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Abstract: Within the framework of quantum mechanics, the wave function squared describes the
probability density of particles. In this article, another description of the wave function is given which
embeds quantum mechanics into the traditional fields of physics, thus making new interpretations
dispensable. The new concept is based on the idea that each microscopic particle with non-vanishing
rest mass is accompanied by a matter wave, which is formed by adjusting the phases of the vacuum
fluctuations in the vicinity of the vibrating particle. The vibrations of the particle and wave are phase-
coupled. Particles move on continuous approximately classical trajectories. By the phase coupling
mechanism, the particle transfers the information on its kinematics and thus also on the external
potential to the wave. The space dependence of the escorting wave turns out to be equal to the wave
function. The new concept fundamentally differs from the pilot wave concept of Bohmian mechanics.

Keywords: foundations of quantum mechanics; wave–particle duality; escort wave concept; vacuum
fluctuations; matter wave; phase coupling; classical trajectories; guiding wave; Lorentz covariance

1. Introduction

Shortly after the development of modern quantum mechanics by Werner Heisen-
berg [1] and Erwin Schrödinger [2–6], Max Born [7–10] proposed that the absolute square
of the wave function is equal to the probability of finding the associated particle at this loca-
tion. At the beginning, Born formulated the probability wave hypothesis only for scattering
processes. Subsequently, the scope of the hypothesis was extended to bound states.

Already in 1924, Louis de Broglie [11] presented in their doctor thesis a relativistic
model of particles and coexisting waves. De Broglie’s phase wave has essentially the same
properties as the escort wave presented in this article. However, de Broglie did not account
for the stochastic distortion of the phase wave and thus also of the particle’s trajectory by
the continuous interaction with vacuum fluctuations. The phase wave concept would have
been an excellent basis for further considerations. Unfortunately, de Broglie’s pilot wave
theory published in 1927 [12] was a step backwards because the structure of the pilot wave
was no longer related to the kinematics of the particle. Only decades later, de Broglie vainly
suggested a double solution model where he also introduced stochastic modification of the
trajectories [13–16].

In 1952, David Bohm [17,18] proposed a dual theory with particles and waves as
concrete physical objects. This theory is known as de Broglie–Bohm theory or as Bohmian
mechanics. The escort wave concept, which will be presented in this article, and Bohmian
mechanics fundamentally differ from each other although both theories assume the coexis-
tence of particles and waves. The differences will be discussed near the end of this article
when the escort wave concept has been explained in detail.

In the last one hundred years, countless concepts have been published in order to
explain quantum phenomena. Nearly all combinations of imaginable ideas have been
proposed. Some of these ideas are very promising. Until now, it was not possible to find a
complete solution that was very convincing. For the purpose of better understanding the
new approach, numerous well-known concepts, usually treated in quantum mechanical
text books, also have to be explicitly mentioned in this article.
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2. Fundamental Considerations on the Wave–Particle System

In microphysics, particles exhibit a Janus-faced character. They are strictly localized
in space, but their propagation complies with wave laws. This ambivalence becomes
obvious when particles are diffracted at a double slit aperture. Each particle causes a single
spot on a photographic plate. If the experiment is repeated very often, the pattern on the
photographic plate approaches the results of diffraction experiments with waves.

Although a strictly localized particle can only pass through one of the slits, the prob-
ability distribution conforms to the circumstance that both slits are open. There is no
interaction between individual particles because the diffraction pattern remains unchanged
if the experiment is performed with such small beam intensities that only single particles
are traveling between the source and detection plane. Apparently, even single particles
obey wave rules. This means that each particle has to be accompanied by an extended
physically real wave which provides the particle with the information on the second slit.
Otherwise, particles do not obtain the information that they need to avoid regions where the
partial waves going out from the two slits mutually extinguish themselves by destructive
interference.

The Copenhagen interpretation of quantum mechanics starts from the premise that
the behavior of particles with non-zero rest mass is controlled by a probability wave.
This probability wave is assumed to be a purely mathematical tool without any physical
substance. In this article, it will be shown that it is appropriate to assume that every particle
with non-zero rest mass is accompanied by a real wave. The escorting wave emerges from
the interplay of massive particles with fluctuating matter waves ubiquitously present in
vacuum due to the continual creation and annihilation of short-living particles.

3. Emergence of the De Broglie Wave Length

The wave four-vector
Kµ = (ω/c, k, 0, 0) (1)

characterizes a plane wave with respect to its angular frequency ω and its wave number
k. For matter waves accompanying massive particles, the norm squared of the wave
four-vector is non-zero. It can be written in the form

KµKµ = ω2/c2 − k2 = Ω2/c2 (2)

with the rest or minimum angular frequency Ω. The rest frequency Ω is coupled to the rest
mass of the particle m by the relation

mc2 = h̄Ω. (3)

This relationship arises as a result when the momentum four-vectors of particle and wave
are compared.

The angular frequency of a matter wave is given by

ω =
√

k2c2 + Ω2. (4)

Thus, the phase velocity is

vp =
ω

k
=
√

c2 + Ω2/k2 > c (5)

and the group velocity is

vg =
dω

dk
=

2kc2

2
√

k2c2 + Ω2
=

kc2

ω
=

c2

vp
< c. (6)
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The group velocity denotes the velocity of a propagating wave packet and thus also the
maximum velocity of a signal transported by the matter wave. In accordance with special
relativity, the group velocity of matter waves is always smaller than the speed of light.

In the following, the laboratory system P and the system P′ are used. P′ is moving
with the velocity v with respect to the laboratory system P. Without loss of generality, the
considerations will be restricted to the case in which the velocity v = (v, 0, 0) is oriented in
parallel to the x axis.

