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Abstract: Epilepsy is a neurological disorder that is characterized by transient and unexpected
electrical disturbance of the brain. Seizure detection by electroencephalogram (EEG) is associated
with the primary interest of the evaluation and auxiliary diagnosis of epileptic patients. The aim
of this study is to establish a hybrid model with improved particle swarm optimization (PSO) and
a genetic algorithm (GA) to determine the optimal combination of features for epileptic seizure
detection. First, the second-order difference plot (SODP) method was applied, and ten geometric
features of epileptic EEG signals were derived in each frequency band (5, 6, « and $3), forming a
high-dimensional feature vector. Secondly, an optimization algorithm, AsyLnCPSO-GA, combining a
modified PSO with asynchronous learning factor (AsyLnCPSO) and the genetic algorithm (GA) was
proposed for feature selection. Finally, the feature combinations were fed to a naive Bayesian classifier
for epileptic seizure and seizure-free identification. The method proposed in this paper achieved
95.35% classification accuracy with a tenfold cross-validation strategy when the interfrequency bands
were crossed, serving as an effective method for epilepsy detection, which could help clinicians
to expeditiously diagnose epilepsy based on SODP analysis and an optimization algorithm for
feature selection.

Keywords: epileptic seizure detection; electroencephalography; second-order differential plot;
geometric features; AsyLnCPSO-GA; feature selection; classification

1. Introduction

Epilepsy is a chronic neurological disease characterized by unusual behavior, sensa-
tions and loss of awareness [1]. According to the latest epidemiological data, 65 million
people worldwide are affected by epilepsy [2,3], among which approximately 30% of pa-
tients cannot be controlled with anticonvulsants and surgery [4]. Epileptic seizures can
cause permanent damage to the patient’s brain, which can be monitored and detected
by scalp electroencephalography (EEG) [4-6]. In the seizure state, scalp EEG shows a
drastic increase in amplitude, with sharp wave, spike-wave, or spike (or sharp) slow wave
complexes [7]. Empirically, neurophysiologists visually examine EEG signals to detect
epileptic seizures. Manual monitoring of long-duration EEG signals is a monotonous
and tedious job [8]. Hence, the design and development of automated epileptic seizure
detection methods is considered an active field of interest for research [5,6].

A variety of modern nonlinear analysis methods have been widely used for epileptic
seizure detection using EEG, such as the Lyapunov exponent [9], correlation dimension [10],
complexity [11], entropy [12], fractal dimension [13] and phase space reconstruction meth-
ods. With the phase space reconstruction method, the original system is transformed
into a high-dimensional system [14,15], and more information, including correlation and
chaotic nonlinear dynamic characteristics of the EEG signal, can be explored in 2D projec-
tion [16]. However, phase space reconstruction is complex and time-consuming because it
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is dependent on the delay time parameter (1) and the embedding dimension (d), which
are computed from the input signal by mutual information and false nearest-neighbor
methods [17].

Compared with phase space reconstruction, in the second-order difference plot (SODP)
method, graphical representation of successive rates are compared to provide the data
variability rate, which can quantify the complexity of EEG in 2D space [18]; therefore, SODP
is less complex than phase space reconstruction, and it has been reported to be useful in
distinguishing between various neurological disorders. Abdulhay et al. applied SODP to
extract an area feature matrix for the recognition of autism spectrum disorder with 94.4%
accuracy [19]. For epileptic detection, the SODP features of the shortest distance to the
45/135-degree lines (SHD), central tendency measure (CTM) [20] and the 95% confidence
ellipse area [21] have been effectively verified. Most existing literature studies were based
on a single SODP feature without exploring the full potential information. In [22-24],
Wang et al. combined multiple types of features to characterize different biophysical infor-
mation, improving the automatic diagnosis of neurological diseases. Hence, combining
features could be useful for epileptic seizure detection.

However, the extracted features are not always capable of classifying pattern classes
with absolute accuracy as the number of features increases [25]. Instead, feature classifica-
tion accuracy is related to (i) highly correlated features, which may lead to redundancy in
the classification learning model or (ii) uncorrelated features, which may lead to the failure
of pattern recognition [26]. Therefore, it is necessary to determine the key features among a
large feature set based on feature selection by intelligent optimization algorithms.

Particle swarm optimization (PSO), which was proposed by Eberhart and Kennedy
in 1995, is one a well-known metaheuristic evolutionary algorithm. Inspired by the social
behavior of bird flocking and fish schooling, PSO can characterize the dynamics of complex
systems [27]. In the search space, a position is assigned to each particle to analyze for
the optimal solution. Particle swarms find the optimal regions of the complex search
space through the interaction of individuals in the population. PSO has the advantages
of easy implementation and few parameters to be adjusted, but it easily falls into local
extreme points [28], resulting in poor performance in the feature selection of EEG [24].
Several strategies have been proposed to improve the performance of PSO by adjusting
the learning factors or inertia weights with asynchronous or synchronous changes in the
learning factors, increasing the inertial weights, randomizing the inertial weights, linearly
decreasing the weights, etc. Jiang et al. compared the asynchronous learning factor changes
of PSO (AsyLnCPSO) with the remaining three PSO algorithms and found that AsyL.nCPSO
achieved the best performance in searching for a global optimum [29].

A genetic algorithm (GA) is a kind of global probabilistic search method that simulates
genetic selection and natural elimination [30]. Its main characteristics are a population
group search strategy and information exchange between individuals within the population.
Neither relies on gradient information nor requires the solution function to be differentiable,
which is available when the objective function is solvable under given constraints. Owing
to its excellent scalability, it can be combined with other algorithms; thus, it has been used
for feature selection in a variety of domains, such as emotional stress state detection [31],
finger movement discrimination using EEG signals [32] and optimization of the kernel
parameters of support vector machine (SVM) [33].

In this work, the abnormalities of EEG signals from epileptic patients are assessed
based on SODP analysis, and multiple efficient geometric features are extracted to detect
epileptic seizures. Then, feature selection is implemented via the proposed AsyLnCPSO-GA
algorithm. Owing to the introduction of GA, AsyLnCPSO-GA can intelligently adjust the
evolution of the population during optimization, increasing the robustness of the algorithm
and improving the optimization accuracy compared to GA, PSO and AsyLnCPSO.

The remainder of this paper is organized as follows. In Section 2, the CHB-MIT dataset
and data preprocessing are described. In Section 3, the proposed method for seizure detec-
tion is illustrated, including the SODP, geometric feature extraction, AsyLnCPSO-GA and
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application of AsyLnCPSO-GA in feature selection. In Section 4, the analytical results are
presented, comprising analysis of SODP, statistical analysis of features, classification analy-
sis of features and the application analysis of AsyLnCPSO-GA, followed by a discussion in
Section 5 and concluding remarks in Section 6.

2. Data Description and Preprocessing

In this study, the Boston Children’s Hospital and the Massachusetts Institute of Technol-
ogy (CHB-MIT) (https:/ /archive.physionet.org/physiobank/database/chbmit/ (accessed
on 15 July 2022)) scalp EEG dataset was used. The database contains data on 23 subjects.
The sampling frequency was 256 Hz. The output of each channel was the difference in
potential between electrodes. For the sake of uniformity, 23 EEG channels were selected
(FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, CZ-Pz, FP2-F4, F4-C4,
C4-P4, P4-O2, Fp2-£8, F8-T8, T8-O2, P7-T7, T7-FT9, FT9-FT10, FT10-T8 and T8-P8), and for
each channel, 4925 s of seizure data were intercepted.

