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Abstract: Language evolution is driven by pressures for simplicity and informativity; however, the
timescale on which these pressures operate is debated. Over several generations, learners’ biases for
simple and informative systems can guide language evolution. Over repeated instances of dyadic
communication, the principle of least effort dictates that speakers should bias systems towards
simplicity and listeners towards informativity, similarly guiding language evolution. At the same
time, it has been argued that learners only provide a bias for simplicity and, thus, language users
must provide a bias for informativity. To what extent do languages evolve during acquisition versus
use? We address this question by formally defining and investigating the communicative efficiency
of acquisition trajectories. We illustrate our approach using colour-naming systems, replicating a
communicative efficiency model based on the information bottleneck problem, and an acquisition
model based on self-organising maps. We find that to the extent that language is iconic, learning
alone is sufficient to shape language evolution. Regarding colour-naming systems specifically, we
find that incorporating learning biases into communicative efficiency accounts might explain how
speakers and listeners trade off communicative effort.

Keywords: colour-naming systems; communicative efficiency; language evolution; information
bottleneck

1. Introduction

Language is a flexible cognitive technology that culturally evolves over multiple
timescales [1]. For example, learners might be exposed to slightly different input than
the past generation and, therefore, change the language they use to better reflect their
environment [2]. Interactions between strangers might inspire new linguistic conventions,
which may last for the interaction or permeate into common use [3,4]. At a larger timescale,
environments and the goals we want to achieve change, inspiring language change [5].
Regardless of the timescale, the evolution of language requires two pressures [6]: a bias
towards informativity to ground the communicative task and a way to lose information to
both permit innovation and adapt to novel communicative scenarios. At what timescales
are these criteria minimally established?

Although there are many approaches to studying the complex dynamics of language
evolution [7,8], cultural evolutionary approaches typically focus on two timescales: lan-
guage acquisition and dyadic coordination. Language acquisition provides an opportunity
for the next generation of a language to lose information about the environment both
by forgetting environmental statistics that are no longer relevant and by simplifying, or
regularising, patterns that are now prominent in the environment [2,9]. In contrast, dyadic
coordination pressures a system towards informative (non-ambiguous) conventions that
are easy to use but readily discarded across conversation partners [3,10,11]. Taken together,
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it is reasonable to think that both timescales interact to shape language (as argued exten-
sively by [12–14]); however, it has also been argued that the communicative timescale and,
more recently, the acquisition timescale have independent pressures for information loss
and informativity, independently satisfying the criteria for language evolution. In this case,
acquisition models would be minimally sufficient to explain language evolution. That said,
there have been some concerns that the pressure for informativity in acquisition might
better reflect other learning biases [14,15]. We briefly review the arguments that dyadic
coordination and acquisition independently satisfy the criteria for language evolution and
the concerns about an informativity bias in acquisition. We then provide a formal analysis
of acquisition and communication to address these concerns, predicting when acquisition
biases for simplicity and iconicity will provide a pressure for informativity. We illustrate
our account with the domain of colour-naming systems, demonstrating that a learning
bias for iconicity provides an informativity pressure. Therefore, acquisition is a sufficient
timescale for explaining the evolution of colour-naming systems.

1.1. How Might Languages Evolve Due to Communication?

As early as Zipf [16], languages have been described as efficient trade-offs between
speaker and listener processing considerations. Speakers want languages to be as simple
as possible; in the degenerate case, there is one word to rule them all (i.e., the word is the
only word with which to refer to anything), resulting in maximum information loss. On the
other hand, listeners want languages to be as informative as possible (e.g., a word for every
possible state of the world in every imaginable universe). Therefore, both requirements
for language evolution arise without any consideration for the acquisition of the system.
Several researchers have argued that speaker–listener interaction is vital for informative
signs to emerge [10,17,18]. Information is lost through shifting conversation partners and
generational turnover, which allows alignment on a generalisable language [19]. Thus,
language evolution can occur through dyadic coordination alone (for a review of the
empirical literature see [4]).

Recently, the speaker–listener trade-off has been formalised at Marr [20]’s computa-
tional level in semantic typology to demonstrate that, at least for some domains, these
communicative efficiency constraints can explain both the diversity of attested language
systems [21–25] and arguably their evolution [26,27]. Under this account, languages evolve
by traversing the Pareto frontier of the communicative efficiency trade-off by increasing
speaker effort. While this account has been wildly successful, it is not without its criti-
cisms. Levinson [28] pointed out that although diversity is well explained, the model does
not account for the process by which these systems emerge.

1.2. How Might Languages Evolve Due to Acquisition?

There are several ways in which learners might lose information about the language
held by a prior generation. To start, a learner’s input reflects the current environment,
which may differ drastically from the environment in which previous generations acquired
language [5]. More relevant to cultural evolution accounts, in the face of noisy inconsistent
grammatical input, learners prefer to adopt a simple, mostly correct rule rather than the set
of rules and exceptions often required to capture the nuance of a language [2,9,29]. This
process of simplification, or regularisation, acts as a natural pressure to lose information.

The real challenge of an acquisition account of language emergence is to provide
a pressure for informativity. It has been argued that without dyadic communication,
cross-generational learning simplifies an initial language resulting in less informative
systems [13,30,31]. Recently, it has been demonstrated that learners might repurpose op-
tional variations in their input (e.g., using don’t and do not equally in statements, commands,
and questions) into a more informative language (e.g., only using do not as a command).
This form of regularisation would suggest that learners have an inductive bias towards in-
formativity. In an important artificial language learning experiment, Fedzechkina et al. [32]
demonstrated that learners could regularise the use of optional case markers in a way
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that increases the informativity of the initial input language. Similarly, Kurumada and
Grimm [33] demonstrated that learners will acquire complex yet informative patterns of
nominal number marking not present in their input language. In another iterated-learning
experiment, Carstensen et al. [34] generalised this finding from grammatical features to
semantic categories, illustrating an informativity bias with colour and spatial relations.
Crucially, none of these studies included dyadic communication, which suggests that there
may be an inductive bias that guides learners to regularise for more informative languages.

Recently, this informativity bias in acquisition has been challenged. In a series of
experiments, Smith and Culbertson [15] failed to replicate Fedzechkina et al. [32]. They
argued that instead of an informativity bias, the original results may have been driven
by an early learning bias to use longer linguistic codes (e.g., an additional case marker)
to communicate unusual events. This bias has been referred to as iconicity of markedness
matching [35] because the addition to the linguistic code is as unusual as the event the
code signifies. While this form of iconicity also contributes to communicatively efficient
coding, it suggests that an iconicity bias might provide the same functional pressure as an
informativity bias. Similarly, Carr et al. [14] demonstrated that including an inductive bias
for informativity, compared to a bias for simplicity, provides a poor fit to data in an artificial
language learning experiment with semantic categories. Specifically, they argued that a
bias for simplicity can provide the same functional pressure as informativity and give rise
to categories similar to those seen in Carstensen et al. [34]. In light of their experiments,
Carr et al. [14] argued that language evolution is shaped over both timescales, i.e., language
acquisition and dyadic communication (see also [12,13]).

Taken together, it appears that acquisition biases for iconicity and simplicity may
moonlight as an informativity bias, but only sometimes. When they act as an informativ-
ity bias, the requirements for language evolution are met and acquisition is a sufficient
timescale for language evolution (as in [32,34]). When they do not provide the same pres-
sure as an informativity bias, languages move towards simple degeneracy [13,30,31]. Under
what conditions do simplicity and iconicity result in a pressure for informativity?