Figure 1 shows the coordinate systems of the two reference frames P and P′. The
origins of the two coordinate systems are chosen to be equal for t = t′ = 0. Traditionally,
the ct axis of the laboratory system P is plotted in the vertical direction and the x axis
is plotted in the horizontal direction. All events on the x axis are simultaneous in the
laboratory system.










0 x

x'

*

*c

c

ct ct'

Figure 1. Minkowski diagram of a matter wave being at rest in the reference frame P′ = (x′, ct′).
The x′ axis and the two lines parallel to the x′ axis represent three wave fronts. The phases of two
adjacent wave fronts differ by a wave period cτ∗. This means that, at the three wave fronts, the wave
oscillates in phase. For an observer in the laboratory system P = (x, ct), the matter wave exhibits a
spatial modulation. This modulation emerges from the relativistic tilting of the simultaneity plane.
The wave length λ of the matter wave is traditionally called a de Broglie wave length.

The axes ct′ and x′ of the system P′ are both tilted by the angle α towards the bisecting
plane ct = x. The ct′ axis is described by the equation ct = xc/v and the x′ axis is described
by the equation ct = xv/c. This means that the two axes have reciprocal slopes. All events
on the x′ plane are simultaneous in the system P′. The relativistic effect of the planes of
simultaneity being tilted with respect to one another must already be taken into account
for low velocities because the leading term of the power series expansion is proportional
to v/c.

The x′ axis and the two lines parallel to the x′ axis represent three wave fronts of a
plane matter wave. The two lines above and below the x′ axis are described by

ct = x
v
c
+ cτ∗ and ct = x

v
c
− cτ∗ (7)

where τ∗ denotes the wave period measured in the laboratory system. As the phases of
adjacent wave fronts differ by a wave period, the oscillations at all locations of the three
wave fronts are in phase.

The de Broglie wave length of the escort wave is given by the distance of the crossings
of two consecutive wave fronts with the x axis. As the middle phase line crosses the x axis
at the origin, the de Broglie wave length is given by the intersection of the lower phase
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line with the x axis. If one inserts the constraint ct = 0 into the formula for the lower wave
front, one obtains the x coordinate of the intercept of x axis and the wave front

λ = cτ∗
c
v

. (8)

This relation can be easily checked because the ct axis as well as the x axis are subdivided
in units of cτ∗. In Figure 1, the velocity v was chosen to be v = c/6. Therefore, the de
Broglie wave length measured in the laboratory system amounts to 6 cτ∗. The geometrical
derivation of the de Broglie wave length clearly shows that the de Broglie wave length
emerges from the relativistic tilting of the simultaneity plane.

4. Conformance of the Kinematics of Particle and Wave

The rest systems of a particle and the matter wave accompanying it agree with each
other. As the matter wave has a limited coherence length, it has the character of a wave
packet. The particle is usually located in the center of the wave packet. The feature that
the particle is surrounded by the wave is a scalar property. Thus, this attribute holds in all
frames of reference.

By using Equation (3), the de Broglie wave length given in Equation (8) can be trans-
formed into the well-known expression

λ = cτ∗
c
v
=

2π

γΩ
c2

v
=

2πh̄
γh̄Ω

c2

v
=

h
γmc2

c2

v
=

h
γmv

(9)

with the frequency γΩ of the matter wave measured in the laboratory system.
If the particle is smoothly accelerated, the wave accompanying it is also accelerated.

Thus, even under the influence of varying external potentials, the momenta of the particle
and accompanying wave packet continue to be equal. The particle and wave packet follow
the same trajectory. Each particle is permanently escorted by an extended wave with a
quite large but limited coherence length. Locally, trajectories and wave fronts always have
reciprocal slopes.

An escorting wave must not only contain the information on the velocity of the particle
but also of the higher derivatives of the trajectory. In fact, the potential must be infinitely
differentiable. The information on the higher derivatives can be incorporated into the wave
because the wave is extended in space. Thus, the de Broglie wave length changes within the
wave packet if the particle is accelerated. The flux continuity condition leads to a variation
of the wave amplitude. At each location, the particle and wave have the same kinetic
energy. Traveling on its orbit, the particle will generally be far from the turning points.
Nonetheless, the wave will be reflected at these points because its necessarily non-negative
kinetic energy reaches the zero line.

The particle and escorting wave move in unison until an abrupt acceleration—for
example, due to a collision with another particle—breaks up the close phase coupling. Sub-
sequently, the mutual influence is suspended. The wave immediately loses its guiding role
and is no longer stabilized by the particle. Therefore, such a process is often called the col-
lapse of the wave function. Actually, only the information transfer is suddenly interrupted.
The wave packet does not collapse but it slowly disappears in the ocean of fluctuating
waves and the particle immediately starts to build up a new wave accompanying it.

Extended molecules such as C60 buckyballs [19] also show the well-known interference
pattern after being diffracted, for instance, by a double-slit aperture. Obviously, the phase
coupling condition can also be applied to molecules. If a molecule and its accompanying
wave are at rest, the wave shows no modulation in space and all atoms oscillate in phase.
From the viewpoint of a moving observer, the wave exhibits a modulation in the direction
of the relative motion and the oscillating atoms are no longer in phase because the plane of
simultaneity is tilted. Nonetheless, the phase matching holds for each individual atom.
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5. Formation of Waves Accompanying Massive Particles

After having discussed the close coupling of the particle and accompanying wave,
the crucial question is: where does the wave come from and how is it possible that each
particle with non-zero rest mass is accompanied by a wave?

