts). Instead of encrypting the gradient, we focus on encrypting the
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weights of the model. This method does not cost more in homomorphic encryption opera-
tions and the communication overhead. Further explanation is provided in Section 5.2.

Avg_Enc_Model_Weight =
1
n
⊗ {Enc_Model_Weightc1 ⊕ Enc_Model_Weightc2⊕

. . .⊕ Enc_Model_Weightcn},
(2)

After received global model [W]G from the server, the client decrypts Decpriv_key all
layers of the global model [W]G; then, it saves it as unencrypted local model hc, as shown in
Algorithm 2. In the next step, the client executes AL training using predicted batch_samples
and unencrypted local model hc. The AL training is executed until a stop criteria is met,
and it obtains an updated local model cl f . Finally, the client encrypts Encpub_key the weight
of local model [W]L and shares it to the server.

Figure 2. Active learning query process with one server and one client of the proposed scheme.

Concerning the active learning operations by clients, a classifier is trained on the seed
(a tiny manually labeled sample) at the first round to produce an initial model; then, the
model is used to predict labels for samples in an unlabeled pool of images and add them
to the seed based on parameters given in the underlying sampling strategy. It is essential
to note that this is an iterative process in which the most relevant sample from the pool is
retrieved at each iteration. The procedure will continue to retrieve samples from the pool
until a stop condition is reached. The maximum number of iterations is a crucial parameter,
as after a certain number of iterations, the relevance of the selected sample will begin to
decrease, and deep AL will be forced to include irrelevant samples in the training set at
some point. To achieve this objective, various ways could be employed to fix the number
of iterations. One of the possible options is to terminate the procedure when the model’s
accuracy reaches a steady level. Our stop criteria are determined by the maximum number
of query iterations.

Since our work focus on privacy-preserving scheme utilizes deep AL, we use the image
classification dataset [15,16] as a study case. The process begins with feature extraction
from input images using a pre-trained deep learning model called ResNet [17]. We use
ResNet trained on a dataset for image classification to extract object-level characteristics
from input images. It is important to note that the feature extraction element is independent
of the FL and deep AL components; hence, it is assume that the model used for feature
extraction will not have a significant impact on the overall evaluation.
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Algorithm 1: Server model training with labeled data and encrypted model
aggregation

Input:
L : Labeled example set
pub_key : public key
n : the number of clients
[W]all : weight of client model
Output: Aggregated weight of global model [W]aggr

1 Process 1: Initial global model training with labeled data
2 h← global_model
3 h. f it(L)
4 foreach layer ∈ h do
5 [W]G ← Encpub_key(layer.weighhts) //encrypted weight of global model

6 send_to_client([W]G)
7 Process 2: Encrypted model aggregation
8 [W]aggr ← [W]G // initial weight aggregation
9 foreach h ∈ [W]all do

10 foreach [row] ∈ h do
11 [W]aggr ← [W]aggr ⊕ [row] //homomorphic addition

12 foreach [row] ∈ [W]aggr do
13 [row]← [row]⊗ 1

n //homomorphic multiplication

14 Return [W]aggr

Algorithm 2: Active learning using unlabeled data in each client
Input:
U : Unlabeled example set
priv_key : private key
[W]G : encrypted weight of global model
Output: Encrypted weight of local model [W]L

1 h← [W]G
2 foreach layer ∈ h do
3 [row]← layer.weight //get the core row for layer
4 w← Decpriv_key([row]) //update layer using decrypt row weight

5 hc.save_model(w) / unencrypted local model
6 while (!Query Stop Criteria) do
7 batch_samples← predict(U) //predict unlabeled instances

cl f = active_learning(hc, batch_samples) // updated local model

8 foreach layer ∈ cl f do
9 [W]L ← Encpub_key(layer.weighhts)

10 Return [W]L

5. Result and Discussion
5.1. Datasets

The datasets for simulation are public image datasets that have been widely used
in the machine learning research communities. Table 1 describes the number of samples
and descriptions of each dataset. The first one is an MNIST dataset of handwritten digits
formatted as 28 × 28 images, with 784 features created [15]. This dataset is composed of
60,000 examples with 10 label decisions to recognize a one-digit number between 0 and 9.
The second dataset is CIFAR-10 [16], which is a well-established computer vision dataset
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used for object recognition. It is a collection of 60,000 tiny pictures and comprises 32 × 32
color images comprising one of ten item classes, with 6000 images per class.