We propose a formal analysis to investigate the timescales of acquisition and explain
the conditions under which well-established learning biases (simplicity and iconicity)
provide the same functional pressure as an informativity bias. In the next section, we
outline our proposed explanation. We then illustrate our analysis using the domain of
colour terms, as there exist well-motivated models of both colour-term communicative
efficiency and colour acquisition. Specifically, we reimplement Zaslavsky et al. [22]’s
communicative efficiency model and Beekhuizen and Stevenson [36]’s colour acquisition
model. We use the models to weigh in on whether both acquisition and communicative
timescales are required to explain language evolution by investigating if and when the
minimal conditions for language evolution (information loss and informativity) are met by
acquisition models, i.e., are learners’ languages communicatively efficient over the course
of acquisition? Along the way, we investigate whether the acquisition trajectory, i.e., the
ordered set of languages that a learner infers as they see more data, includes languages
that are more informative than adult-like language, as suggested by Fedzechkina et al. [32]
among others.

Lest we leave you in suspense, we demonstrate that when a learner’s conceptual hy-
potheses about the world align with the meanings speakers want to convey, learning biases
for simplicity and iconicity can function as a pressure for informativity. We demonstrate
this alignment with colour naming, suggesting that acquisition is a sufficient timescale for
explaining the evolution of colour naming. We do not find evidence of an additional bias
for informativity in learning. We take this illustration as a promising direction for future
work investigating how communicative efficiency and acquisition dynamics interact.
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2. Our Approach

Formally, we see acquisition and communication as two distinct lossy compressions,
i.e., Rate-Distortion Theory (RDT) problems [37]. An RDT problem describes the optimal
efficiency trade-off between the amount of information compressed from a source domain
into a representation and the amount of distortion (error) caused by using this representa-
tion instead of the source for some downstream task (e.g., communication). By definition,
lossy compression problems satisfy both requirements for language evolution: maximising
compression results in simple systems that lose information and minimising error results in
complicated, informative systems. In formalising acquisition, a learner wants to lossily com-
press their experience of the universe into mental representations to robustly reconstruct
the world [38], as argued by control theory [39]. As argued by Zaslavsky et al. [22], the
process of communication (i.e., source coding) is also lossy compression: speakers compress
meanings into language in order for listeners to reconstruct the meaning successfully.

In an RDT model, we need to specify (1) the domain (i.e., the conceptual universe
of possible world states/meanings); (2) a source distribution over this domain (e.g., the
environmental frequency or communicative need); and (3) a cost function that captures
the impact of misrepresenting the source domain for a downstream task (e.g., communica-
tion/reconstruction). With these assumptions, we can then describe the optimal trade-off
between compression (complexity) and distortion (information loss).

Following Zaslavsky et al. [22], we use the Kullbach–Leibler (KL) divergence [40]
as a cost function, which results in a well-studied rate-distortion problem known as the
Information Bottleneck (IB) [41,42]. For IB problems, the cost function requires us to specify
the expected imprecision or similarity (generalisation) gradient for each item in the domain.
For example, in Zaslavsky et al. [22]’s model of colour communication, the domain is
colour meanings, and the precision of a specific colour meaning is given by a Gaussian
distribution over perceptual colour space, centred at that colour meaning. This distribution
places an implicit order over the domain, governing the compression patterns.

We propose that the source distribution across acquisition and communication are
roughly the same. Thus, the main difference between the acquisition and communication
RDT problems lies in the generalisation gradients over world states. In acquisition, this
distribution reflects a learner’s hypotheses about concepts, whereas in communication, this
distribution reflects the precision of meanings. Given that hypotheses and meanings are
distributions over the same conceptual universe, it would make sense to align or combine
them; however, hypotheses and meanings are theoretically distinct and it has been argued
that different biases influence them. For example, informativity is thought to influence
communication, not acquisition, as summarised in the introduction.

In our analysis, iconicity results from a structural isomorphism between hypotheses
and meanings [43,44], that is, learners will generalise a world state similarly to how speakers
will extend a meaning. For illustration, let us consider a conceptual universe of world states
U and some relevant distinctions over the states of the world (the coloured partitioning
in Figure 1a). A learner wants to reconstruct this structure based on their hypotheses
hu about how world states are related P(U|hu). We can imagine a learner that has a
unique hypothesis for every world state, placing a high probability (darker shading) on
the corresponding world states and a decreasing probability (lighter shading) on the
neighbouring world states (Figure 1b). We can also imagine a learner that does not have a
unique hypothesis for each world state (e.g., in Figure 1c P(U|h1) = P(U|h5) = P(U|h2)),
but still places a high probability on some world states and a decreasing probability
on the neighbouring world states. For both learners, reconstructing the world involves
compressing hypotheses to preserve relevant distinctions in the world, resulting in better
hypotheses about how world states are related. However, the different generalisation
patterns defined by the hypotheses mean that compressing world states for a learner using
the first hypothesis space will result in a different acquisition trajectory than for a learner
using the second hypothesis space.
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Figure 1. Illustration of learners’ hypotheses and speakers’ meanings. Iconicity occurs when learners’
hypotheses and speakers’ meanings are isomorphic, i.e., when there is a correspondence between a
hypothesis h and a meaning m for every state of the world u (e.g., between Learner 1 and Speaker
1). (a) A conceptual universe of world states U and the relevant distinctions in the world reflected
by fill colour. (b) A learner’s hypothesis about how world states are related to the world state
u1, i.e., P(U|h1). The brightness of shading reflects probability, with darker shades for higher
probabilities/stronger generalisations. (c) Another learner’s hypothesis for the same underlying
world state: P(U|h1). In comparison to the first learner, this learner readily generalises to some
adjacent states (e.g., compare u2 and u5 across learners) but does not generalise as readily to others
(e.g., compare u11). (d) A speaker’s meaning when intending to communicate about world state u1.
(e) A second speaker’s meaning when intending to communicate about world state u6. (f) The second
speaker’s meaning when intending to communicate about world state u11. The differences between
the speaker’s meanings for u6 and u11 are to illustrate that meanings for different world states are
not required to have a fixed rule or analytical form, even within a speaker.

We can visualise the communication RDT problem in the same way. Imagine a
speaker equipped with meanings P(U|mu) similar to our first learner (Figure 1d): a high
probability mass on the corresponding world state with a decreasing probability on adjacent
states. We can also imagine a speaker where the shape of P(U|mu) differs for each world
state (compare Figure 1e,f). Optimal communication requires the speaker’s meanings
to be compressed into words such that listeners can reconstruct the intended meaning.
If we compress the first speaker’s meanings, we will arrive at a different set of optimal
communication systems than if we compress the second speaker’s meanings. The key
insight of our approach is that if learners use the first hypothesis space (Figure 1a) and
speakers use the first set of meanings (Figure 1d), the compression problem is identical. This
is because there exists at least one structure-preserving mapping between the hypotheses
and meanings, i.e., structural isomorphism.

Although this is a structural alignment, it may also correspond to the intuitive notion
of iconicity by which our perceptions of the world (as guided by our hypothetical concepts)
are directly reflected in the meanings of words as in [43], provided learners’ hypotheses
reflect sensorimotor content. It’s worth noting that the direction of this relationship is
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unclear. While learnability has been appealed to in explanations of semantic universals [45]
and typological prevalence [46], the presence of linguistic structure is often appealed to for
learners identifying important conceptual distinctions in the world in the first place [47,48].
It is important to note that we use iconicity as a mapping between the space of learners’
hypotheses and the space of speakers’ meanings, whereas Smith and Culbertson [15]
appealed to iconicity as a form-meaning mapping. We believe that our notion of structural
iconicity is distinct from notions of iconicity that rely on direct mappings between the
sensorimotor content of linguistic forms and the sensorimotor content of the world, as
in onomatopoeia. That said, our formalisation may explain Haspelmath [35]’s iconicity of
markedness matching. If a learner’s hypotheses and a speaker’s meanings are structurally
aligned, then the environmental frequency of world states should be reflected in the
need probability of words. Under noisy channel models of communication, word length
correlates with the need probability of a word [49]. Therefore, words reflecting rare world
states should have longer (marked) forms. Further research will be required to evaluate
whether and how our formalism of iconicity might explain iconicity between meanings
and linguistic forms.