The escort wave cannot be supplied out of the energy reservoir of the particle. The
energy conservation demand can only be satisfied when the particle synchronizes the vac-
uum fluctuations nearby by adjusting the phases of the fluctuations. The phase adjustment
of the vacuum fluctuations by particles with non-vanishing rest mass is the base of all
quantum mechanical phenomena.

All spontaneous ordering processes are energy-driven. Therefore, it stands to reason
that the formation of ordered waves accompanying massive particles is also energy-driven.

With the help of statistical mechanics, the physical phenomena of multi-particle
systems can be described. A multi-particle system strives for a state with a minimal free
energy F. Thereby, the entropy S which is a measure for the disorder of a system must not
decrease. A reduction in the energy is usually combined with the reduction in the disorder.
However, when the wave–particle system includes the abundance of non-synchronized
vacuum fluctuations, the entropy may nonetheless slightly increase.

The presence of a massive vibrating particle is a premise for the formation of an
ordered wave. The frequency of the wave Ω is fixed to the mass of the particle m by the
relation h̄Ω = mc2. The assertion that the wave–particle system lowers its free energy
when the phases of the fluctuating waves are adjusted to each other cannot be proven here.
Hopefully, specialists on statistical physics can confirm this hypothesis in the near future.
It is certain that the calculations must also consider special relativity.

A particle at rest and the wave accompanying it would be in equilibrium if the
amplitude of the wave and its phase did not depend on space coordinates. This status
can never be fully achieved. The equilibrium is always disturbed by the interaction with
vacuum fluctuations. It may be helpful to define a near, an intermediate and a remote zone.
In the near zone, the amplitude and phase of the oscillations practically do not depend on
space coordinates. In this region, the wave is nearly coherent. In the far zone, there are
only stochastically fluctuating waves. In the intermediate zone, vacuum fluctuations are
absorbed in the structured escort wave if the frequency and wave vector nearly agree with
the frequency and wave vector of the already stabilized escort wave. The integration of new
vacuum fluctuations continually causes distortions of the already fairly well-organized
escort wave. As the total energy and total momentum of the escort wave are much larger
than the energy and momentum of newly incorporated vacuum fluctuations, the fusion
will only cause slight modifications of the escort wave and of the particle’s trajectory.

6. Why Does the Schrödinger Equation Yield Proper Results?

Many problems in atomic physics concern the motion of particles in time-independent
electric potentials. As a consequence, the total energy of the particle has the form

E = mc2 +
p2

2m
+ V(r) = mc2 +

p2

2m
+ V(r) = mc2 + Ekin + Epot. (10)

As the kinetic energy is expressed by the squared momentum term, the direction of the
particle’s velocity is not relevant. Thus, the kinetic energy is equal for the particle moving
in either direction.

Schrödinger aimed to formulate the energy conservation condition for a wave govern-
ing the kinematics of the particle. For their consideration, the character of the wave is not
relevant. Therefore, the Schrödinger equation can not only be applied for the virtual wave
function but also for the real escort wave. The energy conservation law of the escort wave
emerges from the energy conservation law of particle (10) when energy E and momentum
p of the particle are replaced by the energy E = h̄ω and momentum p = h̄k of the wave.
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The energy and momentum of the wave are extracted from the escorting wave by applying
the operators

ih̄∂/∂t and − ih̄∇. (11)

However, remains to be explained why the energy conservation equations for the particle
and accompanying wave contain the same potential energy term V(r).

This is not a trivial question. In the case of the hydrogen atom, the wave function must
be neutral. Otherwise, one would observe shielding effects. This means that the Coulomb
potential can have no direct influence on the wave function. In the case of the harmonic
oscillator, the problem is much more sophisticated. The total energy of diatomic molecules
depends on the configurations of all molecular electrons (at least those of the valence shells).
If one wants to determine the potential curves, the configurations of the electrons must be
calculated by sophisticated (quantum mechanical) calculations for all internuclear distances.
The space-dependent force equally acting on the two atoms is derived from the total energy
of the molecule as a function of the internuclear distance.

Neither in the case of the hydrogen atom nor in the case of the harmonic oscillator
can the wave directly obtain the information on the potential. Actually, the information
on the particle’s kinematics can only be transferred to the wave via the phase-coupling
mechanism. Caused by the tilting of the simultaneity plane, the local momentum of the
particle is encoded in the de Broglie wave length of the wave. This mechanism only works
when the particle really follows (stochastically modified) classical trajectories. Only Louis
de Broglie [11] has proven that the wave obtains the information on the potential via the
phase coupling mechanism. This consideration has not been taken up again.

After having replaced the energy and momentum of a particle by the corresponding
operators and after having realized that the particle and accompanying wave are subjected
to the same potential, the energy conservation law expressed for particles by Equation (10)
corresponds to the energy conservation law for the escorting wave Ψ(r, t)

ih̄
∂

∂t
Ψ(r, t) =

(
mc2 − h̄2

2m
∆ + V(r)

)
Ψ(r, t), (12)

Except for the rest energy term mc2, this equation is equal to the time-dependent Schrödinger
equation. When the potential does not depend on time, the wave Ψ(r, t) can be written in
the form ψ(r)e−iωt. The probability flux of a traveling wave is given by the wave intensity
|ψ(r)|2 times the group velocity vg. As the probability flux must be continuous, the wave
amplitude ψ(r) is space dependent.

After replacing the term ih̄∂Ψ(r, t)/∂t in Equation (12) by h̄ωψ(r)e−iωt = Eψ(r)e−iωt,
the time dependence factor e−iωt can be omitted on both sides of the equation. Finally, the
time-independent eigenwert equation has the form

(E−mc2)ψ(r) =
(
− h̄2

2m
∆ + V(r)

)
ψ(r) = Hψ(r) (13)

with the Hamilton-operator H. This equation is identical to the time-independent Schrödinger
equation. As has been argued for the particle, the squared momentum term representing
the kinetic energy of the wave is equal for the wave moving in either direction. This means
that the kinetic energy of the wave is also given correctly for standing waves.