The EEGs of the FP1-F7 channel of seizure and seizure-free cases were shown in
Figure 1. In general, the investigated scalp EEG recordings contain artifacts that could
deteriorate the detector performance. Therefore, artifacts caused by eye movement, muscle
movements or other factors were manually removed based on a thorough offline visual
inspection. To achieve high confidence in the data, the EEGs were split into segments using
a sliding 20 s window with 15 s overlap to increase the sample size to a total of 327 seizure
examples. Then, each channel of intercepted EEG data was decomposed into the four EEG
sub-bands of interest: delta (0-4 Hz, 6), theta (4-8 Hz, 0), alpha (8-15 Hz, «) and beta
(15-30 Hz, ) via a bandpass FIR filter. Moreover, the digitized EEG data were processed
and analyzed in a MATLAB environment (version 9.11.0.1769968, R2021b).

1000 500
0 WM“MM 0 HWWMW
-1000 | -500

(a) Seizure (b) Seizure-free

Figure 1. Examples of (a) seizure and (b) seizure-free EEG signals in the channel (i.e., FP1-F7).

3. Method
3.1. Second-Order Differential Plot (SODP)

The second-order differential plot is a graphical representation of a continuous rate of
mutual contrast, which, to some extent, indicates the rate at which the signal varies. The
SODP graph of the EEG signal can be obtained by plotting x(i) versus y(i), which is defined
as [20,21,34,35]:

x(i) = EEG(i+1) — EEG(i), y(i) = EEG(i+2) — EEG(i + 1) @)
3.2. Feature Extraction

3.2.1. Standard Descriptors (STDs)

STDs are used to fit the ellipse and measure the dispersion and scattering of points
along the minor (STD1) and major (STD2) axes [36]. STD1 and STD2 are hypothesized as
two lines of 45 and 135 degrees (Figure 2a), which can be defined as follows:

STD1 = \/Var(x(i)\}zy(i)), STD2 = \/Var(’c(i)Jr\/Ey@) ©)

STD = n(STD1 x STD2) €)
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Figure 2. Illustration of SODP geometric features: (a) STD, (b) SAV, (c) SSHD, (d) STA, (e) CTM,
(f) SDC, (g) SSVL, (h) SCC.

3.2.2. Sum of the Angles between Consecutive Vectors (SAV)

The angles between successive vectors can indicate information related to EEG signal
changes over time, which can quantify the behavioral complexity of the SODP in the time
domain (Figure 2b). The sum of the angles between consecutive vectors is calculated as
follows [37]:

sav =5 X0 1) 4y Xyl + 1)

A2 + )2+ 2+ 1)+ (i + 1)

3.2.3. Sum of the Shortest Distance of Each Point from the 45-Degree Line (SSHD)

The shortest distance of each point from the 45-degree line (SHD) is calculated to
evaluate the scattering of points on the y = x line (Figure 2c). The sum of the SHD can be
defined as follows [38]:

4)

n—2 : :
[x() —y(@)]
SSHD = —_— 5
L5 ©)

3.2.4. Sum of the Triangle Area Using Consecutive Vectors (STA)

According to SAV, consecutive three points generate angles, which can form a triangle
(Figure 2d). Moreover, if the angle of the vector and the area of the generated triangle are
both very small, then the distance between the consecutive points will be short, which
indicates a reduction in the system dynamics to some extent [31]. Thus, the area of a triangle
using consecutive vectors can be calculated as follows [34,39]:

n2q| [x(@) x(+1) x(i+2)
STA=Y ~|det|y(i) y(i+1) y(i+2) ©6)
=2 1 1 1

3.2.5. Central Tendency Measure (CTM)

The continuous-time matrices of the selected stable, non-random circular region
around the origin of the SODP are computed to measure the degree of variability in the
SODP plot (Figure 2e). CTM represents the number of points occupied by the SODP plot,
so a low CTM value indicates that the plot data are spread over a large area. The CTM is
defined as follows [20,35]:

CTM = %f q(by) @)
i=1
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0 otherwise

q(bi) = {1 I s ®)

where r is the radius of CTM. In this paper, the radius is set to 30-50% of the SODP range,
from which three features of CTM (CTM-0.5, CTM-0.4 and CTM-0.5) are extracted.

3.2.6. Sum of Distances to Coordinate (SDC)

The sum of the distance of points is computed to determine the overall scattering of
SODP points on the coordinate axes (Figure 2f). It can be calculated as follows [39]:

n—2
SDC = ; V() +y(i)? ©)

3.2.7. Sum Successive of Vectors Length (SSVL)

The sum of the lengths of successive vectors (x(i), y(i)) and (x(i + 1), y(i + 1)) gener-
ated by successive points on the two-dimensional projection in the SODP is calculated to
quantify EEG amplitude changes in the time domain (Figure 2g), which can be defined as
follows [38]:

n—1
SSVL =) \/(X(i +1) = x(i)* + (y(i +1) —y(i)? (10)
i=1

3.2.8. Sum of the Centroid-to-Centroid Distance of Successive Triangles (SCC)

Centroids can be obtained by calculating the mean coordinates of three successive
points (x(i), y(7)), (x(i + 1), y(i + 1)) and (x(i + 2), y(i + 2)); then, the distance between the
centroids of every two successive triangles is computed to quantify the self-similarity of the
SODP (Figure 2h). The sum of centroid-to-centroid distance can be defined as follows [38]:

= (S B TR SIS XTI R
SCC = Z \/(xci+1 - xC,‘)z + (yCH] - yC,-)2 (12)
i=3

3.3. AsyLnCPSO-GA

In this paper, we propose an improved optimization algorithm, AsyLnCPSO-GA,
which combines AsyLnCPSO with the genetic algorithm (GA). In each iteration, particles
are first optimized by AsyLnCPSO; then, all optimized particles are fed to GA to prevent
some particles from becoming trapped in local optimization. The flow chart of the proposed
algorithm is shown in Figure 3. Here, the initial particle swarm size is set to 30, the number
of iterations is 200 and the trials are carried out 20 times. Moreover, computation complexity
of AsyLnCPSO-GA in each iteration is: (1) AsyLnCPSO: O(Position Update x Particle
size) + O(Velocity Update Particle size) + O(Fitness Calculation x Particle size), (2) GA:
O((Crossover + Fitness Calculation) x (Crossover-rate x Particle size)) + O((Mutation +
Fitness Calculation) x (Mutation-rate x Particle size)). Detailed descriptions of the GA,
PSO and AsyLnCPSO algorithms are provided in Appendix A.
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(Max.Iteration=200, Particle.population=30) population(particle)
v v
Apply AsyLnCPSO over the Selection
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Calculate particle's new _Corssover
fitness(Classification accuracy) (Discrete crossover
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12
Update the individual opu'mum pBest Mutation
and the current global optimum gBest (Gaussian mutation
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l YES
Update the velocity and position
(w=0.7) End

—NO

Figure 3. Flow chart of AsyLnCPSO-GA.

3.4. Application of AsyLnCPSO-GA in Feature Selection

The application process of AsyLnCPSO-GA is as follows: First, the features are sorted
according to the following sequence: STD, SAV, SDC, STA, SSHD, SCC, SSVL and CTM
(CTM-0.3~CTM-0.5), which are randomly combined and represented as algorithm particles.
Each particle is composed of 0-1 sites with a length of 10-40 bits (single-band: 10 bits, dual-
band: 20 bits, three-band: 30 bits and four-band: 40 bits), where the number 1 indicates that
the feature is selected for input to the classifier and vice versa. For example, suppose that
the feature combination in the single-band setup is represented by the particle [0100100001
(8)]; accordingly, the features SAV (2nd), SSHD (5th) and CTM-0.5 (10th) are selected for
combination. Secondly, the Bayesian classifier is chosen as the fitness function of the
algorithm, and the classification accuracies of feature combinations are determined as the
fitness values. In the model of the Bayesian classifier, 10-fold cross validation is applied,
and the ratio of training to test data is 9:1. Owing to the real value of the algorithm, the real
values of the particles need to be transferred into to 0-1 by threshold t(t = 0) before being
input into the Bayesian classifier. The intelligent detection process is shown in Figure 4.