As a consequence of structural iconicity between hypotheses and meanings, optimal
communication is formally equivalent to optimal acquisition, and acquisition trajectories
should trace the optimal communication trade-off between information loss and complexity
(the IB frontier) as shown in Figure 2a. Hypotheses and meanings can also be misaligned.
Consider number communication and acquisition. Humans have two representational
systems for number cognition: the approximate number system [50] and the object-file sys-
tem [51]. In modelling the communication problem for number marking, Mollica et al. [52]
used approximate number system representations for meanings to explain typological
diversity, whereas models of number word acquisition often rely on object-file represen-
tations for the hypothesis space ([53], although see [25] for a model that combines both
representations). Due to the representational mismatch, the acquisition model bypasses
communicatively optimal systems with approximate number meanings (e.g., a few/paucal)
for systems with sub-optimal simplicity-information loss trade-offs (Figure 2b). That said,
we still expect the acquisition trajectory to move towards complex, informative systems as
they see more data. In other words, simple hypotheses for a learner may reflect complex,
less-informative partitions for communication.

a) b) c) d)

Figure 2. Communicative efficiency of possible acquisition trajectories (in blue). The space below
the black line reflects languages with impossible trade-offs between information loss and complexity.
The black lines represent languages that achieved an optimal trade-off between information loss and
complexity. Possible acquisition trajectories in blue include (a) if learners’ hypotheses aligned with
speakers’ meanings; (b) if learners’ hypotheses did not align with speakers’ meanings; (c) if learning
was memorisation; and (d) when learning was influenced by the local data distribution.

Now, we are interested in more than just the consequences of representational misalign-
ment on optimal communication/acquisition. While optimal models of acquisition equipped
with proper inductive biases/constraints often closely track learning behaviours [54], our
analysis is generalisable to other learning models. For example, we can consider a theoreti-
cal learning algorithm that simply memorises data veridically (Figure 2c). It should also be
noted that the above patterns are expected when marginalising over the individual data dis-
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tribution given to a learner (i.e., a group effect). As different learners receive independent
data drawn from the target languages, we expect some variation in the acquisition trajectory.
Notably, we might expect the local distribution of data to encourage generalisations that
are not globally representative of the data, i.e., learning traps [55] or conceptual garden
pathing [56]. These local learning phenomena could result in nonlinear kinks or possibly
even U-shaped learning (e.g., Figure 2d). We expect these kinks to be most notable early on
in the trajectories when sampling variance is the greatest.

For our current purposes, we have provided a formal explanation for when a learning
bias for iconicity is equivalent to a learning bias for informativity, i.e., when the learner’s
hypotheses align with the speaker’s meanings. We believe this reinforces the arguments
made by both Carr et al. [14] and Smith and Culbertson [15] that the learning biases
previously attributed to informativity were actually due to iconicity. It should be noted
that Carr et al. [14] did not directly argue for iconicity. Instead, they argued that an in-
ductive bias for simplicity will push towards a compact (informative) category structure,
where a compact category structure might arise from either communicative pressures or
through “similarity”. They proceeded to argue that communicative pressures are unlikely
(see [57]). Thus, we choose to interpret “similarity” as either compression over a structure
in the world or a compressed mental representation of the structure in the world, both
following Sims [38]’s treatment of similarity and thus, iconic. Further dovetailing with
Carr et al. [14], we propose that this equivalence will be stronger when both hypotheses and
meanings are highly compressed, as in the early periods of acquisition or highly speaker-
efficient languages. To test our account, we simulated Beekhuizen and Stevenson [36]’s
colour-term learner, plotted the acquisition trajectories in terms of communicative effi-
ciency using Zaslavsky et al. [22]’s model of optimal colour compression, and compared
the simulated acquisition trajectories against the predictions in Figure 2.

We can also use our analysis to check for an additional informativity bias in learning,
as suggested by Fedzechkina et al. [32]. In the iterative learning experiments demonstrating
a bias for informativity using grammatical distinctions, the hallmark of an informativity
bias is that a learner’s acquisition trajectory contains a language that is more informative
than the target language generating the data. Although the formal analysis outlined in this
section does not predict such a pattern, the formal analysis assumes ideal learning. It might
be the case that the assumptions of our implemented model are wrong or too simplified. For
example, memorisation or hypotheses/meanings with very tight generalisation gradients
might recreate the hallmark pattern (see Figure 2c; and Appendix A for further explanation).
Similarly, chance sampling of the data might result in order effects that demonstrate this
pattern (Figure 2d). Therefore, we also look to see if such a pattern occurs and aim to
explain it in terms of the learner’s data distribution and inductive biases of the model.

3. Model Implementations

To evaluate the communicative efficiency of languages along the acquisition trajectory,
we re-implemented Zaslavsky et al. [22]’s model of colour-term compression. Using the
World Colour Survey (WCS, [58]), Zaslavsky et al. [22] demonstrated that human languages
embody the trade-off between complexity and information loss and achieve nearly optimal
communicative efficiency as predicted by the information bottleneck principle. To validate
our implementation, we replicate this analysis in Figure 3. The solid blue line reflects
the ideal communicative-efficiency trade-off, i.e., the Information Bottleneck (IB) frontier,
between complexity (x-axis) and information loss (y-axis). The area below the IB frontier
reflects unachievable colour-naming systems. The attested colour-naming systems from the
WCS are plotted as points. Replicating Zaslavsky et al. [22], we found that natural languages
clustered along the frontier and that languages appear to trade off the complexity and
information loss of the lexicon. Interestingly, natural languages lie close to the IB frontier at
lower values of the trade-off parameter, reflecting a preference for simpler systems. Several
researchers have attempted to explain the lack of attested languages distributed across the
frontier, e.g., in terms of industrialisation [59] and communicative need [23,60].
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Figure 3. We plot the WCS languages, as scored in the communicative efficiency space, and high-
light four typologically diverse languages: Agarabi, Culina, Dyimini, and Yucuna. Similar to
Zaslavsky et al. [22], we find that natural languages cluster along the frontier.

As the goal of this work is to chart out the communicative efficiency of acquisition
trajectories, we needed a formalisation of acquisition that operated over the same concep-
tual universe as the communication model, i.e., the Munsell colour chips from the WCS
and CIELAB perceptual colour space, as illustrated in Figure 4. Furthermore, to draw
interesting conclusions from this comparison, we were interested in using an acquisition
model that could closely capture the biases that humans bring to learning. Although
several model frameworks have been used to model colour-term acquisition [61,62,62,63],
self-organising maps (SOM, [64]) have had the greatest success at learning complex atten-
tional patterns over the perceptual space including the distinction between Russian light
blue/dark blue [36,65]. More importantly, Beekhuizen and Stevenson [36] showed that
SOMs are able to capture not only the topology of the input data thereby enabling colour
discrimination in the model but also the colour-term acquisition patterns similar to those
observed in children in particular over-extension errors. As such, we may expect that SOMs
share various other properties with human colour-term acquisition. However, further cross-
cultural research on children’s colour-term acquisition is sorely needed. For our simulations,
we re-implemented the SOM learning model in Beekhuizen and Stevenson [36].

We briefly outline the structure and training of SOMs as given by Beekhuizen and
Stevenson [36] (for details and hyperparameter selection refer to Appendix B.1 and
Beekhuizen and Stevenson [36]). A self-organising map consists of a square grid of cells,
where each cell contains a vector that jointly represents the colour stimulus and colour-term
features of the input data by concatenation. The training of a SOM proceeds iteratively (as
shown in Figure 5). On each iteration, the SOM is presented with a new word-colour chip
pair from the data set D and updates both the contents of the cell most similar to the data
point while also affecting the most similar cell’s neighbourhood in some area determined by
a hyperparameter σ. Over time as the SOM is exposed to more data, it eventually converges
to a joint representation of the topology of the colour-stimulus space and the colour-term
space, which we compare to the adult-like colour-naming distribution.