One can only understand the basic mechanism of quantum mechanics when a fre-
quency is attributed to the wave function. As the wave function does not depend on
time, one cannot comprehend the phase coupling of the particle and wave. In general,
the frequency of the matter wave ω = E/h̄ is several orders of magnitude larger than
the frequency usually associated with the Schrödinger wave function ωS = (E−mc2)/h̄.
The omission of the constant rest energy term does not affect the energy differences and
the transition probabilities between different quantum states. Therefore, the Schrödinger
equation provides correct results for practically all quantum phenomena.
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However, the omission of the rest energy term has serious logical consequences. The
wave has lost its invariance with respect to Lorentz transformations and the de Broglie
wave length can no longer be derived from special relativity. If the de Broglie wave length
λ = h/(γmv) is simply introduced as an empirical relation coupling the wave length of the
wave function to the momentum of the particle, the assertion that quantum mechanics is
based on special relativity is concealed. The compliance of the energy and the momentum
of the particle and wave is lost. The particle and wave no longer move in unison. This may
be the reason why, until now, the wave function could not be associated with a real wave
and has been introduced as a purely mathematical tool.

In the introductory sections of quantum mechanics text books, one should use the
time-dependent Equation (12) instead of the time-independent Schrödinger Equation (13).
On the basis of this equation, one should explain the relativistic interplay of massive
particles and the real matter wave packets accompanying them. First of all, it is important
to explain the formation of the escorting wave and the phase coupling of particle and matter
wave in order to understand how the wave obtains the information on the kinematics of
the particle. Moreover, it should be made clear that the de Broglie wave length emerges
from the relativistic tilting of the simultaneity plane. Only after the escort wave concept of
quantum mechanics has been fully understood can one go over to the time-independent
Schrödinger equation in the subsequent sections of the text books.

7. Diffraction and Scattering Processes

When a stream of identical particles hits an aperture, the probability of finding par-
ticles far behind the aperture shows a characteristic diffraction pattern. The well known
diffraction pattern of a double slit aperture is shown in Figure 2. The wave length associated
with the particle is the de Broglie wave length. The same intensity distribution emerges
when the experiment is performed with the light of the same wave length. Obviously,
massive particles obey wave laws. The interference pattern of a single slit is equal to the
envelope function. The double slit interference causes the fragmentation of the broad peaks
of the envelope function into several narrow peaks.

The probability density depicted in Figure 2 comes from the interaction of particle and
escorting wave. The trajectory of the particle and the structure of the wave influence each
other. Sometimes, the information flux may be predominantly directed from the particle to
the wave. Sometimes, it also may be predominantly directed from the wave to the particle.
Depending on the circumstances, one of the two mechanisms prevails. Before reaching
the aperture, the particle is moving on a straight line. Thus, the escort wave takes on the
form of a plane wave. At the double slit aperture, the plane wave is diffracted according to
Huygens’s principle. Behind the aperture, the diffracted wave guides the particle.

Just behind the aperture, the wave still has a quite uniform intensity distribution. In
this region, the stochastic influence of the vacuum fluctuations leads to a broad probability
density. The spreading of the probability density is comparable with the diffraction pattern
of a single slit. With increasing distance from the aperture, the diffracted wave develops a
more pronounced intensity distribution. In the Fresnel diffraction zone, the wave intensity
at the minimum locations is still larger than zero. In this region, it is still possible that
particles change from one peak to an adjacent one. This is no longer possible in the
Fraunhofer diffraction zone, where the minima reach zero intensity. Far from the aperture,
the particles move straight along the ridges of the intensity distribution. The velocity of
the particles agrees with the radial group velocity of the escort wave. This means that the
particle and associated wave packet reach the detection plane at the same time.

As the free energy of the wave–particle compound reduces if the particle enters regions
with higher wave intensity, the particle will tend to enter these high-intensity regions. The
stochastic velocity component prevents all particles piling up in the intensity maxima.
From the experimental data, one can conclude that the probability of finding the particle
will be proportional to the wave intensity. Thus, the probability wave hypothesis of Born
holds for diffraction processes.
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Figure 2 does not show the intensity of the matter wave. Just behind the aperture the
wave intensity quickly decreases. The particle is stochastically embedded in one of the rays
of the diffracted wave. On its way to the detector plane, the particle will complement its
escort wave by building up a new plane wave. This plane wave has no guiding function.
Only the sparse diffracted wave has a weak but still non-vanishing steering influence.

The same considerations hold for scattering processes. The incoming particle is
accompanied by a plane wave. Due to the interaction with the scattering object, an outgoing
spherical wave arises. As in the case of diffraction processes, the probability density of
finding the scattered particle is proportional to the intensity of the scattered spherical wave,
thus again confirming Born’s probability wave hypothesis.

Figure 2. The angular dependence of the probability of finding particles after being diffracted on a
double slit aperture. The distance between the center lines of the two slits was chosen to be five times
larger than the slit width. The envelope function is equal to the diffraction pattern of a single slit. The
horizontal axis is subdivided in angular degree units.

8. Harmonic Oscillator

In contrast to the unidirectional motion of free particles, bound particles move back
and forth. As a consequence, the accompanying wave has to have two components with
opposite group velocities. The particle is in phase with the partial wave traveling in the
same direction. The traveling wave with opposite group velocity does not interact with the
particle because the Doppler frequency shift prevents the phase coupling of the particle
and wave.