Raw EEG Filtered EEG Sliding window Frequency band alloction SOoDpp i
- ﬂ Fliter * T, B # T o / o
=iy ! |
Bayesian Classifier Iteration N :
(10-fold Cros.s-\f alidation) 4 Algorightms: l
®e 0 0 Feature combination PSO Teatures extraction

m_‘
Z==0

GA - !
AsyLnCPSO s s g $|ss 5 1€ ¢

j " T A ] ]
AsyLnCPSO-GA ks 'igl‘ 1| Ce ]\; ‘l]\f ';\;
————————— | . 5

Optimization

Figure 4. Intelligent process for epileptic seizure detection.

4. Results
4.1. Analysis of SODP

In order to study the abnormal fluctuations of EEG in the §, 8, & and {3 frequency bands
of epileptic patients, the SODP graph composed of x() and y(n) was generated, as shown
in Figure 5, where every two consecutive dots are indicated by connecting lines: the blue
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line represents epileptic seizures, and the red line represents seizure-free data. According
to Figure 5, the SODP of epileptic seizure EEG occupies significantly more areas than the
seizure-free data, which is associated with the abnormal discharge of epileptic seizures.
In particular, the values of epileptic seizure group were in the ranged of [—13.58, 13.71]
in the 6 frequency band, [—30.83, 31.15] in the 0 frequency band, [-40.52, 37.76] in the o
frequency band and [—70.26, 71.19] in the 3 frequency band, while in the seizure-free group,
the values were in the range of [—6.51, 5.56], [—8.13, 9.46], [-7.34, 7.16] and [—24.26, 18.35]
in the 6, 6, x and 3 frequency bands, respectively. In the four frequency bands, the SODP of
seizure and seizure-free data showed obvious differences. The more obvious the difference,
the closer the distribution of the SODP graph to y = x, suggesting that the abnormal
fluctuation of epileptic EEG was discontinuous intermittent abnormal discharge.

[*é* Seizure —+— Seizure-free‘
100
50
-~
=
= 0
-50
-100
20 -20 0 20 -40 -20 0 20 40 -100 0 100
x(n) x(n) x(n)
(b)0 (©)a @p

Figure 5. SODP of seizure (blue line) and seizure-free (red line) groups in the (a) 3, (b) 6, (c) o and (d)
f3 frequency bands.

4.2. Statistical Analysis of Features

Ten geometric nonlinear features were extracted: STD, SAV, SDC, STA, SSHD, SCC,
SSVL, CIM-0.3, CITM-0.4 and CTM-0.5. Given the differences in the ranges of the four
frequency bands, the radiuses of the CTM features were expressed as the proportion of
the SODP ranges. One-way ANOVA statistical analysis was applied to the ten SODP
features to assess the difference between the epileptic seizure and seizure-free groups, as
shown in Figure 6, where asterisks represent significant differences between the two groups
(“**”: p < 0.01). Here, the values were normalized in the range of [0,1] for the convenience
of display. The mean =+ standard deviation and p-value are shown in Appendix Table Al.
For the first seven features, the values increased in the seizure group, whereas for the last
three CTM features, the values decreased. The increase in the former seven features in
the epileptic seizure group indicates that the SODP extends in the y = x direction, that
scatters from the coordinate center were wide, the triangle area of three continuous points
and the distance of continuous triangle centroid in SODP were large, the distance between
two consecutive points was longer and the fluctuation amplitude was large, showing
increased self-similarity and behavioral complexity of EEG signals. In contrast, the seizure
group had lower CTM values than the seizure-free group, associated with larger SODP
scatter in the seizure-free group, which was essentially consistent with the results for the
former seven features, i.e., STD-SSVL. In summary, all features in the four frequency bands
showed significant group differences (p < 0.01), which could be considered for further
classification study.
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Figure 6. Feature (normalized in the range of [0, 1]) visualization in the (a) 5, (b) 6, (c) x and (d) 3

frequency bands. Asterisks represent significant differences between the two groups (“**”: p < 0.01).

4.3. Classification Analysis of Features

The averaged classification results are shown in Table 1. For all features, the 6 band
showed the best classification effect, for which the highest classification accuracy reached
0.8356 in CTM-0.3, followed by the 6 band, for which the highest accuracy was 0.7822 in
CTM-0.3, whereas the cand (3 bands had poor discrimination, with the highest classification
accuracies of 0.7158 in SAV and 0.6317 in CTM-0.3, respectively. Among the ten features,
CTM-0.3 performed best in the 6, 6 and {3 bands.

Table 1. The classification results of SODP single features (STD-CTM-0.5) in the 3, 6, « and 3

frequency bands.
Band STD SAV SDC STA SSHD SCC SSVL CTM-0.3 CTM-0.4 CTM-0.5
5 0.6734 0.8284 0.8228 0.6491 0.8347 0.8252 0.8042 0.8356 0.8198 0.8011
0 0.5758 0.7692 0.7701 0.5796 0.7557 0.7581 0.7582 0.7822 0.7509 0.6927
o 0.5712 0.7158 0.7087 0.5711 0.7062 0.7011 0.6985 0.7108 0.6523 0.6252
B 0.5693 0.6272 0.6238 0.5642 0.6102 0.6124 0.6107 0.6317 0.6093 0.5953

4.4. Application Results of GA, PSO, AsyLnCPSO and AsyLnCPSO-GA

In this section, in order to improve the classification accuracy in each frequency band,
multiple features were combined, and intelligent optimization algorithms (GA, PSO, AsyL-
nCPSO and AsyLnCPSO-GA) were applied to determine the optimal feature combination.
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4.4.1. Simulation Test

First, intelligent algorithms were used with the Rastrigin, Sphere Mode, Rosenbrock
and Schwefel functions to verify their effectiveness, and the population diversity, optimiza-
tion precision, execution efficiency and capability of the global search were assessed [40].
The average values of gBest for the four algorithms over 20 trials were compared, as shown
in Figure 7 and Table 2. All four algorithms showed the ability to optimize. The time
consumption of AsyLnCPSO-GA was more than that of the other three algorithms, indi-
cating that AsyLnCPSO-GA increased the computational complexity (Table 2), although it
achieved the best performance, with a quick convergence speed in high-dimensional space,
the highest optimization precision and execution efficiency and most solution spaces with
the lowest fitness value (Figure 7).

100 50 :
—GA —GA
80 —PSO 40 —PSO
—AsyLnCPSO —AsyLnCPSO
% 60 —AsyLaCPSO-GAL =3¢ —AsyLnCPSO-GA
= £
= 40 & 20
" h ’ &
0 N~ 0
0 1000 2000 3000 0 50 100 150 200
(a)Rastrigin (b)Sphere Model
15,000 50
—GA —GA
—PSO 40 —PSO
10.000 —AsyLnCPSO — AsyLnCPSO
2 —AsyLnCPSO-GA 230 — AsyLnCPSO-GA
£ g
= =
5000
0
0 50 100 150 200 0 50 100 150 200
(c)Rosenbrock (d)Schwefel

Figure 7. Simulation test results of the four algorithms with the (a) Rastrigin, (b) Sphere Model,
(c) Rosenbrock and (d) Schwefel functions. GA: black line; PSO: green line; AsyLnCPSO: blue line;

AsyLnCPSO-GA: red line.

Table 2. Average time consumption and fitness values of the simulation test.