Entropy 2022, 24, 1542 9 of 26

A

B

C

D

E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 4. (Top) The World Colour Survey stimulus palette. Numbers above columns are the Munsell
hues for the corresponding columns, and capital letters on the left indicate the lightness values of the
corresponding rows. Each chip is a colour with maximum available saturation under the hue of its
column and the lightness of its row. (Bottom) Distribution of the World Colour Survey stimuli in 3D
CIELAB colour space.

The inductive biases in the SOM, like all learning models, lie in the hypothesis space,
the update rule used in acquisition, the starting state of the SOM, and the training regime
used. The SOM’s hypothesis space is parameterised by k2 number of d-dimensional vectors
(one for each cell), where k is a hyperparameter and d is the dimensionality of the input. For
the simulations presented in the text, we set k = 13, which makes certain colour-naming
systems (e.g., the language that gives a unique colour term to each of the 330 Munsell
chips) unlearnable. As all attested languages have no more than 169 colour terms in their
hypothesis space, this does not a priori hinder the acquisition of the attested languages.
Nonetheless, the SOM’s hypothesis space places an inductive bias against the most complex
colour systems. We confirmed the existence of this bias by running ablations of the SOM
with k ∈ {1, . . . , 13}. We observed a significant drop in performance and the loss of ability
to acquire the attested naming distributions as k dropped below 6, although the acquisition
trajectories looked largely unchanged for larger k. This effect was stronger for languages
with a large number of colour terms such as Agarabi or Culina.

While the hypothesis space does not a priori rule out complex hypotheses, the SOM’s
update rule places a stronger, additional bias against highly complex languages. Because
the SOM updates not only the most closely matching cell but also those around that cell in
the grid of cells, in a radius specified by σ, it encourages local similarity in the grid space,
motivating the use of multiple exemplars for a colour term. This consequently makes a
grid of 169 exemplars for 169 colour terms difficult to impossible to acquire. The strength of
the inductive bias from the update rule is largely dependent on the starting value for σ and
how we tune σ during learning; similar to Beekhuizen and Stevenson [61], we initialised
σ to a relatively large value and then decreased σ by a small constant over the course of
learning until a lower limit was reached. In theory, it may be possible to acquire highly
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complex languages with sufficiently large k if we are able to find a very specific setting
and tuning for the radius σ; however, it is unknown whether such a regime would match
children’s learning and in our simulations, we were not able to find such settings.

N=1 N=200 N=250

N=350 N=650 N=50000

Figure 5. Visual development of the colour-naming distribution learned by a SOM for the attested
language Agarabi. We plot the average colour of the most frequent colour term for all colour chips,
commonly called a mode map.

Further, the SOM’s update rule means that after one sample, the SOM would weakly
classify all colours as the single colour of this sample, making extremely simple colour
systems converge quickly. Other sorts of models might have the opposite inductive bias,
where the initial states classify each colour chip separately, possibly through memorisa-
tion, and then learn to merge them, which would lead to very different patterns during
acquisition. For example, this type of behaviour is seen in phoneme learning [66].

Finally, the distribution from which chips are selected during training would af-
fect the acquisition patterns. Here, we followed Beekhuizen and Stevenson [36], who
found that acquisition patterns are better matched by sampling from the joint distribu-
tion over words and colour chips P(W, C) = P(C|W)P(W) rather than by sampling uni-
formly. We calculated P(C|W) from the adult elicitation data (i.e., the WCS). In contrast
to Beekhuizen and Stevenson [36] who used corpus frequencies, we also calculated P(W)
from the elicitation data, as most languages in the WCS have no corpora available. This
discrepancy in the choice of colour-term prior may have potentially biased our results, as
the elicitation data were different from real-word usage; however, in Appendix B.2, we
show that at least for English where data are available, this does not have a significant
influence on our results.

3.1. Simulation Details

While Beekhuizen and Stevenson [36]’s simulations focused on English and Russian,
we simulated the acquisition trajectory for each language in the WCS. As we have replicated
that the languages in the WCS are communicatively optimal (Figure 3), we additionally
simulate the acquisition trajectory for a permuted hypothetical variant of each language.
This way, if we find that acquisition trajectories closely follow the communicative IB
frontier, we can be confident that this is a property of the SOM, not a property of learning
communicatively efficient adult-like languages. The hypothetical variants were calculated
by permuting the colour chips along the hue dimension (i.e., horizontally on the mode
maps) similar to Zaslavsky et al. [22]. Details of how the permutation was performed are
in Appendix D. We selected the distance to shift such that the variant was the farthest
permutation away from the communication frontier.

For each acquisition trajectory analysed, we simulated learning for 50 mutually in-
dependent learners (i.e., SOMs). Each SOM was trained for 50,000 iterations, though the
models usually converged sooner. We averaged the results across all learners and display
the standard deviation where possible. Following Beekhuizen and Stevenson [36], we
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assessed the learning trajectories of the SOMs based on three metrics: learning accuracy,
complexity (i.e., the same as in the communication model), and the reconstructive error
of the adult distribution. We assessed the convergence of the SOM using accuracy, the
fraction of chips for which the colour term was predicted correctly. The ground truth for
comparison was determined by the colour mode maps presented in the WCS. For more
details on the assessment, refer to Appendix C.

3.2. Validating the Acquisition Model

To illustrate how the SOM model acquires colour-naming distributions, we use four
languages as examples from the WCS in this section and the rest of our results are presented
in the Supplementary Materials. We use Agarabi (|W| = 28), Culina (|W| = 27), Dyimini
(|W| = 13), and Yucuna (|W| = 9), ordered increasingly by the number of unique basic
colour terms in each language. The latter three languages were selected following the
choices of Zaslavsky et al. [22] to allow for an easier comparison of the results, whereas we
opted to use Yucuna in place of English. The main results of the acquisition simulations for
the four languages can be seen in Figure 6. The plots show the SOMs trained on samples
from the adult naming distribution from the WCS and the permuted hypothetical variant.

Our simulated learners for all languages share a similar pattern. Each simulated learner
starts with near-zero complexity and high information loss, as the early representations are
close to the uniform distribution. Initially, the update weight σ is still large so for each new
training sample, a large number of cells are affected in the SOM, which can result in large
parts of the colour space changing their assigned colour terms from one sample to another.
This effect can be seen on Figure 5 between N = 200, N = 250, and N = 350 samples.
This process also presents itself in a non-monotonically changing learning trajectory, as
seen in the insets on the plots of the learning trajectories in Figure 6. After this initial
warm-up phase, the SOM will have learned a basic representation of the topology of the
input space. However, as can be seen in Figure 5, from the extremely low contrast among
the colours, the naming distributions are still near-uniform across the colour chips, which
makes individual colours difficult to distinguish, keeping the accuracy of the model low.

Nonetheless, at this point, the SOM’s information loss begins to linearly decrease
while complexity increases. Smaller values of σ force the individual cells of the SOM to
converge to a representation of a particular subspace of the colour space. This allows the
model to better discriminate among the various colours, which results in a large increase
in accuracy, as shown in the last row of the plots in Figure 6. The accuracy increases until
the SOM converges, at which point new input data samples do not significantly change
the topology of the acquired input space representation. The final accuracies reported here
are lower than those reported in Beekhuizen and Stevenson [36] because we only used
the perceptual semantic features. We were able to achieve similar numbers to Beekhuizen
and Stevenson when we tested the SOMs using cross-linguistic semantic features. The
topologies of the learned colour spaces are shown in the third row of plots in Figure 6,
which shows that similar colours are located next to one another among the cells of the
SOM. This aligns with the observations of Beekhuizen and Stevenson, who claimed that
the SOM learns the topology of the input features, thereby enabling human-like colour
discrimination in the model.
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Figure 6. (First row) Averaged learning trajectories of the attested languages (shown in colour)
plotted against the learning trajectories of their worst permuted variants (shown in grey). The arrows
show the direction of learning as the number of samples increase. (Second row) Mode maps for
the adult naming distribution (Data), the learned language (SOM), and the learned language from
the worst permuted variant (Permuted). Images were generated with code by Zaslavsky et al. [22]
using our own parameters. Mode map plotting code available at: https://github.com/nogazs/
ib-color-naming (accessed 10 October 2022). (Third row) Learned colour space topology of the
SOMs with the most likely colour term for each cell. The colour of a cell is given by the colour
chip closest to the representation encoded in the cell. Plots were modelled after Beekhuizen and
Stevenson [36]. (Fourth row) Plots of accuracy against the number of samples. We only plot the first
20,000 samples as the accuracy converges quickly. Shaded region shows standard deviation over 50
independent learners.