In general, two atoms attract each other at large distances. At low distances, they
repel each other. In the neighborhood of the equilibrium distance, the potential can be
approximated by a harmonic oscillator potential V(x) = kx2/2 with the spring constant k.
Under the assumption that one of the atoms is much heavier than the other one, the heavy
atom is practically fixed in space. By deriving the total energy of the molecule with respect
to the internuclear distance, one obtains the space-dependent force which accelerates or
decelerates the light atom. Thus, the amplitude and the frequency of the atomic vibration
are well-defined. In contrast, the escorting wave can only obtain the information on the
potential from the kinematics of the light atom.

In the Minkowski diagram of Figure 3, the trajectories of a particle and wave fronts of
the escorting wave are shown for the n = 3 state of the harmonic oscillator. The steeply
rising curves represent four possible trajectories of the particle. Together, they form a full
harmonic vibration.

The gently rising and gently falling continuous curves indicate the wave fronts of the
traveling waves associated with the back and forth motion of the particle. Adjacent wave
fronts differ by cτ∗. The dashed curves in between are wave fronts with opposite phases.
The gently rising wave fronts are associated with the partial wave moving to the right.
Accordingly, the gently falling wave fronts belong to the partial wave moving to the left. In
fact, an infinite number of possible trajectories can be drawn in the figure because each site
of the base line can be the starting point of two trajectories, with one to the left and one to
the right. All these trajectories would be in phase harmony with the wave.



Entropy 2022, 24, 1535 9 of 16

As can be seen in the Minkowski diagram of Figure 1, the slope of the trajectory of
a particle moving with the velocity v in the laboratory system is c/v and the slope of the
associated wave front is v/c. This means that the trajectory and associated wave fronts
have reciprocal slopes. This relationship persists when the particle is accelerated. Thus, at
each crossing of a trajectory with an associated wave front, the two curves have reciprocal
slopes. In Figure 3, these crossings are indicated by small circles.

 

c

- x x- c c

ct

00 0
* *

*

Figure 3. Trajectories of a harmonically vibrating particle and wave fronts of the wave escorting it.
Both axes of the Minkowski diagram are subdivided into units of cτ∗.

The interference of the two traveling waves leads to a standing wave. The three
continuous vertical lines in Figure 3 indicate the positions of the nodes and the four dashed
vertical lines indicate the positions of the antinodes.

It makes sense to compare the intensity of the matter wave with the probability of
finding the particle at a given location. The movement of a harmonically vibrating particle
is described by

x(t) = x0 sin(ωV t) (14)

with the angular frequency of the molecular vibration ωV = 2π/TV . For a given amplitude
x0 , the energy of the particle is E = kx2

0
/2.

When ∆t indicates how long the particle stays in the interval [x, x + ∆x], the classical
probability C(x) of finding the particle in this interval is given by

C(x)∆x =
∆t

TV /2
. (15)
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Using the differentials dt and dx instead of ∆t and ∆x, Equation (15) can be written in
the form

dx/dt =
2

C(x)TV

. (16)

Differentiated with respect to t, Equation (14) has the form

dx/dt = x0 ωV cos(ωV t) = 2 π
√

x2
0
− x2

0
sin2(ωV t)/TV = 2π

√
x2

0
− x2/TV . (17)

The comparison of Equations (16) and (17) leads to the classical probability density

C(x) =
1

π
√

x2
0
− x2

(18)

with weak singularities at the turning points.
The probability of finding the particle between the two turning points −x0 and +x0 is

equal to unity, as can be concluded from the integral

∫ +x0

−x0

C(x)dx =
1
π

∫ +x0

−x0

1√
x2

0
− x2

dx =
1
π

arcsin(x/x0)

∣∣∣∣+x0

−x0

= 1. (19)

Experimentally, it is not possible to determine the probability density of a bound
particle. A scattering experiment only provides the absolute square of a matrix element,
which contains the wave functions of the initial and final states in addition to the transition
operator. Thus, one does not test the probability density but the wave function of the
examined molecule.

If the trajectories are deterministic, the probability density outside the turning points
is equal to zero. This behavior is not adequate, because the tunnel effect proves that
the probability density of particles beyond the turning points is not equal to zero. The
tunneling probability decreases exponentially with the width and the height of the tunnel
barrier. Therefore, in the case of the harmonic oscillator, the probability density must also
exponentially decrease outside the classical turning points. This finite probability density
can only be caused by the disturbance of the particle’s trajectory by the vacuum fluctuations.
Here, this stochastic effect is approximately accounted for by convoluting the classical
probability density C(x) with the normal distribution N(x), which is characterized by the
standard deviation σ

N(x) = e−(x/σ)2/2/(
√

2πσ). (20)

The more realistic probability density W(x) resulting from the convolution of the classical
probability density and the normal distribution is given by the integral

W(x) = (C ∗ N)(x) =
∫ +∞

−∞
C(x− x′)N(x′)dx′. (21)

The standard deviation of the normal distribution σ was chosen to be 0.65 cτ∗ in order to
correctly describe the tails of the probability density distribution. Escort wave and wave
function optimally fit together when the energy E of the particle is chosen to be 3 h̄ωV with
the vibrational frequency ωV . On the other hand, the energy of the n = 3 quantum state is
3.5 h̄ωV . It is quite likely that the energy mismatch of 0.5 h̄ωV has its origin in the stochastic
velocity component of the particle.

The resulting probability density of finding the particle is shown in Figure 4 by a
dashed curve. The intensity of the n = 3 wave function is shown by a continuous curve.
The two curves are clearly different. The wave function squared has three zeros whereas
the probability density of finding the particle has no zeros at all. The periodicity of the
wave function squared with the de Broglie wave length emerges from the interference
of the counter-propagating traveling waves. The interference effect does not affect the
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probability density of the particle. The striking difference of the wave function squared and
the probability density proves that the Copenhagen interpretation of the wave function is
not adequate for excited quantum states.