Test Function

Aleori Rastrigin Sphere Model Rosenbrock Schwefel
gorithm
Time Con- Fitness Time Con- Fitness Time Con- Fitness Time Con- Fitness
sumption Value sumption Value sumption Value sumption Value
GA 0.313 s 1.92 x 1074 0.016 s 1.201 0.013 s 154.149 0.045 s 6.762
PSO 0.392s 10.494 0.021s 4173 0.02s 609.415 0.065 s 14.687
AsyLnCPSO 0425s 10.417 0.021s 4.105 0.021s 541.367 0.066 s 14.143
AsyLnCPSO-GA 0.671s 0 0.035's 2.03 x 1077 0.03 s 68.287 0.094 s 1.93x 1073

4.4.2. Application Analysis of Seizure Detection

The features were combined in each frequency band, and GA, PSO, AsyLnCPSO
and AsyLnCPSO-GA were applied to determine the optimal feature combination. A
total of 20 experimental trials were conducted with each algorithm, and the trends in
the classification accuracies of the best feature combinations (gBest) optimized by GA,
PSO, AsyLnCPSO and AsyLnCPSO-GA with an increased in the number of iterations are
exhibited in Figure 8, where the horizontal axis represents the number of iterations, and the
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vertical axis represents the classification accuracies of the gBest. GA, PSO, AsyLnCPSO and
AsyLnCPSO-GA are plotted as black, green, blue and red lines, respectively. The higher
the value, the better the optimization ability of the algorithm. All four algorithms were
able to optimize the features, but AsyLnCPSO-GA achieved the best performance, with fast
convergence, small fluctuations and the highest classification accuracy. Furthermore, the
lowest, highest and average classification accuracies were calculated, as shown in Table 3.
First, compared to Table 1, the classification accuracies obtained with the combinations
of features by the optimization algorithms were higher than those obtained with a single
feature in each frequency band. For instance, in the 6 frequency band, the classification
accuracies of feature combinations were 0.8660, 0.8677, 0.8675 and 0.8682—all higher than
the 0.8356 obtained with CTM-0.3 only. Secondly, similar to the results presented in Table 1,
the classification effects of the 6 and 6 bands were better than those of & and 3 bands.
Finally, AsyLnCPSO-GA considerably improved the classification and achieved the highest
average accuracy in each frequency band.

— GA —PSO — AsyLnCPSO — AsyLnCPSO-GA
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0.76 ' 0.655
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Figure 8. The trends of the optimal particle (gBest) optimized by GA, PSO, AsyLnCPSO and
AsyLnCPSO-GA in the (a) 9, (b) 6, (c) « and (d) 3 frequency bands. GA: black line; PSO: green line;
AsyLnCPSO: blue line; AsyLnCPSO: red line.

Table 3. Classification accuracies (min/max/average) optimized by GA, PSO, AsyLnCPSO and
AsyLnCPSO-GA in the 6, 6, c and 3 bands.

GA PSO AsyLnCPSO AsyLnCPSO-GA
Min Max Avg Min Max Avg Min Max Avg Min Max Avg
5 0.8606  0.8719  0.8660 0.8651  0.8719  0.8677 0.8651 0.8719 0.8675 0.8651  0.8719  0.8682
0 0.8121  0.8251  0.8181 0.8186  0.8251  0.8212  0.8187 0.8251 0.8215 0.8206  0.8251  0.8217
o 0.7698  0.7856  0.7772 07719 0.7878 0.7786  0.7701  0.7878 0.7786  0.7763  0.7878  0.7790
B 0.6547  0.6792  0.6689  0.6592  0.6768  0.6707  0.6638  0.6792  0.6716  0.6681  0.6792  0.6729

To further investigate the influence of the 6 and 0 bands on the accuracies of the «
and p bands, the features from different bands were combined (i) by 0-c, 8- and 5-6-« to
analyze the effect of  and 6 on the « frequency band; (ii) by 5-f3, 6-f and 6-0-f to analyze
the effect of 5 and 0 on the 3 frequency band. As shown in Figure 9 and Table 4, the
average accuracies of AsyLnCPSO-GA were better than those of the other three algorithms
(Figure 9), which is consistent with the results presented in Figure 8. Compared with
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the results shown in Table 3, the introduction of 6 or 6 bands in band crossing had a
significant impact on the classification effect in single « or 3 bands, e.g., the maximal
classification accuracies of -« and 8-a were 0.8726 and 0.8245 higher than the 0.7790
accuracy achieved with the « band alone (Table 3), with the same result with respect to the
 band. Additionally, the simultaneous introduction of two crossing frequency bands (5-0)
improved the classification effect, e.g., the classification results of three bands (6-6-« and
5-6-p3) were 0.9252 and 0.9210, respectively—higher than that achieved dual bands.

[—GA —PSO — AsyLnCPSO — AsyLnCPSO-GA|

0.875 0.83 T 0.93
-
g 0.87 2l £0.92
I3 «< «<
E 5 0.81 E
3 0.865 21 S
< < 0.8 < 0.91
0.86 0.79 0.9
0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration
(a)d-a (b)0-a (¢)3-0-a
0.89 0.83
2885 £0.82
« <
S 088 5
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(d)s-p (e)6-p (H5-0-p
Figure 9. Trends of optimal particles (gBest) optimized by the GA, PSO, AsyLnCPSO and AsyLnCPSO-
GA algorithms in the (a) 5-«, (b) 8-« () 5-6-«, (d) 5-3, (e) 6-p and (f) 5-0-p bands. GA: black line;
PSO: green line; AsyLnCPSO: blue line; AsyLnCPSO: red line.
Table 4. Classification accuracies (min/max/average) optimized by the GA, PSO, AsyLnCPSO and
AsyLnCPSO-GA algorithms in the -« 8-, 5-6-c, 5-3, -3 and 5-6-p bands.
GA PSO AsyLnCPSO AsyLnCPSO-GA
Min Max Avg Min Max Avg Min Max Avg Min Max Avg

S-at
0-a
5-0-o¢
5-p
0-p
5-0-

0.8627  0.8784
0.7940  0.8293
0.9070  0.9292
0.8716  0.8916
0.7963  0.8320
0.9003 09271

0.8710 0.8671 08739  0.8708 0.8627 0.8783  0.8719  0.8671  0.8783  0.8726
0.8110 0.8052  0.8229  0.8150 0.8054 0.8343 0.8219  0.8187 0.8316  0.8245
09183 09114 09291 09208 09203 0.9271 09239 09204 0.9292  0.9252
0.8801  0.8760 0.8959  0.8845 0.8760 0.8959  0.8865  0.8783  0.8959  0.8880
0.8186  0.8166  0.8320  0.8255 0.8142 0.8321 0.8235 0.8185  0.8363  0.8281
09144 09048 09249 09150 09070 09226 09161 09138 0.9315  0.9210

Subsequently, the frequency bands (-3, 5-x-f3, 6-a-f3 and 6-0-x-3) were crossed to
study the effect of 5 and 6 on the cross-frequency band (x-3), as shown in Figure 10 and
Table 5. The introduction of the combination of superior bands (5/8/6-8) considerably im-
proved the classification effect of inferior crossing bands («-3), e.g., the average accuracies
of 6-a-f3, 6-a- and 6-8-a-f3 were increased to 0.9175, 0.8595 and 0.9454, respectively—all
higher than the 0.7901 accuracy of «-f3 (Table 5). Notably, the AsyLnCPSO-GA algorithm
achieved the best performance among the four algorithms; for instance, in the four-band
crossing situation (8-6-x-f3), the highest average accuracies of the GA, PSO, AsyLnCPSO
and AsyLnCPSO-GA algorithms were 0.9436, 0.9396, 0.9434 and 0.9454, respectively.
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Figure 10. The trends of the optimal particles (gBest) optimized by the GA, PSO, AsyLnCPSO and
AsyLnCPSO-GA algorithms in the (a) -, (b) 5-x-f, (c) 6-x-p and (d) 6-6-«-f3 bands. GA: black line;
PSO: green line; AsyLnCPSO: blue line; AsyLnCPSO: red line.