3.3. Acquisition of Communicatively Inefficient Languages

As the SOM is initialised to a language that is already communicatively efficient,
namely the language with a single colour term, and then given inputs from a highly efficient
language, it might not be surprising when the acquisition process in the SOM traces the

https://github.com/nogazs/ib-color-naming
https://github.com/nogazs/ib-color-naming
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IB frontier. As argued earlier, it is important to understand how the SOM behaves when
applied to communicatively inefficient languages to ensure that our conclusions generalise
to the properties of the model as opposed to the properties of communicatively efficient
languages. Therefore, we performed additional analyses to address this question by training
the SOM on communicatively inefficient languages and by initialising the SOM to a starting
point that corresponds to some communicatively inefficient colour-naming system.

First, we note that the SOM has a strong inductive bias for learning convex colour-
naming distributions due to its update rule. Training a SOM on just any randomly gen-
erated, non-convex, colour-naming distribution results in the SOM failing to acquire the
language; therefore, we tested two ways of generating approximately convex languages
that are still communicatively inefficient. First, we looked at the hypothetical permuted
variants of each attested language, as mentioned in Section 3.1. Although the hypothetical
variants are communicatively inefficient and convex as they are derived from the attested
languages through shifting, they still lie relatively close to the IB frontier. To address
this, we generated random convex partitions of the colour chip space, which resulted in
communicatively inefficient languages. For the purpose of an easier comparison to an
attested language, a randomly generated language had the same number of basic colour
terms as the attested language. Finally, we also initialised the cells of the SOM randomly
before training to place it farther away from the IB frontier. For the results shown in the
text, we set each value in every cell to a value of 100 with a probability of 0.5; however, we
also performed our analysis by uniformly sampling a number in the range [50, 100] and
obtained very similar results.

The acquisition trajectories of the attested languages with random initialisation are
shown in the top row of Figure 7. Here, we observe the same behaviour across languages.
For the first few hundred samples, the SOM orbits around its initial position. After this
point, it closely approaches the trajectory of the learner that was initialised to the simplest
optimal language. Both trajectories then follow the same path. The reason for this behaviour
is due to the strong bias introduced by the update rule of the SOM. During the first few
hundred samples, the update radius σ is still large so each new sample affects large parts
of the acquired representation space of the SOM. This, in effect, overrides the random
initialisation of the SOM with a near-uniform representation from which learning can
proceed, as seen for the attested languages.

In addition, the average acquisition trajectories for sampling communicatively inef-
ficient languages are shown in the bottom row of Figure 7. Here, we see that permuted
variants are less easily acquired by the SOM than the actual adult naming distributions.
Their learning trajectories consistently achieve worse complexity-reconstructive error trade-
offs for each language, whereas their accuracy stays lower on average (as shown in Figure 6).
That said, the permuted variant is still closely related to the attested language and follows
a similar trajectory to the attested language.

However, the SOM is also able to learn randomly initialised, randomly generated
inefficient languages despite the much worse complexity-reconstructive error trade-off.
The large deviation compared to the attested languages is exacerbated by increasing the
number of colour terms of the randomly generated language, as this increases the degrees
of variability during the random language generation process. Insofar as we are acquiring
colour-naming systems that were approximately convex, these results suggest that the
inductive biases of the SOM are sufficient to drive the acquisition of colour-naming systems
even when those differ greatly from human languages. Taken together, this suggests that
the SOM is not biased to acquire communicatively efficient languages and the SOM’s
inductive biases will overcome initialisation.
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Figure 7. (Top) Average acquisition trajectories of attested languages when initialised to some random
communicatively inefficient point. The starting position is marked with an X. (Bottom) Comparison
of acquisition trajectories of an attested colour-naming system, its hypothetical permuted variant,
and a randomly initialised, randomly generated language with the same number of colour terms
(always shown in colour on the plot).

4. Assessing the Communicative Efficiency of Acquisition Trajectories

Having established that the SOM model can well approximate colour-naming sys-
tems, we can score the SOM models in terms of communicative efficiency to study their
acquisition trajectories. Recall the several possible patterns for acquisition trajectories
described in Section 2 and illustrated in Figure 2. For colour, we expect the acquisition
trajectories to follow the communicative IB frontier (Figure 2a), suggesting that a learner’s
hypothesis space (imbued with the SOM’s inductive biases) aligns with speakers’ meanings.
In this case, following the argument in Section 2 and our reading of Carr et al. [14], optimal
acquisition would be equivalent to optimal communication, and acquisition alone satisfies
the criteria for the emergence of language, that is, information loss through regularisation
and informativity through an iconic learning bias. However, we may find that learners’
hypotheses and speakers’ meanings do not perfectly align. In which case, we still expect lan-
guages to become more informative as complexity increases; however, we expect the pace
of this increase to be non-monotonic (e.g., Figure 2b) as learners skip past communicatively
optimal systems.

We are also interested in whether learners’ acquisition trajectories demonstrate the
hallmark of an informativity bias in acquisition (e.g., as in [32]), that is, whether a learner’s
acquisition trajectory contains a language that is more informative than the target language
generating the data. As argued in Section 2, we might expect this pattern if the learning
model’s inductive biases are wrong and learners simply memorise their input (Figure 2c) or
if chance sampling of the data might result in order effects, i.e., kinks in the smoothness of
the acquisition trajectory (as seen in the insets in Figure 6). If there was an inductive bias for
informativity, it would weigh against the argument that language evolution is necessarily
shaped by both language acquisition and dyadic communication [13,14,57].

Without further ado, we score the learning trajectories of the SOM models in terms
of their communicative complexity and information loss. In the top row of Figure 8, we
plot the complexity and information loss as the SOM learns over time to show how the
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learning process maps to changes in communicative efficiency. The learning trajectory of the
SOM approaches the attested language while staying close to the optimal communicative
efficiency frontier. The SOM starts learning from the top left of the plot with a complexity
of 0 and maximum information loss. This is because after just one sample seen, the SOM
has only seen a single word and therefore its complexity and usefulness are low. As
more samples are seen during training, the SOM learns additional words and therefore
obtains a more useful lexicon (lower information loss) at the cost of higher complexity.
Importantly, we do not see acquisition trajectories that include languages more efficient
than the input language. The observed behaviour is in line with Carr et al. [14]’s hypothesis
that communicative efficiency is explained by a learning pressure for simplicity acting
over an iconic category structure, i.e., the learner’s hypothesis space aligns with speakers’
intended meanings. To additionally support this hypothesis, it should also be demonstrated
that languages that are less iconic (e.g., those further away from the IB frontier) are more
challenging to learn.

Figure 8. (Top) For the four attested languages, we map the averaged learning trajectories of the
SOM to the communicative efficiency frontier; the attested languages are indicated by a square.
(Bottom) We plot the averaged learning trajectories of the SOM for the permuted sub-optimal
languages against the communicative efficiency frontier. The attested languages are indicated by
a square and the sub-optimal languages are indicated by a triangle. The red arrows between the
squares and the triangles highlight the impact of the convex transformation on the attested language.
The original learning trajectories of the attested languages from the top row are shown in grey.