In Figure 5, Schrödinger’s wave function (continuous curve) and the approximated
space dependence of the escort wave (dashed curve) are compared. The modulus of the
escort wave was chosen to be equal to the square root of the probability density shown by
the dashed curve in Figure 4, whereas the phase shift is taken from the space-dependent
de Broglie wave length of the particle. The excellent agreement of the two curves proves
that convoluting the classical probability density with a normal distribution provides a
good approximation of the probability density. It has to be emphasized that the space
dependence of the escort wave shown by the dashed curve in Figure 5 was exclusively
derived by means of classical and statistical physics. Probably, the two curves in Figure 5
will fully agree when the exact probability density is determined by averaging over all
stochastically modified trajectories. The agreement of the wave function with the space
dependence of the escort wave, which is solely deduced from classical considerations,
supports the assumption that massive particles are always strictly localized and move on
continuous trajectories.

x

W(x) P(x)

- 0

(c )0.5 * - 1

 c c* *

Figure 4. The absolute square of the n = 3 state wave function P(x) = ψ(x)ψ∗(x) of the harmonic
oscillator (continuous curve) in comparison with the corresponding probability W(x) of finding the
particle (dashed curve). The stochastic velocity component is simulated by convoluting the classical
probability density with a normal distribution. The width of the normal distribution was chosen to
be σ = 0.65 cτ∗. The dashed vertical lines indicate the classical turning points.

 � � �

x

(x)

- 0

( c )0.5 *
- 1/2

 2c 2c* *

Figure 5. Exact and approximated space dependence of the n = 3 state of the wave accompanying
a particle moving in a harmonic oscillator potential. The solid curve shows the solution of the
Schrödinger equation. The dashed curve shows the approximated space dependence of the escort
wave. The modulus of the escort wave is equal to the square root of the approximated probability
density shown in Figure 4, whereas the phase is derived from the space-dependent de Broglie wave
length. The dashed vertical lines indicate the classical turning points.
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The stochastic variation of the particle’s velocity is highly relevant for the shape of the
ground state wave function. Without the influence of vacuum fluctuations, a particle in
ground state would permanently stay at rest in the potential minimum and the energy of the
ground state would be zero. Actually, this equilibrium is disturbed by the interaction with
vacuum fluctuations. Edward Nelson [20] derived the formalism of quantum mechanics
from the statistical mechanics of point particles without presuming the existence of waves.
After having determined the density distribution of particles, Nelson formally derived a
wave which was equal to the ground state wave function. Thus, for ground states, statistical
mechanics provides the probability densities and the ground state energies known from
quantum mechanics. The considerations of Nelson are restricted to the ground state because
the wave-function squared is non-zero everywhere. For excited states, this precondition is
not fulfilled when the probability density is assumed to be proportional to |ψ|2. In the escort
wave concept, the probability density is smooth and has no zeros. Nelson’s consideration
can also probably be applied to excited states when the probability density of the escort
wave concept is used.

9. Atomic Hydrogen

The quantum states of atomic hydrogen are characterized by three quantum numbers,
namely the principal, the orbital and the magnetic quantum numbers n, l and m with
n > l ≥ |m|, respectively. The wave functions associated with the quantum states of
atomic hydrogen have been extensively discussed in text books. However, the escort wave
concept requires that the electron orbits are also considered. As the Coulomb potential is
mathematically equivalent to the gravitational potential, the classical orbits must comply
with Kepler’s laws of planetary motion. First, the orbits are ellipses with one of the focal
points in the center of the 1/r- potential. Second, for each orbit the angular momentum
is constant. Third, the squares of the circulation periods behave like the cubes of the
semi-major axes of the orbits. Kepler’s laws are exactly fulfilled for atomic hydrogen. For
hydrogen-like atoms with single electrons in the valence shell, they are still approximately
valid. However, if several electrons are circling the nucleus in the valence shell, the electrons
strongly interact with each other. Thus, the correlated trajectories distinctly deviate from
the elliptical shape.

Because of its charge, the electron is subjected to the Coulomb potential. An extended
wave carrying a distributed charge would shield and thus modify the Coulomb potential.
Such a shielding effect has never been observed. Therefore, the escort wave must be neutral.
Indeed, a neutral wave cannot be influenced by the Coulomb potential. This conflict can
only be solved by assuming that the wave obtains information on the potential from the
kinematics of the particle via the phase-coupling mechanism.

For l = 0, the electron orbits degenerate into straight lines. Planets or comets moving
in the solar system with exactly zero orbital momentum would hit the sun on the first pass.
In the case of atomic hydrogen, such trajectories exist because the electron will not react
with the proton. Moreover, the electron will normally not hit the tiny proton because its
trajectory is always disturbed by the interaction with vacuum fluctuations.

In contrast with classical physics, the orientation of consecutive electron orbits will
incessantly change due to the stochastic velocity component. For l = 0, this misalignment
of consecutive orbits may be quite distinct, because electrons are strongly accelerated in the
vicinity of the nucleus. This acceleration sensitively depends on small deviations of the
trajectory. On average, the electron will cover all possible directions leading to a spherically
symmetric probability density.