Table 5. Classification accuracies (min/max/average) optimized by the GA, PSO, AsyLnCPSO and
AsyLnCPSO-GA algorithms in the «-f3, 6-x-f3, 6-«-3 and 5-68-a-3 bands.

GA PSO AsyLnCPSO AsyLnCPSO-GA
Min Max Avg Min Max Avg Min Max Avg Min Max Avg
-3 0.7593 0.7876  0.7782  0.7628  0.7900  0.7728  0.7480 0.7946 0.7775 0.7767 0.7969  0.7901
S-o-f3 0.8936 09250 0.9075 0.8963 0.9203  0.9095 0.9003 0.9270 09157 0.9026  0.9269 0.9175
0-a-f3 0.8294 0.8673 0.8478 0.8364 0.8630  0.8503 0.8517 0.8606  0.8549 0.8494 0.8718  0.8595
0-6-a-f 09314 09535 09436 09315 09425 09396 0.9315 0.9535 0.9434 0.9381 0.9535 0.9454

As shown in Figures 8-10, PSO and AsyLnCPSO fell into local optima with a low
accuracy, whereas GA converged slowly and fluctuated as a result of the introduction of a
mutation operator. However, with the introduction of GA into AsyLnCPSO, the combined
AsyLnCPSO-GA algorithm improved the global optimal search ability and screened the
best feature combination much faster and more accurately.

Finally, the average time consumption and feature dimension during optimization
were calculated, as shown in Table 6. AsyLnCPSO presented the longest running time from
the single-band to four-band crossover, whereas GA had the shortest running time, with
crossover and mutation rates of 0.5 and 0.01, respectively, resulting in GA calculating the
fitness of more than half of the particles in each iteration. The average feature dimension
of the AsyLnCPSO-GA algorithm optimized in the three-band and four-band crossovers
was more than that of the other three algorithms, suggesting that AsyLnCPSO-GA could
search a much wider search space (high-dimensional space) to avoid falling into the local
optimum, which is consistent with the results presented in Figure 7.
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Table 6. The average time consumption and feature dimension of GA-, PSO-, AsyLnCPSO- and
AsyLnCPSO-GA-optimized single-band, dual-band, three-band and four-band crossovers.

Single-Band Dual-Band Three-Band Four-Band
Algorithm
(Naive Bayesian) Time Feature Time Feature Time Feature Time Feature
Consumption Dimension Consumption Dimension Consumption Dimension Consumption Dimension

GA 78.14s 6.5 91.82s 12.4 103.21 s 16.5 125.36 s 19.2

PSO 117.28 s 48 144.57 s 9.9 173.5s 13.3 198.69 s 15.3

AsyLnCPSO 121.39 s 4.9 15223 s 10.4 187.31s 15.1 201.54s 18.1

AsyLnCPSO-GA 174.25s 5.2 213.84s 11.3 259.64 16.7 288.13 s 21.6

4.4.3. Analysis of Key Features

Accuracy is often improved as the number of features is increased and features are
combined. However, some combinations with few features, called key features, can achieve
high classification accuracy, reduce the dimension of the feature vector and preserve the
most important information. Thus, in order to investigate the effect of the key features on
classification accuracy, statistical analysis of the occurrence frequency of key features was
conducted in the 15 classes of interband combinations (5, 6, «, 3, -0, &-«, -3, 0-c, 6-f3, x-f3,
5-60-a, 5-6-p, 5-o-p3, 0-x-PB, 6-0--f3), and the top four features with the most occurrences
were selected, as shown in Table 7. First, CTM features occurred most frequently and
became the key features in the single-frequency band, i.e., CTM-0.3: 75% in the 6 band,
CTM-0.4: 100% in the 6 band, CTM-0.3: 60% in the &« band and CTM-0.4: 95% in the 3
band. However, other features appeared more than the CTM features when frequency
bands crossed, e.g., SAV, SSH and STD in the 6- combinations (“6-” represents that the band
combinations contained the  frequency band); SAV, SSHD and SSVL in the 6- combinations;
STD, SAV, SCC and SSHD in the «- combinations; and STD, SDC, SSVL, SAV and SSHD in
the 3- combinations. As mentioned above, the key features were differed depending on the
frequency band crossing; therefore, it was necessary to automatically determine the key
features by using the intelligence optimization algorithm.

Table 7. The proportion of features (top four) in gBest of 6-5-6-a-3. Annotation: “%” is the frequency
of feature occurrence in all trials.

Band The Proportion of Features in gBest

5 5: CTM-0.3 (75%), CTM-0.4 (95%), SAV (60%9%), SSHD (50%).

0 6: CTM-0.4 (100%), SSHD (75%), SAV (70%), CTM-0.5 (60%).

o o SSHD (100%), SAV (80%), CTM-0.3 (60%), STD (50%).

B B: CTM-0.4 (95%), SAV (80%), CTM-0.3 (60%), SDC (30%).

5: CTM-0.3 (100%), SSHD (85%), SAV (85%), CTM-0.4 (50%); 0: SAV (85%), CTM-0.3 (75%),

STD (60%), STA (30%).

5: CTM-0.3 (95%), SAV (95%), SSHD (90%), SCC (40%); o SSHD (55%), SAV (50%), CTM-0.3

(40%), STA (15%).

. 5: SSHD (95%), CTM-0.3 (90%), STD (90%), CTM-0.5 (45%); B: SSHD (90%), SAV (70%),
CTM-0.3 (35%), SCC (20%).

6: SAV (95%), CTM-0.3 (90%), SSHD (85%), SSVL (30%); c: SSHD (60%), CTM-0.3 (20%), SDC

(10%), SAV (10%).

8: CTM-0.3 (100%), SAV (95%), SSHD (65%), SDC (30%); : SAV (65%), SSHD (25%), STD (5%),

0-p SCC (5%).

et o SAV (100%), SSHD (80%), CTM-0.3 (30%), SSVL. (25%); B: SAV (25%), SSHD (25%), STD
(10%), CTM-0.3 (10%).

5: CTM-0.3 (80%), CTM-0.5 (40%), SAV (35%), CTM-0.4 (30%); 0: CTM-0.5 (100%), SAV (100%),

8-6-oc SSHD (65%), STD (55%); &: SAV (60%), CTM-0.5 (55%), SSHD (50%), SSVL (25%).

5.0-8 §: CTM-0.3 (70%), SAV (65%), STD (40%), CTM-0.5 (40%); 0: CTM-0.4 (100%), SAV.5 (80%),
CTM-0.3 (80%), SSHD (60%); B: CTM-0.5 (65%), SAV (40%), SSHD (30%), CTM-0.3 (25%).

5o §: SSHD (75%), CTM-0.5 (70%), SAV (70%), STD (60%); o: SAV (100%), SSVL (85%), SSHD
(80%), CTM-0.3 (65%); B: SSVL (35%), CTM-0.3 (35%), STD (35%), CTM-0.5 (35%).

600p 0: STA (75%), CTM-0.4 (70%), CTM-0.5 (70%), SAV (65%); o: SSHD (90%), SAV (65%), CTM-0.3

(60%), CTM-0.4 (60%); B: CTM-0.4 (55%), STD (40%), SSVL (35%), SSHD (30%).

§: CTM-0.4 (75%), CTM-0.5 (75%), CTM-0.3 (70%), STD (65%); 6: SAV (65%), STD (60%), SSHD
5-0-0- (55%), SSVL (55%); o: SSHD (75%), STA (65%), SSVL (65%), SCC (50%); B: SAV (60%), SSVL
(55%), CTM-0.4 (50%), STD (50%).