4.1. Ease of Acquisition of Efficient/Inefficient Languages

To determine whether languages closer to the communicative IB frontier are easier
to learn than those farther away from it, we return to our simulations of communicatively
inefficient colour systems. Recall that we generated less communicatively efficient versions
of the WCS languages by permuting the assignments of chips to colours. Using permuted
languages is arguably a fairer comparison than using random languages as non-convex
languages have been argued to be difficult to learn [45], and in fact, proved unlearnable for
the SOM model. The permuted languages are further from the frontier than the attested
languages (t-test; t = 9.45 p < 0.001, Cohen’s d = 1.28). This is achieved primarily through
an increase in information loss (t = 5.58, p < 0.001, Cohen’s d = 0.76) and an insignificant
decrease in the complexity (t = −1.23, p = 0.22, Cohen’s d = −0.16).

Using these sub-optimal languages, we plot the resulting learning trajectories in the
communicative efficiency space shown in the bottom row of Figure 8. The new points after
the permutations are shown as triangles in Figure 8, and the red arrows map the trans-
formation between an attested language and its permuted sub-optimal variant. Figure 8
shows the SOM learning trajectory tracking the IB frontier over time. We observe similar
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learning dynamics to those of the attested languages, where the SOM approaches the
target language while staying close to the IB frontier. These languages are learned less
accurately (t = 7.63, p < 0.001, Cohen’s d = −1.04) and take somewhat longer to converge
(t = 2.59, p = 0.01, Cohen’s d = 0.35). Notably, the hypotheses during the learning of
permuted languages appear consistently close to the IB frontier, similar to the attested
languages, despite the permuted languages themselves being further from the frontier.
This observation is visualised at the end-point of learning in Figure 9.
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Figure 9. We find that after 50,000 steps, the colour system acquired by the SOM (the hypothesis) is
closer to the communicative IB frontier than the input language for both the attested languages in
the WCS (t = 6.65, p < 0.001, Cohen’s d = 0.90) and the permuted languages (t = 14.36, p < 0.001,
Cohen’s d = 1.96). The effect is larger for permuted languages, which have larger starting distances
from the frontier in the input. Languages on the frontier remain on the frontier (within the attested
range of complexity). This points to the learned languages being “pulled toward” the frontier, i.e., an
iconic learning effect.

We further studied the ability of the SOM to acquire colour-naming systems that were
different from the attested languages using the randomly generated colour-naming systems
from Section 3.3. Although we were only able to generate four of these languages, they are
significantly further from the frontier than the attested (t = −11.36, p < 0.001, Cohen’s
d = −5.78) and permuted (t = −7.03, p < 0.001, Cohen’s d = −3.58) languages. While the
information loss is significantly lower for these languages than the permuted languages
(t = 8.55, p < 0.001, Cohen’s d = 4.35), their complexity is significantly higher (t = −9.66,
p < 0.001, Cohen’s d = −4.92), yielding an increased distance overall. Notably, this is
the reverse of the relationship the permuted languages have with the attested languages,
where complexity is lower and information loss is higher.

The communicative efficiencies of the acquisition hypotheses are shown in Figure 10.
As we have seen in Section 3.3, the SOM uses the first few hundred samples to “erase”
the effects of random initialisation, effectively resetting its initial representation to a near-
uniform distribution over the colour chips. From this point on, once again, the SOM
approaches the target language while remaining close to the frontier. Accordingly, as
shown in Figure 11, these languages are learned less accurately than the attested (t = 5.01,
p < 0.001, Cohen’s d = 2.57) and permuted (t = 2.76, p = 0.006, Cohen’s d = 1.40)
languages. However, we found no significant difference in the time to convergence.
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Figure 10. (Top) Communicative efficiency of acquisition trajectories of randomly generated lan-
guages. The randomly generated languages have the same number of basic colour terms as the
corresponding attested language but are otherwise unrelated to one another. The grey squares and
trajectories are the acquisition hypotheses of the attested language. The dashed squares mark the
zoomed-in area shown in the bottom row of plots. (Bottom) The above acquisition hypotheses but
zoomed-in on the information loss interval from 4 to 4.8, corresponding to the top left region of the
above plots.

4.2. Acquisition of Languages on the IB Frontier

Although the evidence in our current set of simulations points to acquisition account-
ing for the relative closeness of the attested colour systems to the communicative IB frontier
(for a related argument see [45]), there is a measurable distance between attested systems
and systems on the IB frontier (i.e., the communicatively optimal languages). The question
then arises of whether this distance is due to the optimal systems being less learnable than
the attested colour systems or to additional factors outside the scope of our analysis.

In order to address this, we sampled 42 languages uniformly spaced along the IB
frontier and again applied the SOM learning algorithm. Following standard notation, we
denote the trade-off between complexity and information loss on the IB frontier with β; a
larger β means information loss is penalised more, resulting in more complex languages.
When analysed together, this set of languages takes longer to converge and converges to
lower final accuracies than either the attested languages or even the permuted languages
(see Figure 11); however, this initial appearance is misleading as we find a strong linear
association between the communicative complexity of a language and its acquisition
(R2 = 0.95).

Considering only the languages on the frontier with complexities in the range of the
attested languages, we then find that frontier languages converge slightly faster (t = 7.42,
p < 0.001, Cohen’s d = −0.33) and have a much higher average accuracy (t = 64.66,
p < 0.001, Cohen’s d = 2.88) than the attested languages. We can see the different
behaviours between frontier languages with low and high complexities reflected in the
learning trajectories and the evolution of accuracy over the number of samples for five
representative languages from the frontier in Figure 12.

Taken together, the finding that communicatively optimal languages within the range
of attested complexity are more learnable than permuted languages suggests that acquisi-
tion may be able to explain the closeness of attested colour systems to the communicative
efficiency frontier. Further, the portion of the communicative frontier that is unattested
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in real languages (with complexity >≈ 2.5) could be due to the low learnability of these
languages at a single-learner level. This then has the additional implication that the fact
that attested languages do not lie on the frontier is likely orthogonal to any questions about
the role of learning biases and a communicative efficiency bias in the distribution of attested
colour systems.

0 10000 20000 30000 40000 50000
Number of Samples

Attested

IB-Frontier

Permuted

Random

Complex IB-Frontier

Simple IB-Frontier

0.2 0.4 0.6 0.8 1.0
Accuracy

Figure 11. (Left) Distribution of how quickly the SOM converges to fit different types of languages.
We find that attested languages converge slightly faster than sub-optimal ones, whereas the con-
vergence of IB frontier languages depends on their complexities. Here, we also split the frontier
languages into two groups, simple IB frontier languages (0.5 < complexity < 2.5) and complex IB
frontier languages (2.5 ≤ complexity). We find the differences in means between the three types
of convergence distributions to be statistically significant (ps < 0.01). (Right) Distribution of the
accuracies for all types of languages. We observe that the accuracy for complex IB frontier languages
to be significantly worse than for simple IB frontier languages. We also find a higher accuracy for the
attested languages compared to their permuted variants.

β =

Figure 12. (Left) Learning trajectories for communicatively optimal languages. (Right) The evolution
of accuracy across the number of samples seen for the optimal languages.

Similar to Section 4, we also score the SOMs as they learn the optimal languages on
communicative efficiency in Figure 13. As before, we observe the learning trajectories of the
SOM to track the communicative efficiency frontier. We observe that for high β values (e.g.,
β = 11.7942), the SOM fails to approach the optimal point on the frontier during learning.
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Figure 13. We plot the average SOM learning trajectories for different β values that correspond to
different optimally communicative efficient languages along the frontier. The triangle in each plot
represents the point on the frontier for the optimal language for a given β.