5.2. Experimental Setup

We provide the following computing environment for the experiments. A server
computer has a CPU configuration of Intel Xeon Bronze 3206R 1.90 GHz, 32.0 GB RAM,
2 TB storage and is run under a Ubuntu-20.04 operating system. The NVIDIA RTX A4000
graphics card is used for GPU computation. A Python-based ModAL framework [18] is
used to provide an active learning strategy, and for Somewhat Homomorphic Encryption
(SHE) computation, we use Pyfhel libraries [19]. The library offers standard SHE operations
such as encoding, key generation, encryption, decryption, addition, multiplication, and
relinearization.

Table 1. Public dataset used in simulation.

No Dataset Samples Features Classes

1 MNIST 60,000 784 10
2 CIFAR-10 60,000 1024 10

We implement entropy-based sampling [10] and the BALD [20] strategy for active
learning. The 60,000 samples of each MNIST handwritten and CIFAR-10 dataset are used
during the simulation. The dataset is divided into two parts: 10,000 samples make up
the labeled dataset for model training in the server, and 50,000 unlabeled data samples
are shared equally by the client. Here, 1000 samples of labeled data are used for model
testing at the server. A maximum of 5 clients will run 10 query rounds to predict a batch of
500 unlabeled instances and re-train the model.

A deep AL algorithm of our scheme uses Recurrent Neural Network (RNN) with
long short-term memory (LSTM) [21]. LSTM is trained using the deep features extracted
by ResNet. A hybrid RNN-LSTM model will improve image classification accuracy. The
total number of LSTM layers is 2 with 128 hidden nodes and 64 hidden nodes in layer 1
and layer 2, respectively. We use Adam optimizer with a learning rate of 0.001. The
experimental result is calculated by the average value of three simulation runs.

For each client cn, BFV homomorphic encryption is executed by Enc_Model_Weightcn,
as shown in Equation (2). In our implementation, the deep AL scheme has 28 × 28 features
in the input layer, 128 hidden neurons in LSTM layer-1, and 64 hidden neurons in LSTM
layer-2. The scheme produces 7808 weights of the local model and eight bias values. All
the values are encrypted once in an array [W]L using the Pyfhel library.

To provide Avg_Enc_Model_Weight corresponding to [W]aggr, our proposed scheme
simply uses additive and multiplicative operations of BFV homomorphic encryption for
each array of elements in [W]L by the Pyfhel library.

To set up the homomorphic encryption scheme, we apply the BFV homomorphic
encryption and use pre-defined default values for the homomorphic encryption parameters
in the Pyfhel library, with the exception of parameter sec. The sec parameter is used to
determine the level of bit-wise security given. We conduct all the experiments with 128-bit
sec parameters of BFV homomorphic encryption. The key generation and distribution are
provided by the Pyfhel library, and the private key is only shared by the client to prevent
the server from accessing it.

5.3. Classification Accuracy Performance

In this subsection, we measure the classification accuracy performance of entropy
sampling and BALD deep AL strategy. We calculate two different FL schemes using both
encrypted data (AL with FL-Enc) and unencrypted data (AL with FL); the classification
accuracy exceeds 80% in the final round, indicating that BFV somewhat homomorphic
encryption does not degrade model performance.
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5.3.1. Accuracy Analysis with Different Number of Clients

Table 2 provides the classification accuracy of the proposed scheme on the MNIST
and CIFAR-10 datasets. We evaluate the trade-off between the number of clients and the
classification accuracy. The main objective of the experiment is to determine how increasing
the number of clients affects the accuracy performance. We test with the manually annotated
training set for this purpose. We begin with two clients, where the total available training
samples are spread across two clients, and we incrementally expand the number of clients.
As the number of clients increases, the classification accuracy decreases, resulting in a
not-so-large reduction in the number of training samples for each client. Comparing the FL
scheme using both encrypted data (AL with FL-Enc) and unencrypted data (AL with FL),
the encrypted data have lower accuracy, but both FL schemes are still comparable.