Entropy 2022, 24, 1540

14 of 22

Finally, the band crossing 8-0-«-(3 was adopted to investigate (i) the impacts of different
bands on 8-6-a-f3 and (ii) the distribution difference of key features in each constituent
frequency band of §-6-a-3. As shown in Figure 11, (i) the percentage of the  frequency
band was 31.3%, which was the highest, followed by the 6 frequency band (23.57%), the
o frequency band (23.23%) and the (3 frequency band (22%), suggesting that the « and
B frequency bands with poor classification could also contribute to improvement in the
classification accuracy in the interband crossing. (ii) The distribution of the top four key
features differed in each constituent frequency band: CTM-0.5, 3.66%; CTM-0.4, 3.66%;
CTM-0.3, 3.42%; and STD, 3.17% in the § frequency band; SAV, 3.17%; STD, 2.93%; SSHD,
2.68%; and SSVL, 2.68% in the 6 frequency band; SSHD, 3.66%; STA, 3.17%; SSVL, 3.17%;
and SCC, 2.44% in the « frequency band; and SAV, 2.93%; SSVL, 2.68%; CTM-0.4, 2.44%; and
STD, 2.44% in the 3 frequency band, demonstrating that the combination of key features in
different frequency bands can improve seizure detection.

STD:3.17% CTM-0.5:3.66% STD:2.93%

—
SAV:1T%
: ;\C'I'M-ﬂ.3:3.42% ‘ : ;\ SSVL:2.68%

\ SSHD:2.68%
(2) 5:31.3% (b) 0:23.47%
STD:2.44% STD:2.44%

j SAV:2.93% ‘
STA:3.17%
—
SSVL:3.17% SSVI2.68%
\SSHD:3.66% \SSHD:2.44%

(c) a:23.23% () p:22%

Figure 11. The total percentage of the appearance of features in the (a) o, (b) 6, (¢) x and (d) B
frequency bands.

5. Discussion

In this study, epileptic seizure and seizure-free EEG signals were plotted by SODP,
and ten nonlinear geometric features were extracted in each frequency band (5, 6, «
and B) to detect seizures. The results showed that the 2D SODP projection of seizure
EEG signals occupied more space than seizure-free signals, indicating that it contained
more rhythmic and irregular shapes. Owing to the paroxysmal abnormal firing of brain
neurons, EEG signals of seizures exhibit less stationary morphological behaviors and more
complex behaviors than seizure-free EEG signals [15,18,41,42], such as spikes in epileptic
seizures [39], leading to sharp edges on the 2D projection [38], as shown in Figure 5,
and significant group differences between seizure and seizure-free signals (Table A1l in
Appendix A), especially in the § and 6 frequency bands. Thus, geometric features can
be considered effective markers for seizure detection. Furthermore, in order to evaluate
the effectiveness of these features, eight simple time-domain features (root mean square,
peak-peak value, skewness, kurtosis, shape indicator, crest indicator, impulse indicator, and
clearance indicator) were extracted in the 6 frequency band for comparison with geometric
features, as shown in Table A1 for geometric features and Table A2 for time-domain features.
Both the time-domain and geometric features exhibited significant differences between
seizure and seizure-free signals. However, most of the geometric features performed better
than the time-domain features for classification, in part because the geometric features
can not only express the simple information of EEG signals, such as time-domain features,
but also the complexity of EEG signals in 2D space, owing to their dynamic and chaotic
nature [18].
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Previous studies have shown that slow waves (<4 Hz,  frequency band) are of prime
importance for the detection of focal epilepsy [43]. Tao et al. [44] proposed interictal regional
b slowing as an EEG biomarker for temporal seizure detection. Schonherr et al. [45] reported
that postoperative 6 activity can be used as a diagnostic marker for recurrent seizures,
similar to the results reported in the present study. In contrast, in the present study, we also
reported significant group differences in the 6 frequency band with respect to geometric
features detected by SODP that were rarely observed in previous studies. For fast waves (o
and f3) group differences were significantly reduced.

Most previous studies with respect to biomedical signal processing applications have
employed statistical approaches, such as ANOVA and Student’s -test, as feature selection
tools. In other words, they used p-values to select significant features, i.e., features with
p-values less than 0.05 or 0.01 were selected as salient. However, this approach is not
always useful when p-values of all features are less than 0.01, such as the ten features
extracted in this study (Figure 6). As shown in Table 1, single features cannot effectively
distinguish epileptic seizure signals from seizure-free signals in the o and 3 frequency
bands. Moreover, extracted features are not always capable of classifying the pattern
classes with absolute accuracy as the number of features increases [25], largely because
features are highly correlated or similar to each other, leading to redundancy in the learning
model when both features are included. In contrast, features are uncorrelated with the
pattern class to be predicted, i.e., the features are not useful enough to represent the pattern
classes properly [26]. All features are assumed to be used in the classifier, whereby the
feature vector length will have the highest length. If the feature vector excessively long,
the complexity of the classifier will be extremely high. Therefore, it is necessary to screen
the shortest feature vector with the best performance, and the most optimal features are
considered as key features here.

In this study, to overcome the lack of exploitation ability in the genetic algorithm
(GA), slow convergence, premature convergence and the tendency to fall into the local
optimal solution in particle swarm optimization (PSO) [46—-48], a novel combined method,
AsyLnCPSO-GA, was presented and introduced to select the optimal feature combination,
then fed to the naive Bayesian classifier. Owing to the combination of AsyLnCPSO and
GA, AsyLnCPSO-GA achieved best performance in feature selection compared with PSO
and the improved PSO-AsyL.nCPSO (Figures 7-10) algorithms. AsyLnCPSO conducted
a thorough search in the search space by using particles that related feature information
to one another, whereas the GA performed adequately in terms of passing down useful
features from one generation to the next. As a consequence, the classification accuracies
of feature combination optimized by the AsyLnCPSO-GA algorithm was considerably
improved, with a maximum accuracy of 0.9535 in 5-68-o-f3 (Table 5).

To increase the robustness of the results, the Kaggle [49], U-Bonn [50] and NSC-ND [51]
datasets were used, demonstrating that the AsyLnCPSO-GA algorithm proposed in this
paper achieved a high classification accuracy, as shown in Table 8. Comparison results
(Table 8) show that the feature combinations differed depending on the optimization
algorithm, indicating that in detection, it is necessary to adaptively optimize the feature
combination by applying intelligent algorithms because certain fixed features might not
work. Details of previous studies on epilepsy detection using these datasets are summarized
in Table 9 in comparison with the framework proposed in this paper. Evidently, seizures
could be detected efficiently by all the methods listed, with classification accuracies of
more than 0.9, and the proposed framework outperformed several existing models [52—
65]. However, few studies showed better classification results than that achieved in the
present study, possibly owing to the selection of non-seizure data, the selection of data
sample size, the difference in data preprocessing, the difference in the applied method
applied, the difference in classifier, etc. For instance, in [52], the AUC values of the SVM
classifier were 0.9432 (dog) and 0.9349 (human), whereas the Bayesian classifier reached
0.7594 (dog) and 0.7664 (human). Similarly, in [62], the accuracy of the RF classifier reached
0.9941, whereas that of the Bayesian classifier was 0.9516, which was inferior to that of the
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method proposed in this paper. Additionally, in [62,63], the classification in the CHB-MIT
dataset was performed by using individual patients separately, resulting in decreased
analysis complexity.

Table 8. The results of proposed method (SODP + AsyLnCPSO-GA) optimized in the Kaggle, U-Bonn
and NSC-ND datasets.