For l = 0, the escort wave is a standing wave, which consists of two spherical waves
traveling inwards and outwards. The electron is only in phase with one of the traveling
waves. If the electron’s velocity is opposite to the group velocity of the traveling wave,
the Doppler shift prevents the electron and wave from interacting. As the amplitudes
of the counter-propagating waves are counter-rotating in the complex plane, the sum of
the two traveling waves has the same phase everywhere. This phase can be arbitrarily
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chosen to be zero. Analogously to the harmonic oscillator case, the intensity varies between
|ψ(r)|2 and zero, where |ψ(r)|/2 is the common amplitude of the traveling spherical waves.
The standing wave has n− 1 nodes. The probability of finding the electron is reciprocally
proportional to the electron’s velocity. As the trajectories of the electron are continuous,
there cannot be spheres with vanishing probability density. As a consequence, Born’s
probability hypothesis must be wrong for excited s-states.

For l > 0, the electron moves on elliptical orbits. The attractive Coulomb potential is
modified by a repulsive centrifugal term L2/(2mr2) with the angular momentum squared
L2 = l(l + 1) h̄2. With the increasing orbital quantum number l, the eccentricity of the
elliptic orbits decreases. The number of spherical node surfaces in the radial intensity
distribution reduces to n− l − 1.

Without an external magnetic field, the electron orbits continually change their orien-
tation due to the interaction with vacuum fluctuations. Therefore, on average, the electron
density is spherically symmetric over time. By applying an external magnetic field, the
z axis of the spherical coordinate system is aligned in parallel to the field direction, thus
leading to a cylindrically symmetric probability density.

For m = 0, the inclination angle of the elliptical orbit is equal to 90◦. The electron
periodically moves from the north pole region to the south pole region and vice versa.
With an increasing |m|, the inclination angle, which is equal to the reversal angles ϑmax and
−ϑmax, decreases. For |m| = l, the electron would move exactly in the equatorial plane if
the stochastic velocity component were disregarded. The sign of m indicates the rotational
direction.

As long as l > |m| there are two partial waves with opposite group velocities in the
direction of the polar angle ϑ which together form a standing wave with l−m nodes. Here,
the escort wave concept is also in explicit contradiction to the Copenhagen interpretation.
The probability density of finding the electron is not zero when the wave intensity is zero.

With respect to the azimuthal angle ϕ, the motion of the electron is unidirectional.
Therefore, the ϕ-component of the wave function eimϕ is complexly valued without any zero
intensity surfaces. Due to the conservation of the angular momentum mv⊥r, the tangential
angular velocity v⊥ of the electron changes with its distance from the proton. As the de
Broglie wave length is reciprocally proportional to the velocity of the electron, the tangential
component of the de Broglie wave length is proportional to the electron–proton distance.
This means that, with respect to the wave function, it does not matter where the aphels and
perihels of the orbits are located or, in other words, the orientation of the semi-major axis of
the elliptic orbits has no influence on the angular dependence of the escort wave.

The electron on its elliptical orbit induces a magnetic moment which causes a slow
precession of the elliptical orbits with respect to the magnetic field. This precession leads to
a fine structure splitting of the magnetic sublevels, but does not significantly change the
structure of the escort wave.

In the harmonic oscillator case, it was not possible to determine the actual position of
the light atom on its way back and forth. This information gap enlarges for movements in
three dimensions. Not only is the location of the hydrogen electron unknown, but so is its
actual trajectory. For a given quantum state, the electron can move on an infinite number of
trajectories.

A continuous trajectory is a necessary condition for the formation of the matter wave.
Otherwise, the wave does not obtain the information about the potential. Obviously, both
the trajectory and matter wave are real and indispensable elements of microphysics in order
to understand the quantum mechanics. The escort wave concept does not substantially
enlarge our knowledge about the electron’s movement. However, it is now irrefutable that
microscopic particles move on continuous approximately classical trajectories.

10. Comparison of Bohmian Mechanics and Escort Wave Concept

The escort wave guides the associated particle. In Bohmian mechanics [17,18,21], the
pilot wave, originally proposed by Louis de Broglie [12], also has a guidance function.
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Therefore, it is necessary to discuss the differences between the two concepts. Bohm
transformed the Schrödinger equation into a hydrodynamic equation. He concluded that
the flux distribution of the wave function locally agrees with the flux distribution of the
associated Bohmian trajectories.

The flux is non-zero when the traveling wave associated with the moving particle
is complexly valued as in the case of the ϕ-dependence of the atomic hydrogen wave
functions with m > 0. In this case, Bohmian mechanics rightly postulates that the electron
is moving on a circular orbit with respect to the azimuthal angle ϕ.

The main problem of Bohmian mechanics is the fact that the probability flux of real-
valued wave functions is zero everywhere. This is the case for the harmonic oscillator and
for atomic hydrogen wave functions with zero magnetic quantum numbers. Therefore, par-
ticles described by a real-valued wave function are assumed to be at rest. As a consequence,
the electron must be prevented from falling down to the nucleus by introducing a non-local
quantum potential. The unrealistic properties of Bohmian trajectories have already been
discussed in the literature [22,23].

In sharp contrast to Bohmian mechanics, the escort wave concept interprets the real-
valued standing wave as a superposition of two waves traveling in opposite directions.
Thus, the flux components of the two traveling waves add up to zero. Summarizing the
movements in the radial, polar and azimuthal directions, the hydrogen electron moves
on elliptic orbits. Thus, the electron orbits in the Coulomb potential are stabilized by the
centrifugal force. It is not necessary to postulate quantum potential. The electron orbiting
the proton and the planets circling around the sun move on identical orbits. However, the
electron orbits are quantized with respect to the energy and angular momentum because
the escorting wave has to fulfill boundary conditions. Thus, the presence of the escorting
wave does not distinctly modify the classical orbits, but enforces quantization effects typical
for microphysics.

The most striking advantages of the escort wave concept are that massive particles
approximately move on classical trajectories and that the wave function is equal to the
space dependence of a rea wave accompanying the particle.