5. Discussion

Our first goal in this paper was to investigate if and how language evolution is shaped
over two timescales: language acquisition and dyadic coordination. In order for a language
to evolve, there needs to be a bias towards informativity and a loss of information (e.g.,
from a pressure to simplify). Empirical work in experimental semiotics has demonstrated
that dyadic coordination provides a bias for informativity [10,17,18] and the shuffling
of conversational partners affords information loss [19], thus satisfying the criteria for
evolution without appealing to acquisition. At the same time, it is generally agreed
that language acquisition has a bias for simplicity [9,67,68], resulting in information loss.
Further, recent empirical work has made the case that language acquisition also has a bias
towards informativity [32,34], thus satisfying the criteria for evolution without appealing to
dyadic communication. Chicken-and-egg arguments aside, a language user must acquire
language before they can use it; therefore, the requirements for language evolution would
be minimally satisfied by acquisition. However, there is some uncertainty around the
existence of informativity biases in learning [14,15].

Smith and Culbertson [15] and Carr et al. [14] suggested that simplicity and iconicity
biases might provide the same functional pressure as an informativity bias. By formalising
language acquisition and dyadic communications as rate-distortion models that operate
over the same conceptual universe, we provided a formal explanation for how simplicity
and iconicity pressures in learning serve the same function as an informativity bias: when
a learner’s conceptual hypotheses about the world align with the meanings speakers want
to convey, there is a formal equivalence between learning useful representations of the
world and establishing a communicatively efficient language. If this is the case, acquisition
trajectories should closely track the communicative IB frontier. We illustrated this with the
colour-naming systems from the WCS, suggesting that learners’ hypotheses about colour
terms align with speakers’ meanings for colour terms and acquisition is therefore sufficient
to explain the evolution of colour-naming systems. This is perhaps unsurprising given the
importance of incorporating human perceptual colour biases into computational models of
the emergence of colour universals [22,63,69]. We refer to the structural alignment between
learners’ hypotheses and speakers’ meanings as iconic both because we expect learners’
hypotheses about the world to directly reflect their experience of the universe [43] and
because a speaker’s meanings are isomorphic to a learner’s hypotheses [43,44]. Therefore,
to the extent that language is iconic, acquisition is sufficient for language evolution.

As our explanation does not preclude the existence of an informativity bias in learn-
ing [32], we also looked for a hallmark pattern: whether a learner’s acquisition trajectory
contains a language that is more informative than the target language generating the data.
In our simulations of colour acquisition, we did not observe such a pattern. To be fair, this
pattern has been primarily observed when studying the acquisition of the grammatical
components of language [32,33] as opposed to semantic categories. Therefore, our results
do not rule out the possibility that such a bias exists.

Lastly, we note that not all communicatively efficient languages are easily learned
by the acquisition model. Specifically, only optimal systems within the range of trade-off
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values observed in attested colour-naming systems are easily acquired. This suggests that
learnability might be a good explanation for why attested languages do not span the entire
range of possible trade-off values.

Of course, as with all formal analyses, our results are limited by the assumptions that
we make. Specifically, our results are limited by the model formalisations, assumptions
about communicative need and perceptual colour space, and the use of a SOM as a model
of human learning. For example, we followed Zaslavsky et al. [22] in using a universal,
capacity-achieving prior as a proxy for communicative need; however, communicative
need is notoriously difficult to measure [23,24] and we know that communicative need
systematically varies across communities [70]. Future work should seek to characterise the
robustness of our results to assumptions about communicative need. As another example,
although SOMs as learning models for colour terms showed better fit than other models,
the cross-linguistic data the models were evaluated against were largely limited to over-
extension data from a small set of languages. Future work is desperately needed to chart
the empirical trajectory of children’s colour-naming systems.

Our account also leaves open several areas for future research including both the ro-
bustness of our results and phenomena for further explanation. While our account provides
a potential explanation for the limited range of attested languages across the communica-
tive frontier, we still do not know why attested languages lie near as opposed to on the IB
frontier. It is likely we will need to model additional constraints on language to explain the
gap. Although our account lays out the communicative efficiency and acquisition trajectory
of linguistic systems, our account does not yet account for the topology of communicative
systems across the frontier, i.e., both semantic universals and the recurrence of similar
words/structures across solutions [45].

Additionally, it should be noted that there are potentially significant differences
between the types of semantic domains, as suggested by the discrepancies between
Carr et al. [14]’s and Carstensen et al. [34]’s results. Most formal work on learnability
and/or communicative efficiency has focused on continuous, well-ordered (i.e., with
known generalisation gradients) models of a semantic domain (i.e., hypotheses/meanings).
To the extent that cognition is symbolic, we have barely scratched the surface in applying
and drawing insights about the interactions between acquisition and efficient communi-
cation. It will be important to see how accounts of cultural/language evolution work for
linguistic systems that do not reduce to closed-domain, well-ordered, continuous states
of the world (e.g., kinship) and for domains where speakers’ meanings are not aligned to
learners’ hypotheses (e.g., number).

In conclusion, our results suggest that to the extent that language is iconic and thus
communicatively informative, language acquisition may be sufficient to explain language
evolution. The diversity of attested systems is then governed by the amount of complexity
invested in encoding the world (as argued by Zaslavsky et al. [22]). However, given that
a large, interesting percentage of language is non-iconic [71], it is important to chart the
acquisition, communicative, and goal-achievement constraints that shape the evolution
of linguistic systems. It would not be surprising at all if language evolution over both
the acquisition and dyadic coordination timescales (as argued by [12–14]) is required to
explain the full complexity of natural language evolution. We offer our analysis approach,
i.e., multiple rate-distortion problems constrained by shared assumptions, as one possible
method for characterising these influences on cognitive technologies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/e24111542/s1, Supplementary materials with model results for all languages attested in the World
Colour Survey are available online at https://osf.io/9cnrm/ accessed on 9 May 2022.
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Appendix A. Theoretical Learning Algorithm: Memorisation

Memorisation, without generalisation, is an example of a theoretical learning algo-
rithm that may show learners acquiring a more informative language than the language
generating their input. In this situation, a learner initially starts with the degenerate lan-
guage of one word to rule them all. As it memorises a few initial data points, the complexity
of the language would increase much faster than the information loss decreases because the
learner lacks a way to generalise/compress across world states until adjacent world states
are observed. When adjacent world states are observed, the model can begin to compress
them, resulting in a linear decrease in information loss as complexity increases until almost
all adjacent states are observed. Notably, when there are multiple non-adjacent clusters that
are encoded by the same word/concept in the target language but have not been merged
by the learner due to missing observations, the learner’s languages are both more complex
and more informative than the target language generating the learner’s data. Once these
missing data points are observed by the memoriser, the system decreases in complexity
and loses more information. Therefore, if learners do not have generalisation gradients
(perhaps even if they have very small generalisation gradients), they may show a bias for
informativity, as in Fedzechkina et al. [32], i.e., a learner’s acquisition trajectory contains a
language that is more informative than the target language generating the data.

Appendix B. Details of the Self-Organising Map

Appendix B.1. Training Details

We re-implemented Beekhuizen and Stevenson [36]’s self-organising map (SOM)
model. The SOM hypothesis space is parameterised by the k2 number of d-dimensional
vectors, where k is a hyperparameter and d is the dimensionality of the input. A training
input to the SOM is the concatenation of term features and stimulus features. For a given
language with |W| colour terms, a term is one-hot encoded and then weighted by a term-
importance hyperparameter a so that the final term features took the form f w = [0 . . . a . . . 0]
and | f w| = |W|. To encode the colour stimulus given as a colour chip c ∈ C, we could
directly use the chip’s representation in the CIELAB space. However, to follow Beekhuizen
and Stevenson’s implementation as closely as possible, we encode c as a vector f c so that
| f c| = |C| and f c

i = ||c− ci||, that is, the stimulus feature vector represents a colour chip by
its distances relative to the other chips. Given a data point, the SOM updates the contents of
the cell in the hypothesis space most similar to the data point while also affecting the most
similar cell’s neighbourhood in some area determined by a hyperparameter σ. We initially
set σ = 5.0. Over training, σ is linearly decreased by the learning rate hyperparameter α.