The Proportion of Features in gBest Classification Accuracy
5-0-a-f3 Min Max Avg

5: CTM-0.5 (90%), CTM-0.4 (85%), SAV (55%),
CTM-0.3 (55%);
0: SSVL (85%), SCC (85%), STD (70%), SAV (65%);
Kaggle (Dog) o: CTM-0.5 (65%), SSVL (55%), STD (55%), SSHD ~ 0.9584 0.9714 0.9612
(450/0) ;
B: CTM-0.5 (75%), CTM-0.3 (75%), SSVL (75%),
STD (65%);

5: CTM-0.4 (90%), CTM-0.5 (80%), SSHD (55%),
SCC (55%);
0: STD (70%), CTM-0.3 (65%), CTM-0.5 (65%),
Kaggle (Human) SSVL (65%); 0.9273 0.9455 0.9371
o SDC (80%), SAV (55%), STD (50%), CTM-0.4
(50%);
f3: STA (90%), STD (80%), SAV (70%), SSVL (70%);

§: SSHD (95%), STA (75%), SDC (65%), SCC (65%);
0: CTM-0.3 (80%), SSHD (75%), SSVL (70%), SCC
(55%);

U-Bonn o STD (75%), SDC (70%), SSVL (70%), SSVL 0.9839 0.9936 0.9877
(65%);
B: STD (70%), CTM-0.5 (70%), SCC (65%), SSVL
(60%);

§: SSHD (85%), STA (85%), SSHD (60%), SDC
(55%);

0: SSHD (60%), SSVL (60%), STA (50%), SAV
(50%);

o: CTM-0.4 (80%), STA (75%), CTM-0.3 (60%),
SSHD (55%);

B: STD (60%), CTM-0.3 (60%), CTM-0.4 (60%),
SSVL (55%);

Dataset

NSC-ND 0.9921 0.9987 0.9954

Table 9. Comparison of the proposed method with the exiting work. AUC: area under the curve;
SEN: sensitivity; SPE: specificity; ACC: classification accuracy.

Dataset Method Features Subjects Classifier Cross Validation Performance
. Dog: 0.9432 (AUC)
STW [52] Eggﬁfgﬁ? ) 5 :t‘i’egs;s SVM 10 Human: 0.9349
p (AUC)
Kaggle Spectral power, 4 dogs Dog: 0.9651 (ACC)
ACS [53] correlation between 8 t'g ;[ Random forest Leave-one-out Human: 0.9172
channels patients (ACQO)
- Dog: 0.9563 (ACC)
EMD [54] Statistical and 5 dogs, MAML 10 Fiaman: 0.9528
spectral moments 2 patients (ACC)
Decorrelation time, 5 doos Dog: 0.9028 (SEN)
mRMR-GA [55] Hijorth ) aﬁegn’ts SVM 5 Human: 0.8853
parameters, etc. p (SEN)
4 dogs Dog: 0.9714 (ACC)
Proposed method Geometric features 5 088, Bayesian 10 Human: 0.9455
patients
(ACC)
- Covariance Set D, E: 0.9888
RKHS [56] descriptors Set A-E SR 10 (ACC)
MMSFL-OWFB [57] Kraskov entropy Set A-E SVM 10 0.992 (ACC)
U-Bonn Euclidean distance,
Niobium [58] - . i’ Set A-E SVM 5 Set D, E: 0.96 (ACC)
cosine distance, etc.
EMD [59] IMFs Set A-E MLPNN 10 0.952(ACC)

Proposed method Geometric features SetD, E Bayesian 10 Set ]?A}éé)j%%
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Table 9. Cont.

Dataset Method Features Subjects Classifier Cross Validation Performance
RKHS [56] go"af‘a“e 10 patients SR 10 0.9848 (ACC)
escriptors
Parameters of fitted .
NSC-ND SDE [60] histograms 10 patients SVM 10 0.991 (ACC)
MMSFL-OWFB [57] Kraskov entropy 10 patients SVM 10 0.98 (ACC)
ED [61] Signal data density 10 patients 1-NN 10 0.9897 (ACC)
Proposed method Geometric features 10 patients Bayesian 10 0.9987 (ACC)
Mean of joint 0.9941 (RF, ACC);
EMD [62] instantaneous 24 patients RF, Bayesian 10 0.9516 (Bayesian,
amplitude, etc. ACC)
CHB-MIT WPD [63] Wavelet 24 patients ANFIS 10 0.9404 (ACC)
coefficients, etc.
DWT [64] Sigmoid 23 patients SVM 10 0.9421 (SEN)
entropy, etc.
Matrix . 0.99 (SEN)
AM-FBC [65] determinant, etc. 23 patients SVM Leave-one-out 0.89 (SPE)
Proposed method Geometric features 23 patients Bayesian 10 0.9535 (ACC)

However, the present study is subject to some limitations. (1) The geometric features
extracted in this paper are based on the SODP method, and more types of features, such
as time-domain, frequency-domain, time-frequency domain features and other features,
can be extracted and combined for epilepsy detection. (2) The proposed AsyLnCPSO-GA
algorithm does not take into account the impact of the combining modes between the
two algorithms, which could be optimized by adopting different combination strategies
and fewer calculation formulae in future research work. (3) Alternative classifiers, such
as SVM, KNN, RF, random forest and logistic regression, could be used to improve the
classification accuracy.

6. Conclusions

In this paper, ten geometric features (STD-CTM) based on SODP formation patterns
in EEG signals were extracted for epileptic seizure detection. Analysis of SODP in four
frequency bands (5, 8,  and f3) showed that compared with the seizure-free group, the
area of the SODP in the epileptic seizure group occupied significantly more space. ANOVA
statistical analysis and classification analysis were further applied to assess the effectiveness
of the SODP based on geometric features. Although all features in the four frequency
bands differed significantly, the classification accuracies of most features generated by the
Bayes classifier in the « and p frequency bands were low. In order to improve seizure
detection, a novel hybrid algorithm, AsyLnCPSO-GA, was proposed for multiple feature
combination (6-0-0-x-f3), achieving a much higher classification accuracy than the GA,
PSO and AsyLnCPSO algorithms, with a maximum classification accuracy of 0.9535 in
the 0-8-a-f3 combination. In addition, the following results were obtained: (i) for target
features in the feature combination, the impacts of key features were investigated by
counting the occurrence frequency of features in all combinations, showing that the key
features differed depending on the frequency band crossing, demonstrating the necessity
and importance of automatically determining the key features by using the intelligence
optimization algorithm; (ii) for target frequency bands in the feature combination, the
introduction of the superior bands (6/6/6-08) considerably improved the classification
effect of the inferior bands (/3 / «-3), whereas bands (/3 / x-3) with poor classification
also contributed to improvements in classification accuracy in the interband crossings.

In summary, the hybrid model with AsyLnCPSO-GA and a naive Bayesian classifier
based on SODP shape analysis can applied to explore the potential markers and charac-
terize the abnormalities of EEG signals of epileptic seizures, possibly shedding light on
epileptic EEG analysis and extending our understanding of brain function in patients with
neurological diseases.
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Abbreviations of Terms

Abbreviation Description

EEG Electroencephalography

SODP Second-order differential plot

GA Genetic algorithm

PSO Particle swarm optimization

AsyLnCPSO  PSO with asynchronous learning factor

STD Standard descriptor

SAV Sum of the angles between consecutive vectors

SSHD Sum of the shortest distance of each point from the 45-degree line
STA Sum of the triangle area using consecutive vectors

CT™M Central tendency measure

SDC Sum of distances to coordinate

SSVL Sum of successive vectors length

SCC Sum of the centroid-to-centroid distance of successive triangles

Appendix A. Description of the GA, PSO and AsyLnCPSO Algorithms
Appendix A.1. Genetic Algorithm (GA)

GA transmits population (particles) through the three operators of selection, crossover
and mutation for population renewal. First, the roulette strategy is used in the selection.
Secondly, discrete crossover is applied such that each variable of the child is randomly
selected to cross over according to the variable value of the parent individual, with equal
probability of forming a new child and crossover rate of 0.5. Finally, Gaussian mutation is
employed, which changes the value of each gene in each chromosome, with a mutation
rate of 0.01, as follows [66]:

Xig = Xz + Njg(0,0) (A1)

where N itd (0,0) is a standard normally distributed random value of the it chromosome in
iteration f.