We compare the classification accuracy for the MNIST and CIFAR-10 dataset for both
entropy sampling and BALD AL strategy. The accuracy of FL scheme with encrypted data
(AL with FL-Enc) is lower compared to the FL scheme with unencrypted data (AL with FL).
This is due to the effect of homomorphic encryption, but the decrease in accuracy is not
significant and still tolerable.

Table 2. Accuracy of Active Federated Learning after 10 query rounds with multiple clients. (AL:
Active Learning, FL: Federated Learning, FL-Enc: FL with homomorphic encryption).

Dataset No of Clients
Entropy Accuracy BALD Accuracy

AL with FL AL with FL-Enc AL with FL AL with FL-Enc

MNIST 2 0.9072 0.9023 0.9312 0.9262
MNIST 3 0.9023 0.9008 0.9287 0.9231
MNIST 4 0.8971 0.8965 0.9176 0.9082
MNIST 5 0.8942 0.8912 0.9120 0.8988

CIFAR-10 2 0.8872 0.8829 0.9156 0.9093
CIFAR-10 3 0.8845 0.8789 0.9086 0.8965
CIFAR-10 4 0.8763 0.8651 0.8972 0.8905
CIFAR-10 5 0.8591 0.8522 0.8924 0.8878

5.3.2. Accuracy Analysis as a Function of Query Rounds

We provide accuracy analysis as a function of query rounds for a scheme of one server
and two clients on the MNIST dataset as shown in Figure 3. For the first round, entropy
sampling has the accuracy of 0.7334 and 0.7312 for scheme of AL with FL and AL with
FL-Enc, respectively. BALD AL with FL has 0.8403 accuracy and BALD AL with FL-Enc
has 0.8352 accuracy. With the increasing number of query rounds, the batch sample also
increases, and the classification accuracy also increases. Finally, at round 10, the entropy
sampling reaches 0.9072 and 0.9023 for AL with FL and AL with FL-Enc. BALD AL with
FL has 0.9289 accuracy, and BALD AL with FL-Enc has 0.9221 accuracy.

5.4. Execution Time Performance

The next experimental result is provided in Table 3. We evaluate the execution time
(second) of entropy sampling and BALD AL strategy using both unencrypted data (AL
with FL) and encrypted data (AL with FL-Enc). The experimental result shows in both the
MNIST and CIFAR-10 datasets; there is a significant difference of execution time for the FL
scheme on unencrypted and encypted data. The FL scheme with encrypted data is seven to
ten time slower compared to the FL scheme with unencrypted data.
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Figure 3. MNIST classification accuracy of Active Federated Learning as a function of query rounds for
two clients. (AL: Active Learning, FL: Federated Learning, FL-Enc: FL with homomorphic encryption).

In common machine learning applications, the training phase is usually not performed
in real time. Only the inference phase of the final model is executed in real-time application:
for example, the machine learning application on the object detection of edge devices with
CCTV cameras. The model is trained using adequate video files that have been stored
in the cloud/server for a certain time to obtain better accuracy. The final model will be
installed in the edge device to perform machine-learning object detection using real-time
video files from the CCTV camera. In the proposed scheme, the final model aggregated
by the server can be used by the client to perform real-time machine-learning applications.
Even though the proposed scheme uses homomorphic encryption to compute the final
model, the delay does not occur in the inference phase.

Table 3. Execution Time of Federated Active Learning after 10 query rounds with multiple clients.
(AL: Active Learning, FL: Federated Learning, FL-Enc: FL with homomorphic encryption).

Dataset No of Clients
Entropy Time (Second) BALD Time (Second)

AL with FL AL with FL-Enc AL with FL AL with FL-Enc

MNIST 2 218 1596 647 4721
MNIST 3 238 1887 704 5582
MNIST 4 265 2496 784 7384
MNIST 5 349 3397 1032 10,049

CIFAR-10 2 327 2463 1073 7232
CIFAR-10 3 356 2826 1169 9262
CIFAR-10 4 397 3738 1301 12,249
CIFAR-10 5 523 5088 1713 16,671

The benefits we obtain from our proposed scheme are: (1) the server can update its
model based on the encrypted model of the client; (2) ensure there is no privacy breach,
since the user data are kept at their location/device and only the encrypted model is shared
to the server.