To derive a colour-naming distribution p(W|C) from the SOM’s hypothesis space for
a given c ∈ C, we find the best matching cell in the hypothesis space by comparing the
distances among only the stimulus features (i.e., term features are ignored for calculating

https://www1.icsi.berkeley.edu/wcs/
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the distance), which gives us the Best Matching Unit BMU(c). Using BMU(c) and given a
word w ∈W, we derive p(w|c) as

p(w|c) = value(w, BMU(c))
∑w′ value(w′, BMU(c))

. (A1)

The above value(w, BMU(c)) denotes the value for w in the term feature encoding
of BMU(c).

We ran a grid search over the possible hyperparameters, checking all combinations of
the following values:

k ∈ {7, 9, 11, 13} α ∈ {0.01, 0.025, 0.075, 0.1} a ∈ {0.01, 0.025, 0.075, 0.1}.

Based on the results of the search, we decided to use k = 13, α = 0.1, and a = 0.025
across all languages for the sake of simplicity and comparability, although this decision
did cause most languages to reach accuracies that were lower than the best individual
setting of the hyperparameters. Our setting of the hyperparameters resulted in most
languages achieving at least 0.7 accuracy and qualitatively very similar mode maps to the
adult-like data distribution. We also note that using the cross-linguistic semantic features
of Beekhuizen and Stevenson [36] as the input representation gave higher accuracies;
however, we did not use this representation because the communicative model operates on
perceptual features. The choice of input representation and hyperparameters did not affect
the pattern of acquisition trajectories.

Appendix B.2. Simulation Details

For learning with data from the attested languages, we sample data points from the
adult-like joint naming distribution pl(W, C) = pl(C|W)pl(W) given a language l in the
WCS. The conditional distribution pl(C|W) and the prior pl(W) were estimated from the
adult elicitation data from the WCS by calculating the normalised occurrence frequencies.

In contrast to Beekhuizen and Stevenson [36], our prior distribution pl(W) over colour
terms is derived from elicitation data due to a lack of corpora for most languages in the
WCS. This could have introduced potential biases to our sampling process as the elicitation
data are significantly different from the real-world distributions of colour-term usage,
which could be reflected in a corpus frequency-based prior. Although we could not address
this issue for most languages due to the lack of data, we do demonstrate the effects of
different sampling priors using English data, i.e., the corpus frequency-based prior for
colour terms taken directly from Beekhuizen and Stevenson [36].

The averaged acquisition trajectories for corpus-based, elicitation-based, and uniform
prior are shown in Figure A1. The closer the prior is to real-life usage (in decreasing order
from corpus to elicitation to uniform), the easier it is for the SOM to learn an initial repre-
sentation from fewer samples; however, it achieves a worse final complexity-reconstructive
error trade-off. This is because the corpus-based prior prefers some basic colour terms
over others, which means early on, the SOM learns the representation of the more frequent
colour terms quicker but later on cannot adjust for new, unseen samples as the update
rule’s radius σ would have significantly decreased by then. We also plotted the acquisition
trajectories in Figure A1 according to their communicative efficiency, but we found that
they were not affected by the choice of prior and all trajectories traced along the IB frontier.

When acquiring the communicatively optimal languages, our training data are sampled
from the joint p(W, C), which is derived from the optimal naming system p(W|C) lying
on the IB frontier and the universal capacity-achieving prior pLI(C). We trained all of the
models on 50,000 samples, and for each attested language in the WCS, we individually
simulated and averaged our metrics over 50 learners.
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Figure A1. (Left) Acquisition trajectories with different sampling priors p(W) over the 11 basic colour
terms of English. (Right) The communicative efficiency of selected acquisition hypotheses. We do
not show entire trajectories as they overlap and make the individual trajectories indiscernible.

Appendix C. Evaluation Metrics for the Learning Problem

We assessed the acquisition trajectories of the system based on three metrics: accuracy,
information loss, and complexity.

Appendix C.1. Accuracy and Convergence

Accuracy was used to evaluate the convergence of the SOM and how well the learned
colour-naming model compared to the attested colour-naming model from the WCS. Our
definition of accuracy followed Beekhuizen and Stevenson [36]. It was calculated as the
fraction of chips for which the colour term was predicted correctly, where the ground truth
for comparison was given by the colour mode maps presented in the WCS. For a particular
colour chip c ∈ C, the predicted colour term is given by

wc = arg max
w∈W

p(w|c). (A2)

To decide whether a model had converged, we applied a simple early-stopping algo-
rithm. For each acquisition trajectory, the model was deemed to have converged if it did
not improve its accuracy by more than a threshold t in the next p (patience) steps. We set a
threshold of t = 1% and a patience of p = 50 steps.

Appendix C.2. Reconstructive Error

During acquisition, we needed to assess how well the current iteration of the model
approximated the adult naming distribution pl(W, C) for a language l in the WCS by
calculating the reconstructive error. We defined the reconstructive error for the acquisi-
tion problem as the KL-divergence between the joint distribution p(W, C) and the adult
distribution pl(W, C):

D[p(W, C)||pl(W, C)] = ∑
w,c

p(w, c) log
p(w, c)
pl(w, c)

. (A3)

In order to calculate the joint distribution p(W, C) = p(W|C)p(C), we needed to
define a prior over the colour chips p(C). Zaslavsky et al. [22] suggested invoking the
principle of maximum entropy to arrive at a suitable prior p(C). However, for the space
of colour chips, this would just be the uniform distribution. Therefore, Zaslavsky et al.
instead calculated pl(C), which is the least informative prior for an attested language l and
corresponding adult naming model pl(W|C) in the WCS. This was the prior that achieved
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maximum entropy over the colour chips while minimising the conditional uncertainty
about the colour chips given the colour terms:

pl(C) = arg max
p′(C)

H(C)− H(C|W). (A4)

This distribution can be efficiently found using the Blahut–Arimoto algorithm [72]. An
issue with relying on pl(C) however is that many colour chips had zero probability under
the prior, which is not a realistic property. Zaslavsky et al. [22] calculated a single universal
colour prior pLI(C) by averaging over most pl(C), which solves this issue; however, we
wanted to work with language-specific priors. Therefore, we chose to take a weighted
combination of the language-specific prior pl(C) and the universal prior pLI(C) with weight
parameter γ set to 0.9:

p(C) = γ · pl(C) + (1− γ) · pLI(C). (A5)

Appendix C.3. Complexity

We defined complexity as the mutual information between the colour chips and colour
terms I(W, C), where p(W) and p(C) are the marginal distributions of the joint p(W, C):

I(W; C) = ∑
w,c

p(w, c) log
p(w, c)

p(w)p(c)
. (A6)

Appendix D. Convex Permutation of Chip Space

To study the learning of colour systems further from the frontier, we permuted the
colour space of real languages to create permuted sub-optimal languages. These languages
were entirely generated by permuting or shifting the 2D chip colour space. The 2D colour
map, as seen in Figure 4, contained 8 rows of different Munsell values (lightness) and
41 columns (40 columns of Munsell hues and 1 of Achromatics). The Achromatic column
contained 10 rows instead of 8, giving a total of 330 chips. For simplicity, we ignored
the extra bottom and top rows of the Achromatic column in our permutation. We rolled
the hues along their axes so that for a shift of s = 1, the last column of hues became
the first column and each column was shifted to the right by one. For each language
in the WCS, we found the shift s in hues that maximised the Euclidean rate-distortion
distance from the original point. This permutation was convex since the underlying colour
structure remained the same but only the columns were rotated along the hue axis. For all
permutations, the brightness of the modal chip for a colour term remained the same.
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