Appendix A.2. Particle Swarm Optimization (PSO)

In the PSO algorithm, each solution is referred to as a particle, and each particle is
distributed in a position to follow the current optimal particles in the multidimensional


https://archive.physionet.org/physiobank/database/chbmit/
https://archive.physionet.org/physiobank/database/chbmit/
https://www.kaggle.com/competitions/seizure-detection/data
https://www.kaggle.com/competitions/seizure-detection/data
https://www.upf.edu/web/ntsa/downloads
https://www.upf.edu/web/ntsa/downloads
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets

Entropy 2022, 24, 1540

19 of 22

problem space flight to find the optimal solution [67]. Moreover, the fitness function
measures each movement of particles and calculates the corresponding value to evaluate
the particle’s position, i.e., the fitness value, according to which the flight of the particle
changes. The position and velocity of particles can be updated as follows:

t+1 _ t t t '
vt =w-vl 4y EK?eStidt_ xidt)+1k o o - (gBesth, — xt,) (A2)
Xig = Xjg T Uig
where xfjl and vfjl are the position and velocity, respectively, of the i*" particle in iteration

t +1; c1 and ¢, are the positive acceleration coefficients (in this paper ¢; = ¢y = 2); pbest! is
the best position of the i*" particle and gbest!, is the best position of all particles in iteration
t; ¥ and ¢, are uniformly distributed random coefficients in interval [0,1]; and w is an
inertia weight parameter (here, w = 0.7).

Appendix A.3. Asynchronous Learning Factor Changes of PSO (AsyLnCPSO)

To avoid the algorithm of PSO falling into the local optimum, asynchronous learn-
ing factors ¢ and c; are introduced in the PSO, namely AsyLnCPSO. The mathematical
formulae of ¢; and ¢, are defined as follows:

C1_max — €1_min

€1 = C1_max — Xt (A3)

tmax

€2 _max — €2_min

€2 = €2 _max — X t (A4)

tmax
where, ¢1 max= 3, €1 min = 0.5 and ¢2 max= 3, €2 min = 1, thax represent the maximum
number of iterations. In the process of optimization, each learning factor depends on itself.
Particles have high social learning ability and low self-learning ability at the beginning
of optimization. On the contrary, particles have low social learning ability and high self-
learning ability at the end of optimization [35].

Appendix B. Extra Tables

Table Al. Mean = standard deviation and one-way ANOVA results (F-Value and p-Value) of STD-
CTM-0.5 in the §, 8, x and [ frequency bands.

& Frequency Band

© Frequency Band

Feature Seizure Seizure-Free F-Value p-Value Seizure Seizure-Free F-Value p-Value
STD 10.68 & 10.66 2.626 £ 7.62 85.472 9.454 x 1071 91.66 £ 172.09 19.98 +79.76 37.062 24 %1078
SAV 727.74 + 385.36 227.05 £ 167.5 320.896 1.454 x 107> 3106.43 + 2827.25 908.09 + 815.07 159.752 5.67 x 1072
SDC 20115.8 = 10368.1 6682.9 + 4630.7 316.268 5.663 x 1074 26917.5 + 24837.9 908.09 + 815.07 172.344 124 x 1072
STA 6.3249 + 6.502 1.548 + 4.698 80.123 9.296 x 10~18 1249.8 4 2318.1 269.47 +1077.14 33.044 1512 x 1078

SSHD 734.79 £391.5 228.44 £ 168.35 319.049 2.5 x 107 3264.8 + 3015.5 941.19 £ 844.78 154.255 1.122 x 1072
SCC 1252.1 & 667.25 389.1 & 286.8 318.951 2.573 x 105 5591.3 £ 5164.8 1611.7 4 1446.9 154.138 1.126 x 1072
SSVL 147424 £ 7854 458.3 £ 337.7 319.061 2491 x 105 6635.6 + 6128.6 19129 £ 1717.1 154.149 1117 x 1072

CTM-0.3 0.619 £0.19 0.928 + 0.069 525.113 1.393 x 10777 0.86 +0.186 0.991 + 0.029 211.460 5.377 x 1072

CTM-0.4 0.708 & 0.178 0.957 + 0.048 408.887 3.736 x 1079 0.903 +0.153 0.993 + 0.026 137.766 5.638 x 10717

CTM-0.5 0.773 £+ 0.161 0.971 £ 0.037 323.897 6.052 x 10-%° 0.93 +0.125 0.994 + 0.024 96.527 2511 x 10713

o Frequency Band B Frequency Band

Feature Seizure Seizure-Free F-Value p-Value Seizure Seizure-Free F-Value p-Value
STD 56.996 £ 97.713 12.81 £ 48.52 32.280 2453 x 1077 1156.2 4 2083.7 327.1 + 835.6 30.832 4818 x 1078
SAV 2071.1 £1631.3 629.57 + 527.9 126.153 1.502 x 10~3 13547.4 4+ 12057.4 5610.7 £ 4671.2 85.142 1.088 x 10718
SDC 28810.4 + 22047.6 8580.12 4 7112.2 124.175 1471 x 1073 64792.5 + 59132.5 25392.3 + 20699.6 89.382 1.806 x 107%°
STA 215.2 £ 395.9 48.92 £179.9 33.244 1.664 x 1078 170741 + 307823 52644 + 123649 28.643 1.389 x 1077

SSHD 2142.5 £ 1736.4 641.1 £ 536.59 124.421 1.167 x 10~ 16434.1 4= 14936.7 6777.1 £ 5677.7 82.541 3.298 x 10718
SCC 3661.6 £ 2968.9 1095.3 = 917.2 124.411 1.219 x 10~ 27275 4= 24803 11195.7 4= 9358.4 83.143 2.55 x 10718
SSVL 4321.1 £ 3502.5 1293.5 4- 1082.1 124.431 1.214 x 10~ 34545.9 + 31394.8 14276.9 +11977.1 82.233 3.762 x 10718

CIM-0.3 0.793 +0.192 0.982 + 0.033 109.004 1.514 x 10~% 0.811+0.21 0.959 + 0.063 102.430 7.895 x 1072

CTIM-0.4 0.858 + 0.165 0.989 + 0.029 75.944 6.15 x 10728 0.864 + 0.180 0.973 + 0.048 77.163 3.327 x 1077

CTM-0.5 0.898 +0.141 0.992 + 0.026 56.941 9.065 x 102! 0.898 + 0.154 0.981 + 0.038 61.583 3.124 x 10714
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Table A2. Mean = standard deviation, one-way ANOVA results (F-Value and p-Value) and classi-
fication accuracy (ACC) of time-domain features: root mean square ~ clearance indicator in the &

frequency band.

Time-Domain Feature (6 Frequency Band)
Feature Seizure Seizure-Free F-Value p-Value ACC
Root Mean Square 55.057 + 27.982 20.794 + 13.312 2733 1.011 x 10748 0.8031
Peak-Peak Value 545.311 + 234.13 265.673 + 113.991 260.61 1.4 x 1074 0.7972
Skewness 75139.13 4+ 725886.695  31472.762 + 63317.906 0.8116 0.368 0.5984
Kurtosis 4.306 + 1.588 6.373 + 2.863 90.005 1.389 x 1019 0.6902
Shape Indicator 1.32 £ 0.079 1.413 + 0.116 98.715 3.656 x 10~21 0.6817
Crest Indicator 3.245 + 0.408 3.817 £ 0.585 144.977 3.881 x 10~% 0.7025
Impulse Indicator 4.346 + 0.84519 5.574 +1.413 125.735 6.68 x 10726 0.6989
Clearance Indicator 5.343 + 1.279 7.199 £+ 2.289 113.119 1.017 x 10~ 0.6874
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