6. Vulnerability Analysis

FL presents a new paradigm for protecting user privacy while executing large-scale
machine learning activities, but it is riddled with vulnerabilities that must be handled.
Knowledge of FL vulnerabilities helps to keep track and defend against potential assaults.
The inability to detect FL vulnerabilities will affect defenses that are prone to attack. We
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provide source vulnerability analysis for the proposed scheme and compare it to related
work schemes.

In the scheme of Ahn et al. [5], a cross-silo FL consisting of a server and numerous
clients is analyzed. The FedSGD [3] is used for FL updates, where the global model is
produced by iterative stochastic gradient descent (SGD). Additionally, the FedAvg [3]
computes the converged solution at each client by iterating numerous times prior to
calculating the average. Related work by Ahmed et al. [9] also uses Federated Averaging
(FedAvg) algorithm [3] to construct a global model by merging the stochastic gradient
descent (SGD) of the local models.

In the scheme of Goetz et al., a subset of users is selected during each training iteration.
Each user trains the model using their own data and generates updated model parameter
values. These updated model parameter values are then sent to the server and aggregated
using Federated ADAM [22]. This approach aims to pick an optimum subset of users
based on a value function that reflects the usefulness of each user’s data throughout each
training round. A differentially private mechanism [23] is used to protect the value function
during transmission.

6.1. Source Vulnerability Analysis

Bouacida and Mohapatra [24] provide nine categories of source vulnerabilities. Table 4
shows a comparison of source vulnerability and possible attacks to the proposed scheme
and related schemes.

1. Communication: The annotation process is usually executed locally in a client for the
AL scheme, but multiple communication cycles between the server and clients are
required for exchanging models in FL. An insecure channel represents an exposed
vulnerability. The models shared between participants and the final FL model in
the deployment phase can be intercepted and replaced with malicious models by
eavesdroppers. All communication channels are insecure in both the proposed scheme
and related schemes; there is a possibility that an adversary can intercept and change
the original models with malicious ones.

2. Gradient Leakage: FL provides a technique that protects privacy when training with
distributed data. Despite the fact that the data are not explicitly shared throughout
the training phase, it is still possible for adversaries to expose sensitive information
and even resemble the raw data by sharing the gradients. The proposed scheme
uses homomorphic encryption-based FL. The weights of the gradient are shared in
encrypted mode, so there is no gradient leakage for the proposed scheme. Goetz
et al. [4] add noise to the model using differential privacy. Still, there is a gradient
leakage in the scheme. Both Ahn et al. [5] and Ahmed et al. [9] do not have any
additional method to the scheme, so there is a gradient leakage in the scheme.

3. Compromised Clients: Clients are regarded as a crucial component of the AL in the
FL scheme. Compromised clients distort the FL training process by using model
parameters or training data to create an attack. All schemes are highly vulnerable to
attacks by compromised clients.

4. Compromised Server: The server is responsible for distributing the initial model
parameters, aggregating model updates, and sending the global model to the clients.
The server is susceptible to some attacks such as Denial of Service (DDos) attacks.
With the current server conditions, all schemes are susceptible to attacks carried out
on servers to affect processes of a model in FL.

5. Aggregation Algorithm: The inadequate configuration and maintenance of a strong
aggregation technique will leave the global model vulnerable and unreliable. The pro-
posed scheme has advantages over the related schemes because it has a homomorphic
encryption configuration of the aggregation algorithm.

6. Non-Malicious Failure: Particular clients will report failures and, as a result, will
drop out of the training cycle. Such failures may lead to the elimination of clients
with relevant training data, resulting in a low-quality, biased model. Clients on each
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scheme can cause non-malicious failure, because there is no known protocol used to
solve this problem both in the proposed scheme and the related schemes.

7. Distributed Nature of FL: Distributed training facilitates collusion and distributed at-
tacks, in which numerous participants collude to conduct an organized attack. Similar
to the criteria for compromised clients, all schemes have limitations to overcome the
problems in the distributed nature of FL criteria.