There is another argument as to why Bohmian mechanics is in conflict with experimen-
tal findings. If atomic electrons would be at rest, neutral atoms would be associated with
strong dipoles. The interaction of two dipoles is much stronger than usual internuclear
forces. For atom–atom collisions, such dipole–dipole interactions were not observed. In
contrast to Bohmian mechanics, the escort wave concept always predicts orbits circling
the nucleus with high frequency. Thus, on average, atoms have no net dipole moments
over time.

11. Character and Structure of Escort Waves

As the wave function is commonly assumed to be a purely mathematical tool without
a concrete physical counterpart, the character and the structure of the escort wave were not
examined until now. Hence, the considerations in this section are rather speculative.

The transition from a quantum state to a lower one always leads to the emission of a
photon. On the other side, the absorption of a photon leads to the excitation of a quantum
state. In both cases, the photon energy is identical to the energy difference of the two
quantum states involved. The strong linkage of photons and quantum transitions suggests
that the escort wave is also an electromagnetic wave. However, photons and matter waves
behave differently. Whereas photons in free space have no rest system and are always
traveling with the speed of light, matter waves have a rest system and their group velocities
are always smaller than the speed of light.

Electromagnetic waves with a rest system were only observed when there are metallic
or dielectric surfaces nearby. One can hope that vibrating particles also support the forma-
tion of stationary electromagnetic waves. Until now, such systems have not been studied.
The escort wave concept of quantum mechanics assumes that particles with mass m are ex-
ecuting periodic oscillations with the frequency Ω = mc2/h̄. From the Maxwell equations,
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one can conclude that the matter wave must also exhibit a modulation in space with the
Compton wave length λC = h/(mc). Except for the Compton effect itself, this spatial mod-
ulation seems to induce no significant effect, probably because the vibrational amplitude of
the particle is comparable with the Compton wavelength. In contrast, there are countless
observable effects associated with the de Broglie wave length λ = h/(γmv) ≈ h/(mv).

Excited atoms principally decay to lower quantum states by emitting photons. There-
fore, these atomic states are not in equilibrium with the vacuum state. Actually, the emission
rate along a decay chain from a Rydberg state to a low lying excited state is comparable
with the emission rate derived from Larmor’s formula [24]. Sometimes, it is argued that
electrons cannot move on Kepler orbits because accelerated electrons irradiate energy and
thus destabilize the electron orbits. De facto, the emitted radiation is as large as predicted
by Larmor’s formula. However, the energy is emitted in quantum form. Obviously, the
presence of the escorting wave stabilizes the electron orbit for a while, until after all the
quantum state decays. Only the ground state with its stochastic movement is in equilibrium
with the vacuum fluctuations.

The field configurations of matter waves are probably similar to the configurations of
the electromagnetic fields in resonant cavities and in wave guides at the cutoff frequency.
Light waves also comprise waves with circular energy flux. Thereby, one has to discriminate
orbital and spin angular momenta [25]. In the case of orbital angular momenta, the
orientation of the fields is rotating. In the case of spin angular momenta, there are helical
wave fronts. Such helical waves can be generated by spiral phase plates. As these waves
carry spin and angular momenta, the escort waves of particles with non-zero spin are most
probably of this type. The relative phases of oscillating electric and magnetic fields must
be different for different spins. At least the Poynting vector must continually change its
direction. However, on average, the energy flux associated with a particle at rest must be
zero over time.

The spin is a property not only of the particle but also of the escorting wave. Oth-
erwise, one cannot understand Pauli’s exclusion principle, which says that two electrons
with the same spin cannot occupy the same quantum state. Obviously, the presence of a
second electron with an identical set of quantum numbers destroys the symmetry of the
wave escorting the first electron and vice versa. In contrast, many bosons can be in the
same quantum state. At very low temperatures, the escorting waves of an ensemble of
identical bosons coalesce into a more extended matter wave, thus forming a Bose–Einstein
condensate with a common wave function.

One could speculate that particles with spins combine a vibration in a freely chosen
direction with a circulation in the plane perpendicular to it. Such behavior would explain
why the magnitude of a spin is distinctly larger than its maximal z component. This means
that the spin is somewhat wobbling around the external magnetic field. A wave function
associated with a half-integer spin particle changes its sign when the particle is rotated by
360◦. It is not clear what this assertion means with respect to the escort wave. One could
speculate that the vibrational frequency is twice as large as the rotational frequency. Thus,
both the vibrational and the rotational components are only equal when the particle is
rotated by 720◦.

The escort wave is built up very slowly. At the beginning, the matter wave still exhibits
the irregularities of the stochastically modified trajectories. Only after the particle has run
through many orbits, the escort wave is stable. It no longer shows stochastic anomalies.

12. Concluding Remarks

It has to be emphasized that the considerations in this article only concern the inter-
pretation of the wave function and have absolutely no consequences on the mathematical
formalism of quantum mechanics.

The wave–particle duality is no longer mysterious. The fact that massive particles are
escorted by extended waves explains why their propagation complies with wave laws. In
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fact, the escort wave concept embeds quantum mechanics into the traditional disciplines of
physics, namely mechanics, statistical mechanics, electrodynamics and special relativity.

The question about the completeness of quantum mechanics posed by Einstein, Podol-
sky and Rosen in 1935 [26] has not been answered to date. Compared with the escort wave
concept, the Copenhagen interpretation of quantum mechanics is not complete because it
denies the existence of continuous trajectories. Although Heisenberg’s uncertainty relation
prevents one specifying the concrete path of a particle, it is epistemically highly significant
to know that particles run through continuous trajectories and that the wave function is
equal to the space dependence of a real wave.
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