8. FL Environment Scope: The FL scheme involves numerous parties, such as clients,
architects, developers, analysts, and deployers. Designing and implementing coor-
dination rules can be challenging and may result in instances where the robustness
of collaborative training cannot be guaranteed. In all schemes, both the proposed
scheme and the related schemes do not have a protocol in coordinating various FL
elements to ensure the collaborative training.

9. Model Deployment: An adversary could interfere with the training procedure to
generate or aggravate inference-time flaws in the deployed model. All schemes are at
risk of enemies that can interfere with the training process, but the proposed scheme
has a better approach by using homomorphic encryption on the model deployment.

Table 4. Comparison of attack possibility from sources of vulnerabilities for the proposed scheme
and related schemes. Y and N indicate the attack can be performed and cannot be performed from
the source of vulnerability, respectively.

Source of Ahn et al. [5] Goetz et al. [4] Ahmed et al. [9] AL with FL Proposed
Vulnerability AL with FL-Enc

1. Communication Y Y Y Y Y
2. Gradient Leakage Y Y Y Y N
3. Compromised Clients Y Y Y Y Y
4. Compromised Server Y Y Y Y Y
5. Aggregation Algorithm Y Y Y Y N
6. Non-Malicious Failure Y Y Y Y Y
7. Distributed Nature of FL Y Y Y Y Y
8. FL Environment Scope Y Y Y Y Y
9. Model Deployment Y Y Y Y N

6.2. Gradient Leakage Analysis

Exchanging gradients is a widely used method in a modern distributed machine
learning system (e.g., federated learning). Zhu et al. [25] present an approach which shows
the possibility of obtaining private training data from publicly shared gradients, namely
Deep Leakage Gradient (DLG). They synthesize the dummy data and corresponding labels
with the supervision of shared gradients. An improvement of DLG is presented by Zhao
et al. [26]. They provide an analytical approach to extract the ground-truth labels from the
shared gradients, namely improved Deep Leakage from Gradients (iDLG). The iDLG is
capable of extracting the data more effectively based on correct labels.

We provide an experiment of iDLG on the proposed scheme and related schemes for
the MNIST dataset. We run all experiments 100 times by following the settings in [26].
Table 5 shows the comparison of accuracy of the extracted labels for iDLG. Since there is no
additional improvement on the gradient-sharing mechanism of Ahn et al. [5] and Ahmed
et al. [9], the iDLG can extract almost all labels of the MNIST image with 98% accuracy. The
iDLG result on the scheme of Goetz et al. [4] has 74% accuracy because the scheme has an
additional procedure using the differential private mechanism to put noise in their scheme.
The result of iDLG on the proposed scheme without encryption also has high accuracy with
98%. The significant result shows there is no gradient leakage for the proposed scheme with
encryption. The iDLG can not extract the label because of the homomorphic encryption
scheme used in FL.



Entropy 2022, 24, 1545 13 of 14

Table 5. Comparison of improved Deep Leakage Gradient accuracy of extracted labels for proposed
scheme and related works. In this comparison, scheme with lower accuracy is better.

No Scheme Accuracy of the Extracted Labels for iDLG

1 Ahn et al. [5] 98%
2 Goetz et al. [4] 74%
3 Ahmed et al. [9] 98%
4 Proposed AL with FL 98%
5 Proposed AL with FL-Enc 0%

7. Conclusions

In this paper, we presented a privacy-preserving federated learning (FL) scheme to
protect the privacy of user data for deep active learning (AL). The homomorphic encryption
scheme used in it can protect the weight of the deep AL model. A detailed evaluation of two
different AL methods, namely entropy-based and BALD scheme, have been provided. We
demonstrated that FL could be advantageous for deep AL that lacks large-scale annotated
datasets. In addition, we analyzed the impact of multiple clients architecture on the
performance of the encrypted global model. The experimental result shows that the
proposed homomorphic encryption-based FL can preserve privacy for deep AL while
keeping the accuracy, and the scheme has no gradient leakage. In the future, we aim to
provide an improvement of the proposed scheme by considering the specific attack to
federated learning and utilizing an optimized homomorphic encryption scheme.
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